WERNERBAURITE, {[Ca(H₂O)₇]₂(H₂O)₂(H₃O)₂}{V₁₀O₂₈}, AND SCHINDLERITE, {[Na₂(H₂O)₁₀](H₃O)₄}{V₁₀O₂₈}, THE FIRST HYDRONIUM-BEARING DECAVANADATE MINERALS

ANTHONY R. KAMPF§

Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, U.S.A.

JOHN M. HUGHES

Department of Geology, The University of Vermont, Burlington, VT 05405, U.S.A.

JOE MARTY

5199 E. Silver Oak Rd., Salt Lake City, UT 84108, U.S.A.

BARBARA NASH

Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, U.S.A.

Abstract

Wernerbaurite, $\{[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2\}\{V_{10}O_{28}\}$, and schindlerite, $\{[Na_2(H_2O)_{10}](H_3O)_4\}\{V_{10}O_{28}\}$, are new mineral species from the St. Jude mine, Slick Rock district, San Miguel County, Colorado, U.S.A. Crystals of wernerbaurite are tabular on {100} with stepped faces and square to octagonal outlines, up to about 1 mm in maximum dimension; the crystals are yelloworange and the streak is yellow. The mineral displays a subadamantine luster, and is transparent; it does not fluoresce in short- or long-wave ultraviolet radiation. Wernerbaurite has a hardness of about 2, a brittle tenacity, and irregular fracture; two good cleavages, {100} and {010}, were observed. The density calculated from the empirical formula using the single-crystal cell data is 2.352 g cm⁻³. Wernerbaurite is biaxial (-), with α 1.745(3), β 1.780(3), and γ 1.795(3); 2V 66(2)° (white light). Dispersion is r > v, very strong. Optical orientation: $X \wedge \mathbf{a} = 29^\circ$, $Y \wedge \mathbf{c} = 44^\circ$, $Z \wedge \mathbf{b} = 46^\circ$; pleochroism: X, Z = yellow, Y = orange; X = Z< Y. Electron probe microanalysis and the crystal structure solution provided the empirical formula { $(Ca_{1.88}Na_{0.14}K_{0.03}Sr_{0.02})$ $\sum_{0.07} (H_2O)_{15.95} (H_3O)_{2.05} \{V_{10}O_{28}\}$ (based on $V^{5+} = 10$ and O = 46). The simplified structural formula of wernerbaurite is $\{[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2\}\{V_{10}O_{28}\}\}$. Wernerbaurite is triclinic, $P\overline{1}$, with $a^{-9}.7212(6)$, b = 10.2598(8), c = 10.5928(8) Å, α 89.999(6)°, β 77.083(7)°, γ 69.887(8)°, V 963.55(12) Å³, and Z = 1. The strongest four lines in the diffraction pattern [d in Å(I)(hkl)] are: 10.32(100)(001), 8.88(95)(100), 9.64(92)(010), and 6.881(70)(111). The atomic arrangement of wernerbaurite was refined to $R_1 = 0.0341$ on the basis of 3,440 diffractions with $F_0 > 4\sigma F$. The structural unit is a decavanadate polyanion, $(V_{10}O_{28})^{6-}$. The interstitial unit linking the structural units has a composition of $\{[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2\}^{6+}$, and is formed of an isolated $[Ca(H_2O)_7]^{2+}$ polyhedron, a $(H_3O)^+$ ion, and an isolated H_2O molecule. Wernerbaurite is named in honor of Prof. Dr. rer. nat. Werner H. Baur for his long, productive and distinguished career in mineralogical crystallography.

Crystals of schindlerite are tabular and commonly occur in stacked parallel intergrowths up to 0.3 mm in maximum dimension; the crystals are orange with a yellow streak. Schindlerite displays a subadamantine luster, and is transparent; it does not fluoresce in short- or long-wave ultraviolet radiation. Schindlerite has a hardness of about 2, a brittle tenacity, and one good cleavage on {010}. The density calculated from the empirical formula using the single-crystal cell data is 2.461 g cm⁻³. Schindlerite is biaxial (+), with α 1.74 (est), β 1.790(5), and γ 1.875 (calc); 2V (meas) = 78.1° (white light). Dispersion is r > v, very strong. The optical orientation is $X \wedge \mathbf{b} = 25^\circ$, $Y \wedge \mathbf{c} = 12^\circ$, $Z \wedge \mathbf{a} = 3^\circ$. No pleochroism was perceptible. Electron probe microanalysis and the crystal structure solution provided the empirical formula of schindlerite is {[Na₂(H₂O)₁₀₀] (H₃O)₄}{V₁₀O₂₈}. Schindlerite is triclinic, *P*T, with *a* 8.5143(3), *b* 10.4283(5), *c* 11.2827(8) Å, α 68.595(5)°, β 87.253(6)°, γ 67.112(5)°, *V* 854.08(8) Å³, and *Z* = 1. The strongest four lines in the diffraction pattern [*d* in Å(1)(*hkl*)] are: 8.68(100)(010, 011), 10.51(94)(001), 7.70(86)(100,110), and 6.73(61)(111,101). The atomic arrangement of schindlerite was refined to $R_1 = 0.0399$. The structural unit is a decavandate

[§] E-mail address: akampf@nhm.org

polyanion, $(V_{10}O_{28})^{6-}$. The interstitial unit linking the structural units has a composition of $\{[Na_2(H_2O)_{10}](H_3O)_4\}^{6+}$, and is formed of a $[Na_2(H_2O)_{10}]$ dimer decorated with four hydronium ions. As in wernerbaurite, an extensive network of hydrogen bonding links the interstitial unit to the structural unit in schindlerite. Schindlerite is named in honor of Dr. Michael Schindler, Associate Professor for Environmental Mineralogy at Laurentian University, Sudbury, Ontario, who has contributed greatly to our understanding of vanadium mineralogy. Wernerbaurite and schindlerite are the first hydronium-bearing decavanadate minerals, and both minerals are natural analogs of previously described synthetic phases.

Keywords: wernerbaurite, schindlerite; new mineral; decavanadate; hydronium; crystal structure; St. Jude mine, Slick Rock district, Colorado

INTRODUCTION

The uranium and vanadium deposits of western Colorado and eastern Utah have been a rich source of ore for these metals. The uranium- and vanadiumbearing minerals occur in bedded or roll-front deposits in the sandstone of the Salt Wash member of the Jurassic Morrison Formation (Carter & Gualtieri 1965, Shawe 2011). Recent collecting at these deposits by one of the authors (JM) has revealed numerous secondary vanadium minerals that result from oxidation of vanadium ore bodies under near-surface conditions. With the exceptions of martyite, Zn₃(V₂O₇) (OH)₂•2H₂O (Kampf & Steele 2008b), which contains the $(V_2O_7)^{4-}$ divanadate group, and dickthomssenite, Mg(V₂O₆)•7H₂O (Hughes et al. 2001), and calciodelrioite, Ca(VO₃)₂(H₂O)₄ (Kampf et al. 2012a), which contain (VO₃)⁻ vanadate chains, all of the recently described species contain the decavanadate anionic complex, $(\dot{V}_{10}O_{28})^{6-}$, found in the pascoite family of minerals (Hughes et al. 2005). Table 1 lists the minerals of the pascoite family, including those that contain the $(V_{10}O_{28})^{6-}$ polyanion *sensu stricto*, those that contain $(H_xV_{10}O_{28})^{(6-x)-}$ protonated decavanadate polyanions, and that which contains the mixed-valence $[(V^{4+}V^{5+})]$ O₂₈]⁷⁻ polyanion. Recent collecting also yielded wellcrystallized examples of the decavanadate huemulite,

{ $[Na_4(H_2O)_{14}][Mg(H_2O)_6](H_2O)_4$ }{ $V_{10}O_{28}$ } (Gordillo *et al.* 1966), which have proved suitable for structure determination (Colombo *et al.* 2011). The only other previously known pascoite-family mineral, hummerite, { $[KMg(H_2O)_8]_2$ }{ $V_{10}O_{28}$ } (Hughes *et al.* 2002), also comes from these deposits, as does sherwoodite, which contains a mixed-valence 14-vanadoaluminate complex anion of (AlV₁₄O₄₀)^{*n*-} composition (Evans & Konnert 1978).

Herein we describe two new secondary minerals from the uranium and vanadium deposits of western Colorado and eastern Utah, the first decavanadate minerals found to contain the hydronium ion. The new species were discovered in the St. Jude mine, Slick Rock district, San Miguel County, Colorado, U.S.A. The minerals are named wernerbaurite and schindlerite in honor of Prof. Dr. rer. nat. Werner H. Baur (b. 1931), and Dr. Michael Schindler (b. 1966), respectively. Dr. Baur is known for his long, productive and distinguished career in mineralogical crystallography. He has had appointments at various institutions, but most notably he served with distinction on the faculty of the Geological Sciences Department of the University of Illinois, Chicago from 1965 to 1986, in positions as Associate Professor, Professor, Department Head, and Associate Dean. Dr. Schindler has worked extensively on the structures of vanadium minerals, including

	{V ₁₀ O ₂₈ } ^{6–} Decavanadates	
huemulite	{[Na ₄ (H ₂ O) ₁₄][Mg(H ₂ O) ₆](H ₂ O) ₄ }{V ₁₀ O ₂₈ }	Colombo <i>et al</i> . (2011)
hughesite	{[Na ₃ (H ₂ O) ₁₂][Al(H ₂ O) ₆](H ₂ O) ₄ }{V ₁₀ O ₂₈ }	Rakovan <i>et al</i> . (2011)
hummerite	{[KMg(H ₂ O) ₈] ₂ }{V ₁₀ O ₂₈ }	Hughes <i>et al</i> . (2002)
lasalite	{[Mg(H ₂ O) ₆] ₂ [[Na ₂ (H ₂ O) ₆](H ₂ O) ₂ }{V ₁₀ O ₂₈ }	Hughes <i>et al.</i> (2008)
magnesiopascoite	{[Mg(H ₂ O) ₆][Ca ₂ (H ₂ O) ₅] ₂ }{ V ₁₀ O ₂₈ }	Kampf & Steele (2008a)
pascoite	{Ca ₃ (H ₂ O) ₁₇ }{ V ₁₀ O ₂₈ }	Hughes <i>et al.</i> (2005)
postite	${[Mg(H_2O)_6][Al_2(OH)_2(H_2O)_8](H_2O)_{13}}{V_{10}O_{28}}$	Kampf <i>et al</i> . (2012b)
schindlerite	{[Na ₂ (H ₂ O) ₁₀](H ₃ O) ₄ }{V ₁₀ O ₂₈ }	This work
wernerbaurite	$\{[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2\}\{V_{10}O_{28}\}$	This work
	{H _x V ₁₀ O ₂₈ } ^{(6−x)−} Protonated Decavanadates	
gunterite	{[Na ₄ (H ₂ O) ₁₆](H ₂ O) ₆ }{H ₂ V ₁₀ O ₂₈ }	Kampf <i>et al.</i> (2011b)
rakovanite	{[Na ₃ (H ₂ O) ₁₅ }{H ₃ [V ₁₀ O ₂₈]}	Kampf <i>et al</i> . (2011a)
	Mixed-Valence {(V ⁴⁺ _x V ⁵⁺ 10−x)O ₂₈ } ^{(6+x)−} Vanadylvanadat	e
nashite	$\{[Na_{31}Ca_2(H_2O)_{22}](H_2O)_2\}\{(V^{4+}V^{5+}_9)O_{28}\}$	Kampf <i>et al</i> . (2013)

TABLE 1. THE PASCOITE FAMILY OF MINERALS

bobjonesite, hummerite, orthominasragrite, pascoite, and schubnelite, as well as other inorganic vanadium phases, and he was the 2006 recipient of the Young Scientist Award from the Mineralogical Association of Canada. Both Dr. Baur and Dr. Schindler have agreed to have the minerals named in their honor.

The new minerals and mineral names were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (wernerbaurite, IMA 2012–064; schindlerite, IMA 2012–063). Three cotype specimens of wernerbaurite are deposited in the collections of the Natural History Museum of Los Angeles County, catalogue numbers 64002, 64003, and 64004, and three cotype specimens of schindlerite are deposited in the same collection under catalogue numbers 64005, 64006, and 64007.

OCCURRENCE

Wernerbaurite and schindlerite were found in the western portion of the St. Jude mine, Gypsum Valley, Slick Rock district, San Miguel County, Colorado, U.S.A. (38° 04' 31.93"N; 108°48'52.74"W). The discovery site is a stope not far from the interconnected West Sunday and Sunday mines. All three mines are currently inactive and their entrances are sealed. The new minerals are rare. The minerals were found growing on corvusite-montroseite-bearing sandstone blocks and are closely associated with calciodelrioite (Kampf et al. 2012a), gypsum, huemulite, hughesite (Rakovan et al. 2011), metarossite, pascoite, and rossite; the minerals have not been found on the same specimen. Other minerals found in the same area in the St. Jude mine include delrioite, hendersonite, nashite (Kampf et al. 2013), and powellite. Other minerals found nearby in adjacent areas of the West Sunday mine are andersonite, gunterite (Kampf et al. 2011b), hewettite, munirite,

natrozippeite, pyrite, rakovanite (Kampf *et al.* 2011a), sherwoodite, and tyuyamunite.

The minerals form from the oxidation of montroseite-corvusite assemblages in a moist environment. Mining operations have exposed unoxidized and oxidized phases. Under ambient temperatures and generally oxidizing near-surface environments, water reacts with pyrite in the deposit to form aqueous solutions with relatively low pH. The various secondary vanadate phases that formed depend upon the Eh-pH conditions and presence of other cations (*e.g.*, Na⁺, Ca²⁺, Mg²⁺, Al³⁺) (Evans and Garrels 1958).

Both minerals have been previously synthesized; wernerbaurite is the natural equivalent of the synthetic phase described by Strukan *et al.* (1999), and schindlerite is the natural equivalent of the synthetic phase described by Zhang *et al.* (1985).

PHYSICAL PROPERTIES

Wernerbaurite

Crystals of wernerbaurite occur in thin tablets flattened on {100}, with stepped faces and square to octagonal outlines, up to ~1 mm in maximum dimension. Crystals exhibit the forms {100}, {010}, {001}, {001}, {011}, and {111}. Crystals are often aligned approximately perpendicular to the surface on which they are growing and subparallel to one another (Figs. 1 and 2).

Wernerbaurite is yellow-orange with a yellow streak. The mineral displays a subadamantine luster, and is transparent; it does not fluoresce in short- or long-wave ultraviolet radiation. Wernerbaurite has a Mohs hardness of about 2, a brittle tenacity, and two good cleavages, $\{100\}$ and $\{010\}$. The density could not be measured because the mineral dissolves in available aqueous density liquids, *e.g.*, Clerici solution and an aqueous solution of sodium polytungstate, and there

Fig. 1. Crystals of (a) wernerbaurite (to 1 mm) and (b) schindlerite (to 0.5 mm).

Fig. 2. Crystal drawings (clinographic projection) of (a) wernerbaurite (standard orientation) and (b) schindlerite (nonstandard orientation, with [111] vertical).

is insufficient material for direct measurement. The density calculated from the empirical formula and the refined cell dimensions from the single-crystal study is 2.352 g/cm³. Wernerbaurite dissolves instantly in cold, dilute HCl and slowly in water.

Schindlerite

Crystals of schindlerite are tabular on $\{011\}$ and often occur in stacked parallel intergrowths. Individual crystals are up to 0.3 mm in maximum dimension and exhibit the forms $\{100\}$, $\{010\}$, $\{001\}$, $\{110\}$, $\{011\}$, $\{111\}$, and $\{11\overline{1}\}$ (Figs. 1 and 2). The mineral is orange with a yellow streak. It displays a subadamantine luster, is transparent, and does not fluoresce in short- or longwave ultraviolet radiation. Schindlerite has a Mohs hardness of about 2, a brittle tenacity, and one good cleavage on $\{010\}$. The density could not be measured because the mineral dissolves in available aqueous density liquids and there is insufficient material for direct measurement. The density calculated from the empirical formula and the refined cell dimensions from the single-crystal study is 2.461 g/cm³. Schindlerite dissolves instantly in cold, dilute HCl and slowly in water.

OPTICAL PROPERTIES

Wernerbaurite

The optical properties of wernerbaurite and schindlerite were determined in white light. Wernerbaurite is biaxial (–). The indices of refraction are α = 1.745(3), β = 1.780(3), and γ = 1.795(3); the optical orientation is $X \wedge \mathbf{a} = 29^\circ$, $Y \wedge \mathbf{c} = 44^\circ$, $Z \wedge \mathbf{b} = 46^\circ$. The value of 2V was measured on a spindle stage using conoscopy, yielding $66(2)^\circ$; 2V (calc) = 65.3° . Dispersion is r > v, very strong; note that, because one optic axis is only about 10° from the perpendicular to the plane of the tablet, the very strong dispersion produces anomalous red-orange and blue-green interference colors near the extinction positions. The mineral is pleochroic: X, Z = yellow, Y = orange; X = Z < Y. The calculated Gladstone-Dale compatibility, $1 - (K_p/K_c)$, is superior (0.001) using the empirical formula and the refined cell dimensions from the single-crystal study.

Schindlerite

Schindlerite is biaxial (+). The indices of refraction are $\alpha = 1.74$ (est), $\beta = 1.790(5)$ and $\gamma = 1.875$ (calc). The value of 2V was determined from spindle stage extinction data using EXCALIBRW (Gunter et al. 2004) providing 78(1)°. The optical determinations were problematic for several reasons, including unfavorable orientation of X and the fact that crystals react in index liquids with n > 1.80. The unfavorable orientation of X allowed us only to estimate α . Because the crystals react in index liquids with n > 1.80, γ was calculated from α , β , and 2V. Dispersion is r > v, very strong. The optical orientation is $\hat{X} \wedge \mathbf{b} = 25^{\circ}, Y \wedge \mathbf{c} = 12^{\circ}, Z \wedge \mathbf{a}$ $= 3^{\circ}$. No pleochroism was perceptible. The calculated Gladstone-Dale compatibility, $1 - (K_p/K_c)$, is superior (0.019) for the empirical formula and the refined cell dimensions from the single-crystal study.

CHEMICAL ANALYSIS OF WERNERBAURITE AND SCHINDLERITE

Chemical analyses of wernerbaurite (n = 12 from three crystals) and schindlerite (n = 21 from nine crystals) were performed at the University of Utah using a Cameca SX-50 electron microprobe with four wavelength-dispersive spectrometers (Table 2). Analytical conditions were 15 KeV accelerating voltage, 10 nA beam current and a beam diameter of 10–20 μ m. Counting times were 10 seconds for each element except Na, which was analyzed with five second count times. In the analytical routine, Na, Ca, and V were counted simultaneously, *i.e.*, first on their respective spectrometers. Raw X-ray intensities were corrected for matrix effects with a phi-rho-z algorithm (Pouchou & Pichoir 1991).

There was no visible damage to wernerbaurite or schindlerite from the electron beam; however, as is typical of decavanadate phases (*i.e.*, postite, rakovanite, hughesite, gunterite, and lasalite), wernerbaurite and schindlerite partially dehydrate under the vacuum of the microprobe chamber. This H₂O loss results in higher concentrations for the remaining constituents than are to be expected for the fully hydrated phase. Because insufficient material is available for a direct determination of H₂O, the H₂O content has been calculated based upon the structure determination. The analyzed constituents (Table 2) have subsequently been normalized to provide a total of 100% when combined with the calculated H₂O, in order to account for the concentration increases in cations due to dehydration.

For wernerbaurite, the empirical formula (based on $V^{5+} = 10$ and O = 46) is { $(Ca_{1.88}Na_{0.14}K_{0.03}Sr_{0.02})$ $\Sigma_{2.07}(H_2O)_{15.95}(H_3O)_{2.05}$ }{ $V_{10}O_{28}$ }, and the simplified structural formula is { $[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2$ } { $V_{10}O_{28}$ }.

For schindlerite, the empirical formula (based on $V^{5+} = 10$ and O = 42) is: {[$(Na_{1.58}K_{0.35}Ca_{0.02}Sr_{0.01})$ $\Sigma_{1.96}(H_2O)_{10.00}$][$(H_3O)_4$]} $V_{10}O_{28}$ }, and the simplified structural formula is {[$Na_2(H_2O)_{10}$]($H_3O)_4$ } $V_{10}O_{28}$ }.

CRYSTAL STRUCTURE: EXPERIMENTAL

Powder and single-crystal X-ray diffraction data were obtained with a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer using monochromatized Mo $K\alpha$ radiation. The powder data presented in Table 3 for wernerbaurite and schindlerite are in good

			wer	nerbaurite		
Oxide	wt.%	Range	S.D.	Norm. wt.%	Ideal wt.%	Probe Standard
Na ₂ O	0.37	0.13-0.91	0.25	0.33		albite
K ₂ O	0.10	0.05-0.13	0.03	0.09		sanidine
CaO	8.76	8.16-9.25	0.32	7.70	8.22	diopside
SrO	0.16	0.04-0.30	0.07	0.14		Sr titanate (syn)
V_2O_5	75.76	74.25–77.72	1.09	66.63	66.68	Y vanadate (syn)
H ₂ O	14.85†			25.11 [§]	25.10	
Total	100			100	100	
			scl	hindlerite		
Oxide	wt.%	Range	S.D.	Norm. wt.%	Ideal wt.%	Probe Standard
Na ₂ O	4.08	3.47-4.87	0.36	3.87	4.92	albite
K ₂ O	1.37	1.19-1.69	0.14	1.30		sanidine
CaO	0.08	0.02-0.19	0.04	0.08		diopside
SrO	0.10	0.00-0.16	0.10	0.09		Sr titanate (syn)
V_2O_5	75.80	73.16-81.60	2.32	71.88	72.20	Y vanadate (syn)
H ₂ O	18.57†			22.78 [§]	22.88	
Total	100			100	100	

TABLE 2. CHEMICAL ANALYSES OF WERNERBAURITE AND SCHINDLERITE

[†] By difference; § Difference of normalized oxides.

TABLE 3. POWDER X-RAY DATA FOR WERNERBAURITE AND SCHINDLERITE

$I_{\rm obs}$	$d_{\rm obs}({\rm \AA})$		$d_{\rm calc}({\rm \AA})$	I _{calc}	h k l	I _{obs}	$d_{\rm obs}({\rm \AA})$		$d_{\rm calc}({\rm \AA})$	$I_{\rm calc}$	h k I
					werne	erbaurite					
100	10.32(4)		10.2883	100	001				2.8069	3	213
92	9.64(5)		9.6001	98	010				2.7280	2	131
95	8.88(2)		8.8660	96	100	20	2 714(6)	ş	2.7192	8	130
58	8.10(2)		8.0892	64	110	20	2.714(0)	l	2.7073	6	331
10	7 /8(8)	ş	7.6810	9	101				2.6964	2	330
10	7.40(0)	l	7.3328	8	011				2.6953	2	113
70	6.881(16)		6.8663	58	111			ſ	2.6858	4	023
			6.7423	18	<u>0</u> 11	9	2.661(12)	-{	2.6764	2	301
39	6.031(14)		6.0425	29	101			l	2.6444	5	1 <u>0</u> 4
			5.9497	16	111	23	2.550(3)		2.5541	13	<u>3</u> 12
14	5.41(2)		5.3924	14	111				2.5399	2	1 <u>3</u> 1
5	5 01(6)	{	5.0288	2	120				2.5372	6	<u>11</u> 4
0	0.0.(0)	l	4.9955	3	102	12	2 430(4)	ş	2.4451	3	223
17	4.80(5)		4.8000	15	020		2.100(1)	l	2.4241	6	<u>13</u> 3
12	4.69(8)		4.7058	4	210				2.4190	2	1 <u>3</u> 3
			4.7015	6	012	4	2.348(16)		2.3508	2	$\frac{0}{2}$ 2 4
			4.6608	3	112	8	2.30(2)		2.3076	6	142
7	4.51(6)	- {	4.5535	3	111	4	2.27(7)		2.2815	4	401
		(4.4768	2	201			(2.2474	6	033
4	4.38(8)		4.3836	2	012	23	2.242(8)	ł	2.2472	2	321
11	4.06(3)	- {	4.0505	9	102		()		2.2384	8	402
		(4.0446	3	220			`	2.2369	5	233
17	3.97(2)	- {	3.9733	4	211	10	0.400/5)		2.2182	3	242
		Ś	3.9672	13	221	13	2.196(5)		2.1918	10	024
8	3.77(2)	- {	3.8405	3	202	11	2.099(5)	- }	2.1038	5	403
		(3.7009	0	100			C	2.0915	2	234
4	2 66(2)		3.7087	2	120			,	2.0748	2	243
4	3.00(3)		2 5004	3	221				2.0097	7	143
6	2 454(10)		2.0094	2	221	32	2.059(2)	{	2.0004	0	411
0	3.434(19)	(3 3370	4	113				2.0577	3	134
11	3.339(12)	- {	3 3101	- 4	013				2.0000	5	412
		`	3 2473	2	131	26	1 9869(19)		1 9837	19	243
		(3 2281	4	311	20	1.0000(10)		1 9541	2	424
21	3 219(8)	Į	3 2253	10	113	13	1 927(4)		1 9273	7	034
	0.210(0)	1	3 2000		030			(1 9157	2	511
		•	3.1814	2	230	6	1.897(9)	-{	1.9019	2	512
			3.1556	7	$\bar{2}\bar{1}2$	12	1.815(5)	-	1.8148	10	502
25	3,126(7)		3.1311	10	031	6	1.794(11)		1.7942	5	144
	()		3.1172	3	231	11	1.761(3)		1.7628	5	531
			3.0920	5	203	4	1.716(7)		1.7147	2	006
			3.0810	6	321		()		1.7099	2	260
			3.0407	2	320				1.6976	2	421
00	0.000/5)	6	3.0389	6	301	7	1.687(4)		1.6874	4	261
29	3.028(5)	٦.	3.0212	18	$\bar{2} 0 2$	7	1.654(5)		1.6528	4	332
			2.9671	2	$\overline{2}$ $\overline{3}$ 1	0	4 000(0)	s	1.6373	2	244
14	2 011/0)	s	2.9553	5	300	6	1.632(6)	ì	1.6297	3	116
14	2.911(9)	ì	2.8975	11	123	4	1.574(5)		1.5749	2	623
			2.8752	3	302	7	1.546(6)		1.5384	4	535
		(2.8507	4	221	5	1.528(11)		1.5203	2	640
29	2.842(5)	{	2.8452	14	132	7	1.507(5)		1.5062	2	245
		(2.8181	7	232						

$I_{\rm obs}$	$d_{\rm obs}({\rm \AA})$		$d_{\rm calc}({\rm \AA})$	I _{calc}	h k I	I _{obs}	d _{obs} (Å)		$d_{\rm calc}({\rm \AA})$	$I_{\rm calc}$	hkl
					schin	dlerite					
94	10.51(4)		10.4412	100	001	10	0 000(0)	5	2.3259	19	232
100	0 60(2)	5	8.9009	46	010	19	2.320(3))	2.3235	3	$\overline{2} \overline{2} 3$
100	0.00(2)	Ì	8.5449	90	011	0	0 000(E)	5	2.2343	5	144
96	7 70(2)	5	7.7967	60	100	9	2.233(3))	2.2310	7	302
00	1.70(2)	Ì	7.5460	60	110	20	2 121(2)	5	2.1362	11	044
61	6 72(2)	5	6.8473	37	111	29	2.131(2)	Ì	2.1293	17	311
01	0.73(2)	1	6.6038	45	101	7	2 062(6)	5	2.0980	6	332
6	5.79(7)		5.7837	6	0 1 1	1	2.002(0))	2.0568	3	323
3	5.47(15)		5.4952	2	012			(2.0015	4	233
7	5.19(6)		5.2206	5	002	13	1.994(3)	- {	1.9875	5	145
9	4.81(3)		4.7967	4	021			U	1.9809	4	303
7	4.50(4)		4.4505	4	020	10	1 025 (2)	5	1.9453	5	312
10	4 26(2)	5	4.2724	3	022	12	1.935 (3)	- 1	1.9270	6	045
12	4.20(2)	Ì	4.2375	7	112	10	1.858(3)		1.8593	8	3333
4	4.07(5)		4.0639	3	111				1.8343	3	342
24	3 815(0)	5	3.8178	13	221			(1.7824	5	155
24	3.615(9)	Ì	3.7908	10	201	15	1 760(2))	1.7728	2	325
			3.7561	3	013	15	1.709(2)		1.7651	4	242
10	3 115(16)	5	3.4804	5	003			(1.7638	6	402
10	3.443(10)	1	3.4237	8	222				1.7346	3	262
13	3.316(12)		3.3019	11	202	5	1.693(7)		1.6885	4	216
		T	3.0559	10	103			(1.6724	3	034
			3.0261	12	232	9	1.668(4)	- {	1.6700	4	521
50	2.993(4)	- 4	2.9992	17	212			(1.6577	2	361
		1	2.9714	17	202	4	1.597(5)		1.5993	2	336
		- 12	2.9670	21	030	1	1 546(5)	ş	1.5443	2	134
			2.8931	5	013	-	1.0+0(0)	l	1.5412	2	523
		(2.8062	3	014			ſ	1.5053	2	253
24	2 787(5))	2.7890	13	222	4	1.503(7)	- {	1.5010	2	3 4 2
27	2.707(0)		2.7754	2	213			(1.4919	3	343
		(2.7679	8	321	9	1.481(7)		1.4800	3	217
			2.7101	3	233	7	1 464(8)	ş	1.4690	2	246
7	2 612(0)	ş	2.6163	2	213	1	1.404(0)	l	1.4676	3	372
'	2.012(3)	l	2.6103	7	004	10	1440(3)	ş	1.4459	2	044
22	2 472(4)	5	2.4756	18	034	10	1.440(0)	l	1.4412	4	446
~~	L. T / L (T)	ì	2.4610	11	212						

TABLE 3 (continued).

agreement with those calculated from the structure data. Observed d values and intensities were derived by profile fitting using JADE 2010 software.

The Rigaku CrystalClear software package was used for reducing X-ray intensity data to structure factors, including corrections for Lorentz and polarization effects, and the application of empirical absorption corrections; the structures were solved by direct methods using SIR2004 (Burla *et al.* 2005). The SHELXL-97 software (Sheldrick 2008) was used for the structure refinements, utilizing neutral-atom scattering factors. Hydrogen atoms were located using difference Fourier maps, and were refined using O–H and H–H distance constraints. Details of the data collections and structure refinements are provided in Table 4, and the atom coordinates and equivalent displacement parameters are in Table 5. Table 6 lists the anisotropic displacement parameters, and selected interatomic distances and bond valences are listed in Table 7. A copy of Table 6, tables of structure factors, and cif files for wernerbaurite and schindlerite are available from the Depository of Unpublished Data on the MAC website [document Wernerbaurite CM51_297; http://www.mineralogicalassociation.ca/index.php?p=144].

ATOMIC ARRANGEMENTS OF WERNERBAURITE AND SCHINDLERITE

Minerals containing the $(V_{10}O_{28})^{6-}$ decavanadate group can be considered members of the pascoite family (Table 1), pascoite being the first decavanadate-bearing mineral described (Hillebrand *et al.* 1914). All minerals of the pascoite family are bipartite structures that consist of a structural unit and an interstitial unit, as elucidated by Hawthorne (1983). The $(V_{10}O_{28})^{6-}$ polyanion defines the structural unit, the anhydrous anionic portion of the structure (note that in this paper we denote {structural units} and {interstitial units} with braces in the chemical formulas). These more rigid structural units are linked by the interstitial units, the cationic portions of the structures, via bonds of lower bond-valence linking alkalis, alkaline earths, and Al to O atoms of the structural units and interstitial H2O groups, hydroxyls, and/ or hydronium ions (Hughes et al. 2008). The minerals of the pascoite family differ in the composition and structure of the interstitial units, the +6 charge of which balances the charge of the decavanadate polyanions. The recent characterization of rakovanite (Kampf et al. 2011a) and gunterite (Kampf et al. 2011b) demonstrated that in some decavanadates, protonation of the decavanadate polyanion occurs, as has been described in synthetic compounds by Duraisamy *et al.* (2000). In addition, the recently described phase nashite (Kampf *et al.* 2013) illustrates that a mixed-valence $(V_{10}O_{28})$ group can also occur, with a $\{(V^{4+}_1V^{5+}_9)O_{28}\}^{7-}$ vanadylnonavanadate structural unit.

The structural unit in wernerbaurite and schindlerite

The structural unit in wernerbaurite and schindlerite consists of a decavanadate polyanion similar to that found in other decavanadate-bearing minerals (Fig. 3). The decavanadate polyanion consists of ten distorted, edge-sharing octahedra, eight of which contain one vanadyl bond, defined as a V^{5+} –O bond less than 1.74 Å in length (Schindler *et al.* 2000); the remaining two octahedra have two vanadyl bonds. In all cases, the vanadyl bond is *trans* to the longest V–O bond(s) of

	Wernerbaurite	Schindlerite
Diffractometer	Rigaku R-Axis Rapid II	Rigaku R-Axis Rapid II
X-ray radiation / power	Μο <i>Κ</i> α (λ = 0.71075 Å)	MoKα (λ = 0.71075 Å)
X-ray power	50 kV, 40 mA	50 kV, 40 mA
Temperature	298(2) K	298(2) K
Space group	PĪ	P 1
Unit cell dimensions (Å/°)	a = 9.7212(6)	a = 8.5143(3)
	b = 10.2598(8)	<i>b</i> = 10.4283(5)
	c = 10.5928(8)	c = 11.2827(8)
	$\alpha = 89.999(6)$	$\alpha = 68.595(5)$
	$\beta = 77.083(7)$	$\beta = 87.253(6)$
	$\gamma = 69.887(8)$	γ = 67.112(5)
V (Å ³)	963.55(12)	854.08(8)
Ζ	1	1
Density (g/cm ³), calc.	2.350	2.449
Absorption coefficient (mm ⁻¹)	2.709	2.765
<i>F</i> (000)	676	620
Crystal size (μm)	40 x 220 x 220	40 x 90 x 180
θ range (°)	3.02 to 27.49	3.08 to 27.49
Index ranges	$\overline{12} \le h \le 12$	$\overline{10} \le h \le 11$
	$\overline{13} \le k \le 13$	$\overline{13} \le k \le 13$
	$\overline{13} \le \ell \le 11$	$\overline{13} \leq \ell \leq 14$
Reflections collected / unique	18571 / 4396 [R _{int} = 0.0429]	10928 / 3880 [R _{int} = 0.0360]
Reflections $F_0 > 4\sigma F$	3440	2888
Completeness	99.3%	99.2%
Max. and min. transmission	0.4663 and 0.2661	0.9094 and 0.6359
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Parameters refined	319	292
GoF	1.061	1.071
Final R indices $[F_0 > 4\sigma F]$	$R_1 = 0.0341$, w $R_2 = 0.0853$	$R_1 = 0.0399$, w $R_2 = 0.0993$
R indices (all data)	$R_1 = 0.0475$, w $R_2 = 0.0920$	<i>R</i> ₁ = 0.0575, w <i>R</i> ₂ = 0.1105
Largest diff. peak / hole (e/A ³)	+0.574 / -0.575	+0.634 / -0.655

Notes: $R_{int} = \Sigma |F_o^2 - F_o^2(mean)/\Sigma [F_o^2]$. GoF = S = $\{\Sigma [w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}$. $R_1 = \Sigma ||F_o| - |F_c|/\Sigma |F_o|$. $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2]/(n-p)\}^{1/2}$. $w = 1/[\sigma^2(F_o^2) + (aP)^2 + bP]$ where P is $[2F_c^2 + Max(F_o^2, 0)]/3$; for wernerbaurite a is 0.0485 and b is 0.1073; for schindlerite a is 0.0614 and b is 0.

TABLE 5. ATOM COORDINATES AND EQUIVALENT DISPLACEMENT PARAMETERS (Å ²)
FOR WERNERBAURITE AND SCHINDLERITE

Atom	x/a	y/b	z/c	U _{eq}
		werner	baurite	
V1	0.65439(5)	0.03563(4)	0.94782(4)	0.01912(12)
V2	0.34785(5)	0.27089(5)	0.09318(5)	0.02374(13)
V3	0.51790(5)	0.04014(5)	0.24712(4)	0.02206(12)
V4	0.81413(5)	0.80172(5)	0.10355(5)	0.02525(13)
V5	0 47686(5)	0.26110(5)	0 79393(5)	0.02551(13)
Са	0.83962(7)	0.26607(6)	0.41299(6)	0.02816(15)
01	0.4263(2)	0.09869(17)	0.93156(16)	0.0205(4)
02	0.5596(2)	0.15842(18)	0.10244(17)	0.0217(4)
03	0.6720(2)	0.89534(18)	0.81782(17)	0.0213(4)
04	0.6755(2)	0 15763(18)	0.84533(18)	0.0246(4)
05	0.7195(2)	0.95556(19)	0.23251(18)	0.0254(4)
06	0.8241(2)	0.95602(19)	0.98196(18)	0.0253(4)
07	0 4664(2)	0.89756(19)	0.31933(18)	0.0253(4)
08	0.2763(2)	0.30383(19)	0.79403(19)	0.0280(4)
09	0 1693(2)	0 29926(19)	0.04793(19)	0.0265(4)
010	0.4241(2)	0.35638(18)	0.95846(19)	0.0270(4)
011	0.4653(2)	0 1539(2)	0.36944(19)	0.0314(5)
012	0.2999(3)	0.3837(2)	0 2148(2)	0.0360(5)
013	0.9835(2)	0.7477(2)	0.1212(2)	0.0365(5)
014	0.5284(3)	0.3660(2)	0.6995(2)	0.0379(5)
OW1	0 7548(2)	0.0726(2)	0 4654(2)	0.0306(5)
H1a	0 742(3)	0.030(3)	1 398(2)	0.037
H1b	0.673(3)	0.088(3)	1 529(2)	0.037
OW2	0.8885(3)	0 1343(2)	0.2015(2)	0.0380(5)
H2a	0.829(3)	0.091(3)	1 185(3)	0.046
H2b	0.975(2)	0 100(3)	1 147(3)	0.046
OW3	0.0958(3)	0.1416(3)	0.3823(2)	0.0490(7)
H3a	1 133(4)	0.062(3)	1 420(3)	0.059
H3b	1 158(4)	0.137(4)	1 308(2)	0.059
OW4	0.8363(4)	0 7091(3)	0 4248(3)	0.0689(9)
H4a	0.802(4)	-0 236(4)	1 503(3)	0.083
H4b	0 759(4)	-0.254(4)	1 384(3)	0.083
OW5	0.9033(3)	0 4104(2)	0 2396(2)	0.0418(6)
H5a	0.981(3)	0.380(3)	1.174(3)	0.05
H5b	0.863(3)	0.5009(19)	1.243(3)	0.05
OW6	0 5957(3)	0.3612(2)	0.3717(3)	0.0457(6)
H6a	0.529(3)	0.318(3)	1 389(4)	0.055
H6b	0.540(3)	0.4513(19)	1.373(4)	0.055
OW7	0.8894(3)	0.2086(3)	0.6283(2)	0.0509(7)
H7a	0.951(3)	0.251(4)	1 637(3)	0.061
H7b	0.826(3)	0.216(4)	1 704(2)	0.061
OW8	0.7847(4)	0.4827(3)	0.5249(2)	0.0649(8)
H8a	0.769(5)	0.494(4)	1.6093(18)	0.078
H8b	0.809(5)	0.551(3)	1.487(3)	0.078
OW9	0.2864(3)	0.6429(3)	0.9472(3)	0.0537(7)
H9a	0.340(3)	0.554(2)	0.965(3)	0.064
H9b	0.353(3)	0.691(3)	0.938(3)	0.064
H9c	0.213(3)	0.684(3)	1.025(3)	0.064
		5.00.(0)		

306

TABLE 5 (continued)	

Atom	x/a	y/b	z/c	U _{eq}
		schindl	erite	
V1	0.37680(7)	0.78287(6)	0.49749(5)	0.02084(15)
V2	0.69006(6)	0.50277(6)	0.48023(5)	0.01792(15)
V3	0.17151(7)	0.78389(6)	0.27788(5)	0.02334(16)
V4	0.52664(7)	0.49551(6)	0.73981(5)	0.02051(15)
V5	0.52942(7)	0.79132(6)	0.23773(5)	0.02263(16)
Na	0.93135(17)	0.66757(15)	0.87252(13)	0.0347(3)
01	0.4327(2)	0.6243(2)	0.39448(18)	0.0187(5)
02	0.6031(3)	0.6202(2)	0.58407(19)	0.0202(5)
O3	0.3162(3)	0.6153(2)	0.61469(19)	0.0205(5)
O4	0.4829(3)	0.8691(2)	0.3673(2)	0.0227(5)
O5	0.7387(3)	0.6331(2)	0.3597(2)	0.0224(5)
O6	0.1704(3)	0.8642(2)	0.4016(2)	0.0245(5)
07	0.2983(3)	0.8805(2)	0.1776(2)	0.0247(5)
08	0.4388(3)	0.3586(2)	0.82799(19)	0.0230(5)
O9	0.8743(3)	0.3789(2)	0.5742(2)	0.0226(5)
O10	0.7492(3)	0.3655(2)	0.79312(19)	0.0232(5)
O11	0.6103(3)	0.8963(3)	0.1390(2)	0.0324(6)
012	0.3420(3)	0.8821(3)	0.5846(2)	0.0293(5)
O13	0.9783(3)	0.8818(3)	0.2096(2)	0.0329(6)
014	0.4922(3)	0.5973(3)	0.8251(2)	0.0288(5)
OW1	0.9785(4)	0.5105(4)	0.7591(3)	0.0512(8)
H1A	1.069(3)	0.467(4)	0.724(4)	0.061
H1B	0.908(4)	0.462(4)	0.765(4)	0.061
OW2	0.0302(4)	0.8184(3)	0.7038(3)	0.0509(8)
H2A	0.988(5)	0.916(2)	0.661(4)	0.061
H2B	1.128(3)	0.772(4)	0.679(4)	0.061
OW3	0.2084(3)	0.4852(3)	0.9867(2)	0.0369(6)
H3A	1.279(4)	0.480(4)	1.047(3)	0.044
H3B	1.282(4)	0.441(4)	0.939(3)	0.044
OW4	0.6565(4)	0.8178(3)	0.7518(3)	0.0489(7)
H4A	0.589(5)	0.786(4)	0.724(4)	0.059
H4B	0.624(5)	0.915(2)	0.712(4)	0.059
OW5	0.9309(4)	0.8282(3)	0.9737(2)	0.0445(7)
H5A	0.927(5)	0.801(4)	1.0549(17)	0.053
H5B	0.856(4)	0.921(3)	0.930(3)	0.053
OW6	0.8208(3)	0.7906(2)	0.5098(2)	0.0208(5)
H6A	0.767(3)	0.8864(18)	0.467(3)	0.025
H6B	0.783(4)	0.736(3)	0.500(3)	0.025
H6C	0.905(3)	0.771(3)	0.558(3)	0.025
OW7	0.2842(4)	0.8239(4)	0.9296(3)	0.0594(9)
H7A	1.330(4)	0.780(5)	1.014(2)	0.071
H7B	1.352(4)	0.760(4)	0.892(3)	0.071
H7C	1.178(3)	0.824(5)	0.928(4)	0.071

the octahedron, typical of the disposition of bonds in the octahedra of the decavanadate polyanion. The long V–O bond (V–O1 in all cases) in each octahedron is of interest because of the unusual coordination of that oxygen atom in the decavanadate group. Specifically, the O1 atom bonds to six vanadium atoms (Fig. 3), yet the bond valence sum for the oxygen atom totals 1.96 v.u. in wernerbaurite and 1.98 v.u. in schindlerite, attesting to the efficacy of the electrostatic valency principle, even for such an unusual oxygen coordination.

The interstitial unit in wernerbaurite

The interstitial unit that links the $\{V_{10}O_{28}\}^{6-}$ structural unit in decavanadate compounds must balance the 6– charge of the decavanadate structural unit. The interstitial unit in wernerbaurite is formed of isolated $[Ca(H_2O)_7]^{2+}$ polyhedra (Fig. 4), (H₃O)⁺ ions, and an isolated H₂O molecule, and has a composition of $\{[Ca(H_2O)_7]_2(H_2O)_2(H_3O)_2\}^{6+}$. Wernerbaurite and schindlerite are the first decavanadate minerals known

TABLE 7. SELECTED BOND DISTANCES (Å) AND BOND VALENCE SUMS (vu) FOR ATOMS IN WERNERBAURITE AND SCHINDLERITE [BOND VALENCE PARAMETERS FROM BRESE AND O'KEEFFE (1991)]

			wernerbaurite		
V1–	d	vu	V2-	d	vu
O6	1.691(2)	1.35	012	1.605(2)	1.71
04	1.693(2)	1.35	O10	1.825(2)	0.94
02	1.909(2)	0.75	O9	1.831(2)	0.93
03	1.929(2)	0.71	O3	1.995(2)	0.60
01	2,108(2)	0.44	02	2.009(2)	0.57
01'	2.133(2)	0.41	01	2.666(2)	0.29
Mean sum	1 911	5.01	Mean sum	1 922	5.03
mouri, ouri	1.011	0.01	mouri, ouri	1.022	0.00
V3-	d	vu	V4-	d	vu
O11	1.611(2)	1.68	O13	1.601(2)	1.73
07	1.819(2)	0.96	O8	1.831(2)	0.93
O5	1.820(2)	0.96	09	1.856(2)	0.87
03	2.011(2)	0.57	O5	1.909(2)	0.75
02	2.012(2)	0.57	06	2.055(2)	0.51
01	2217(2)	0.33	01	2.322(2)	0.25
Mean sum	1 915	5.06	Mean sum	1 929	5.02
Mean, Sam	1.010	0.00	Mean, Sam	1.020	0.02
V5-	d	vu	Ca-	d	vu
O14	1.600(2)	1.73	OW3	2.321(2)	0.38
O8	1.845(2)	0.89	OW8	2.352(2)	0.35
07	1.866(2)	0.84	OW6	2.374(2)	0.33
010	1 874(2)	0.83	OW1	2419(2)	0.29
04	2 053(2)	0.51	OW5	2.464(2)	0.26
01	2.000(2)	0.01	0\\\7	2.466(3)	0.20
Mean sum	1 027	5.05	0\\/2	2.400(0)	0.20
wearr, sum	1.521	5.05	Mean sum	2.401(2)	2.13
				2.411	2.15
			schindlerite		
V1–	d	vu	V2-	d	vu
012	1.613(2)	1.67	O9	1.684(2)	1.38
04	1.822(2)	0.95	O5	1.704(2)	1.31
06	1.825(2)	0.94	02	1.918(2)	0.73
02	1.993(2)	0.60	O3	1.920(2)	0.73
O3	2.005(2)	0.58	O1	2.101(2)	0.45
01	2.247(2)	0.30	O1'	2.120(2)	0.42
Mean, sum	1.918	5.04	Mean, sum	1.922	5.02
V3-	d	vu	V4-	d	VU
013	1.607(2)	1.70	014	1.617(2)	1.65
07	1.833(2)	0.92	O10	1.818(2)	0.96
06	1.870(2)	0.83	O8	1.819(2)	0.96
O10	1.888(2)	0.79	O3	1.994(2)	0.60
O9	2.051(2)	0.51	02	2.021(2)	0.55
01	2.291(2)	0.27	O1	2.230(2)	0.32
Mean, sum	1.923	5.03	Mean, sum	1.917	5.04
\/F			N .	.1	
V5-	d	vu	Na-	d	vu
011	1.593(2)	1.76	OW1	2.334(3)	0.24
07	1.855(2)	0.87	OW2	2.345(3)	0.23
O4	1.874(2)	0.83	OW5	2.345(3)	0.23
O8	1.888(2)	0.79	OW4	2.384(3)	0.21
O5	2.020(2)	0.56	OW3	2.420(3)	0.19
01	2.359(2)	0.22	OW3'	2.433(3)	0.18
Mean, sum	1.932	5.03	Mean, sum	2.377	1.27

Fig. 3. The decavanadate polyanions in wernerbaurite and schindlerite. The O1 atom, discussed in the text, is labeled.

Fig. 4. The atomic arrangement of wernerbaurite viewed down [100] (*c* axis horizontal). Polyhedral groups represent the $[V_{10}O_{28}]^{6-}$ structural unit. The hydronium ion (red) and $[Ca(H_2O)_7]$ of the interstitial unit are depicted.

to contain the hydronium ion; the hydrogen atoms of the hydronium ion were easily located in difference maps. The synthetic equivalent of wernerbaurite (Strukan *et al.* 1999) was synthesized at pH 6.0; as noted previously, the natural low-temperature decavanadate phases also form in an acidic environment, under ambient temperatures and generally oxidizing near-surface environments where water reacts with pyrite in the deposit to form aqueous solutions of relatively low pH.

Like the other associated low-temperature decavanadate phases, there is extensive hydrogen bonding in the wernerbaurite atomic arrangement, predominantly between the interstitial unit and the structural unit. Table 8 lists the hydrogen bonds in the wernerbaurite atomic arrangement. The lone non-hydrogen cation in the interstitial unit, Ca^{2+} , bonds only to H₂O molecules of the interstitial unit, and does not link to the oxygen atoms of the structural unit. The only linkage between the structural unit and the interstitial unit is by the hydrogen bonds listed in Table 8. The low hardness of wernerbaurite results from the presence of pervasive hydrogen bonds and lack of ionic bonds between the interstitial unit and the structural unit.

The interstitial unit in schindlerite

The interstitial unit in schindlerite, $\{[Na_2(H_2O)_{10}]$ $(H_3O)_4\}^{6+}$, is formed of an isolated $[Na_2(H_2O)_{10}]$ dimer that is linked to four hydronium ions by hydrogen bonding (Fig. 5). The Na atoms bond only to water molecules of the interstitial group and not to oxygen atoms of the decavanadate structural unit. Thus, the only linkage between the structural and interstitial units is through hydrogen bonding. Table 8 lists the hydrogen bonds in the schindlerite atomic arrangement, and serves to illustrate the extensive hydrogen bonding between the structural unit and interstitial unit. Like wernerbaurite and other low-temperature decavanadates, the pervasive hydrogen bonding in schindlerite results in the low hardness of the mineral. The structural

Acceptor	Н	d (Å)	Acceptor	Н	d (Å)	
	wernerbaurite					
	Hydrogen Bonding Between the Interstitial Unit and the Structural Unit					
02	H9b	2.01(2)	08	H5b	2.09(2)	
O3	H3b	1.81(2)	O9	H5a	1.92(2)	
04	H7b	2.09(2)	O10	H9a	1.91(2)	
05	H1a	2.00(2)	O10	H9b	2.53(3)	
O5	H2a	2.03(2)	O11	H4a	2.49(4)	
O5	H4b	2.66(4)	O11	H6a	2.01(2)	
O6	H2a	2.58(3)	O12	H8a	2.09(3)	
O6	H2b	2.01(2)	O13	H9c	2.11(2)	
07	H1b	1.82(2)	O14	H6b	1.98(2)	
08	H4b	2.08(3)				
Hydrogen Bonding Within the Interstitial Unit						
OW1	H3a	2.03(2)	OW3	H4a	2.14(3)	
OW4	H7a	2.20(2)	OW4	H8b	1.83(2)	
schindlerite						
Hydrogen Bonding Between the Interstitial Unit and the Structural Unit						
02	H6b	2.27(2)	O9	H1b	2.66(4)	
O3	H2b	2.12(2)	O10	H1b	1.93(2)	
04	H4b	1.93(2)	O10	H7a	2.40(3)	
04	H6b	2.60(3)	O12	H2b	2.52(4)	
O5	H1a	1.98(2)	O12	H4a	2.33(3)	
O5	H6b	2.32(2)	O12	H6a	2.08(2)	
O6	H2a	2.02(2)	O13	H5a	2.32(3)	
07	H5b	1.92(2)	O14	H3a	2.17(2)	
07	H7a	2.40(3)	O14	H4a	2.32(3)	
O8	H3b	1.95(2)	O14	H7b	2.04(2)	
08	H7a	2.32(2)				
Hydrogen Bonding Within the Interstitial Unit						
OW2	H6c	2.29(2)	OW5	H7c	2.13(2)	

TABLE 8. HYDROGEN BONDS[†] IN WERNERBAURITE AND SCHINDLERITE

[†] A hydrogen bond is defined as a bond with the H...acceptor distance < 2.7 Å and a donor – H – acceptor angle > 110° .

FIG. 5. (a) Atomic arrangement of schindlerite projected down [001]; the *a* axis is horizontal. The unit cell is shown. Polyhedral clusters are the {V₁₀O₂₈}⁶⁻ structural group, and the hydronium ions in the {[Na₂(H₂O)₁₀](H₃O)₄} interstitial group are red. (b) The {[Na₂(H₂O)₁₀](H₃O)₄} dimer in schindlerite. Hydronium ions that decorate the dimer are red; hydrogen bonds are dashed.

units in schindlerite are linked across {010} only by hydrogen bonds, resulting in the good {010} cleavage.

ACKNOWLEDGMENTS

The manuscript was improved by reviews by Joel Grice and Andrew MacDonald. Werner H. Baur is also

thanked for constructive comments on early drafts of the manuscript. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County and by grant NSF-MRI 1039436 from the National Science Foundation to JMH. Jim Fisher, General Mine Superintendent, Denison Mines, allowed us to obtain specimens for study.

REFERENCES CITED

- BRESE, N.E. & O'KEEFFE, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B47, 192–197.
- BURLA, M. C., CALIANDRO, R., CAMALLI, M., CARROZZINI, B., CASCARANO, G. L., DE CARO, L., GIACOVAZZO, C., POLI-DORI, G., & SPAGNA, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. *Journal* of Applied Crystallography 38, 381–388.
- CARTER, W.D. & GUALTIERI, J.L. (1965) Geology and uranium–vanadium deposits of the La Sal quadrangle, San Juan County, Utah, and Montrose County, Colorado. U.S. Geological Survey Professional Paper 508.
- COLOMBO, F., BAGGIO, R., & KAMPF, A.R. (2011) The crystal structure of the elusive huemulite. *Canadian Mineralogist* 49, 849–864.
- DURAISAMY, T., RAMANAN, A., & VITTAL, J.J. (2000) Novel self-assembled decavanadate clusters forming 1D molecular chains and 2D molecular arrays: [HMTA-H···H₂O] [HMTA-CH₂OH][H₃V₁₀O₂₈{NaH₂O)₄]·4H₂O and [Na₂ (H₂O)₁₀] [H₃V₁₀O₂₈{Na(H₂O)₂}]·3H₂O. *Crystal Engineering* **3**, 237–250.
- EVANS, H.T., J.R., & GARRELS, R.M. (1958) Vanadium in aqueous solution as applied to the interpretation of the Colorado Plateau ore deposits. *Geochimica et Cosmochimica Acta* 15, 131–149.
- EVANS, H.T., JR. & KONNERT, J.A. (1978) The crystal chemistry of sherwoodite, a calcium 14-vanadoaluminate heteropoly complex. *American Mineralogist* 63, 863–868.
- GORDILLO, C.E., LINARES, E., TOUBES, R.O., & WINCHELL, H. (1966) Huemulite, Na₄MgV₁₀O₂₄•24H₂O, a new hydrous sodium and magnesium vanadate from Huemul mine, Mendoza Province, Argentina. *American Mineralogist* 51, 1–13.
- GUNTER, M.E., BANDLI, B.R., BLOSS, F.D., EVANS, S.H., SU, S.C., & WEAVER, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR, and how to build a spindle stage. *The Microscope* 52, 23–39.
- HAWTHORNE, F.C. (1983) Graphical enumeration of polyhedral clusters. Acta Crystallographica A39, 724–736.
- HILLEBRAND, W.F., MERWIN, H.E., & WRIGHT, F.E. (1914) Hewettite, metahewettite and pascoite, hydrous calcium vanadates. *Proceedings of the American Philosophical Society*, 53, 31–54.
- HUGHES, J.M., CURETON, F.E., MARTY, J., GAULT, R.A., GUNTER, M.E., CAMPANA, C.F., RAKOVAN, J., SOM-MER, A., & BRUESEKE, M.E. (2001) Dickthomssenite, Mg(V₂O₆)•7H₂O, a new mineral from the Firefly–Pigmay

mine, Utah: descriptive mineralogy and arrangement of atoms. *Canadian Mineralogist* **39**, 1691–1700.

- HUGHES, J.M., SCHINDLER, M., & FRANCIS, C.A. (2005) The C2/m disordered structure of pascoite, Ca₃[V₁₀O₂₈]•17H₂O: Bonding between structural units and interstitial complexes in compounds containing the [V₁₀O₂₈]⁶⁻ decavanadate polyanion. Canadian Mineralogist **43**, 1379–1386.
- HUGHES, J.M., SCHINDLER, M., RAKOVAN, J., & CURE-TON, F.E. (2002) The crystal structure of hummerite, $KMg(V_5O_{14}) \cdot 8H_2O$: bonding between the $[V_{10}O_{28}]^{6-}$ structural unit and the $\{K_2Mg_2(H_2O)_{16}\}^{6+}$ interstitial complex. *Canadian Mineralogist* **40**, 1429–1435.
- HUGHES, J.M., WISE, W.S., GUNTER, M.E., MORTON, J.P., & RAKOVAN, J. (2008) Lasalite, Na₂Mg₂[V₁₀O₂₈]•20H₂O, a new decavanadate species from the Vanadium Queen mine, La Sal District, Utah: Description, atomic arrangement, and relationship to the pascoite group of minerals. *Canadian Mineralogist* **46**, 1365–1372.
- KAMPF, A.R., HUGHES, J.M., MARTY, J., & BROWN, F.H. (2013) Nashite, Na₃Ca₂([V⁵⁺9V⁴⁺1]O₂₈)•24H₂O, a new mineral species from the Yellow Cat Mining District, Utah and the Slick Rock Mining District, Colorado: Crystal structure and descriptive mineralogy. *Canadian Mineralogist* 51, 27–38.
- KAMPF, A.R., HUGHES, J.M., MARTY, J., GUNTER, M.E., & NASH, B. (2011a) Rakovanite, Na₃{H₃[V₁₀O₂₈]}•15H₂O, a new species of the pascoite family with a protonated decavanadate polyanion. *Canadian Mineralogist* 49, 889–898.
- KAMPF, A.R., HUGHES, J.M., MARTY, J., & NASH, B. (2011b) Gunterite, Na₄(H₂O)₁₆(H₂V₁₀O₂₈)•6H₂O, a new mineral with a doubly-protonated decavanadate polyanion: Crystal structure and descriptive mineralogy. *Canadian Mineralogist* **49**, 1243–1251.
- KAMPF, A.R., MARTY J., NASH, B.P., PLÁŠIL, J., KASATKIN, A.V., & ŠKODA, R. (2012a) Calciodelrioite, Ca(VO₃)₂(H₂O)₄, the Ca analogue of delrioite, Sr(VO₃)₂(H₂O)₄. *Mineralogical Magazine* **76**, 2803–2817.
- KAMPF, A.R., HUGHES, J.M., MARTY, J., & NASH, B. (2012b) Postite, Mg(H₂O)₆Al₂(OH)₂(H₂O)₈(V₁₀O₂₈)•13H₂O, a new mineral species from the La Sal mining district, Utah: Crystal structure and descriptive mineralogy. *Canadian Mineralogist* **50**, 45–53.
- KAMPF, A.R., & STEELE, I.M. (2008a) Magnesiopascoite, a new member of the pascoite group: description and crystal structure. *Canadian Mineralogist* 46, 679–686.
- KAMPF, A.R., & STEELE, I.M. (2008b) Martyite, a new mineral species related to volborthite: description and crystal structure. *Canadian Mineralogist* 46, 687–692.
- POUCHOU, J.-L., & PICHOIR, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model "PAP." *In* Electron ProbeQ (K.F.J. Heinrich & D.E. Newbury, eds.). Plenum Press, New York, (31–75).

- RAKOVAN, J., SCHMIDT, G.R., GUNTER, M., NASH, B., KAMPF, A.R., MARTY, J., & WISE, W.S. (2011) Hughesite, Na₃Al (V₁₀O₂₈)•22H₂O, a new member of the pascoite family of minerals from the Sunday mine, San Miguel County, Colorado. *Canadian Mineralogist* **49**, 1253–1265.
- SCHINDLER, M., HAWTHORNE, F.C., & BAUR, W.H. (2000a) Crystal-chemical aspects of vanadium: polyhedral geometries, characteristic bond valences, and polymerization of (VOn) polyhedra. *Chemistry of Materials* 12, 1248–1259.
- SHAWE, D.R. (2011) Uranium-vanadium deposits of the Slick Rock district, Colorado. U.S.G.S. Professional Paper 576-F, 80 p., 20 plates.

- SHELDRICK, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112–122.
- STRUKAN, N., CINDRIĆ, M., & KAMENAR, B. (1999) Ca₂(H₃O)₂ [V₁₀O₂₈]·16H₂O. Acta Crystallographica C55, 291–293.
- ZHANG, Z., SHAO, M., ZHANG, L., & BAI, C. (1985) The crystal structure of Na₂H₄V₁₀O₂₈(H₂O)₁₄. Acta Scientiarum Naturalium Universitatis Pekinensis 3, 65–67.
- Received October 22, 2012, revised manuscript accepted March 4, 2013.