THE Ag–Pd–Se SYSTEM: PHASE RELATIONS INVOLVING MINERALS AND POTENTIAL NEW MINERALS

ANNA VYMAZALOVÁ§

Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic

DMITRIY A. CHAREEV

Institute of Experimental Mineralogy RAS, Chernogolovka, Russia

ALEXANDR V. KRISTAVCHUK

Institute of Experimental Mineralogy RAS, Chernogolovka, Russia, and University of Dubna, Universitetskaja 19, Dubna, Russia

FRANTIŠEK LAUFEK AND MILAN DRÁBEK

Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic

Abstract

The phase equilibria in the system Ag–Pd–Se were studied by the evacuated-silica glass tube method at 350, 430, and 530 °C. In the system we synthesized four ternary phases: $Ag_2Pd_3Se_4$ (chrisstanleyite) and the new phases $AgPd_3Se_4$, $(Ag,Pd)_{22}Se_6$, and $Ag_6Pd_7_4Se_{20}$. The $AgPd_3Se$ phase forms a $Ag_{1-x}Pd_{3+x}Se$ (x = 0-0.15) solid-solution series. The $(Ag,Pd)_{22}Se_6$ phase forms a $(Ag_{11\pm x}Pd_{11\pm x})_{22}Se_6$ ($0.2 \ge x \ge 3.9$) solid-solution series, the solubility of Ag decreasing with increasing temperature. Palladseite (Pd_1Se_1) forms a limited solid solution and dissolves up to 7 wt.% Ag, and the phase Pd_9Se_2 dissolves up to 3 wt.% Ag. The $Ag_2Pd_3Se_4$ phase, an analogue of the mineral chrisstanleyite, forms stable associations with naumannite (Ag_2Se_3) and veerbekite ($PdSe_2$); it also coexists with palladseite (dissolving 7 wt.% Ag). The phase is stable up to 430 °C. Phase relations determined the mineral assemblages that can be expected to occur in nature. Ternary $AgPd_3Se_4$ and Pd_3Ae_{11} phases can be expected in associations with the mineral palladseite, among other selenides. Finding these phases in nature is highly probable in telethermal selenide veins and unconformity-related uranium deposits, at conditions of high Se/S fugacity ratio, an oxidizing environment, and Se-rich fluids, forming at low temperatures. The $Ag_6Pd_74Se_{20}$ phase is stable above 430 °C. Under natural conditions the $Ag_6Pd_74Se_2$ and Pd_9Se_2 phases can be expected to occur in less traditional environments than are usual for selenides, forming at higher temperatures (above 430 °C).

Keywords: Ag-Pd-Se system, phase relations, phase diagram, platinum-group minerals, chrisstanleyite, palladseite, Ag-Pd selenides

INTRODUCTION

In addition to the native elements Ag, Pd, and Se, the Ag–Pd–Se system comprises four minerals: palladseite (Pd₁₇Se₁₅), verbeekite (monoclinic PdSe₂), naumannite (Ag₂Se), and chrisstanleyite (Ag₂Pd₃Se₄). In nature, minerals belonging to the Ag–Pd–Se system occur in various geological environments. Palladium selenides are known to occur in auriferous mineralizations, also

known as "jacutinga" type ores, in Minais Gerais and Serra Pelada in Brazil (Clark *et al.* 1974, Davis *et al.* 1977, Olivo & Gauthier 1995, Cabral *et al.* 2002, Cabral & Lehmann 2007) and have been observed in carbonaceous Precambrian black shales in the Voronezh crystalline massif in Russia (Rudashevskiy *et al.* 1995). Chrisstanleyite was found in gold-bearing carbonate veins in Middle Devonian limestones at Hope's Nose, Torquay, Devon in England (Paar *et al.* 1998), and

[§] Corresponding author e-mail address: anna.vymazalova@geology.cz

has also been reported from the Musonoi Cu-Co-Mn-U mine of the Shaba province in the Democratic Republic of Congo (Roberts *et al.* 2002), Tilkerode in the eastern Harz Mountains in Germany (Stanley *et al.* 2002), in selenide mineralization at El Chire in Argentina (Paar *et al.* 2004), in uranium mineralization at Předbořice, Czech Republic (Paar *et al.* 2005), the East Pilbara region of Western Australia (Nickel 2002), and from Gongo Soco in Minas Gerais, Brazil (Cabral & Lehmann 2007). Verbeekite is known from its type locality, the Musonoi Cu-Co-Mn-U mine in the Democratic Republic of Congo (Roberts *et al.* 2002) and Hope's Nose in Devon in England (Paar *et al.* 1998).

Selenides are closely associated with sulfides, oxides, tellurides, and native elements in a variety of mineral assemblages; Se, being strongly chalcophile, often substitutes for S in sulfides. Simon *et al.* (1997) reviewed the mineralogy of selenides in natural ore deposits using the thermodynamic data and calculated equilibria for binary selenides presented by Simon & Essene (1996).

Selenides are formed from hydrothermal fluids at conditions of high Se/S fugacity ratio. According to the study of Simon *et al.* (1997), an oxidizing environment (close to the anglesite-galena buffer) and Se-rich fluids are essential to form most selenide minerals. Selenium-rich, relatively reduced (below the hematitemagnetite buffer) hydrothermal fluids can deposit only Ag selenides; no other selenide minerals can deposit from such fluids. Selenides are found in four main types of deposits: telethermal selenide veins, unconformityrelated uranium deposits, sandstone-hosted uranium deposits, and epithermal Au-Ag deposits (Simon et al. 1997). Telethermal selenide vein-type deposits include the well-known selenide-bearing deposits in the Harz Mountains in Germany (Clausthal, Lerbach, Tilkerode, Trogtal, and Zorge; Tischendorf 1959, Wallis 1994, Stanley at al. 2002), and in Bolivia (El Dragón, Grundmann et al. 1990; Pacajake, e.g., Ahlfeld 1941) and Argentina (La Rioja province, e.g., Paar et al. 1996), or the selenide occurrences at Hope's Nose in Devon, England (Stanley et al. 1990). Unconformity-related U deposits contain selenide-bearing mineralization in the Bohemian Massif (Předbořice, Petrovice, Habry; Kvaček 1979, Johan 1989), in the Massif Central in France (e.g., Johan et al. 1982), and in the Athabasca area of Saskatchewan (e.g., Robinson 1955). Palladium selenides are known to occur predominatly in telethermal selenide veins and unconformity-related U deposits; in these deposits they formed at low temperatures, below 300 °C (Simon et al. 1997).

In this contribution we present phase relations in the Ag–Pd–Se system in three isothermal sections.

PREVIOUS EXPERIMENTS

The binary Pd-Se system

The binary system Pd–Se was revised and evaluated by Okamoto (1992) based on the data of Olsen *et al.* (1979) and Takabatake *et al.* (1987); the binary diagram is shown in Figure 1. The system comprises eight inter-

FIG. 1. Phase diagram of the binary system Pd–Se, taken from Okamoto (1992), primarily based on data from Olsen *et al.* (1979) and Takabatake *et al.* (1987).

mediate phases: Pd₄Se, Pd₉Se₂ (stable in the temperature interval from 390 to 635 °C), Pd₇Se₂, Pd₃₄Se₁₁, Pd₇Se₄, Pd₁₇Se₁₅, PdSe, and PdSe₂.

The binary Ag–Pd and Ag–Se systems

Karakaya & Thompson (1988) reported complete (Ag, Pd) solid solution. In the Ag–Se system only two Ag₂Se phases exist with two polymorphic modifications (α and β) (Karakaya & Thompson 1990, Hansen & Anderko 1958).

The ternary Ag–Pd–Se system

Phase relations in the ternary Ag–Pd–Se system have not been studied to date. Paar *et al.* (1998) described the ternary mineral chrisstanleyite (Ag₂Pd₃Se₄), and Laufek *et al.* (2011, 2013) published a preliminary report concerning the crystal structures of the AgPd₃Se and (Ag,Pd)₂₂Se₆ phases.

The structural data for phases and minerals in the Ag–Pd–Se system are summarized in Tables 1 and 2, respectively.

METHODS AND TECHNIQUES

Experimental

Experiments were performed in evacuated and sealed silica glass tubes in horizontal tube furnaces, following the method of Kullerud (1971). To prevent loss of material to the vapor phase during experiments, the free space in the tubes was reduced by placing closefitting glass rods over the charge. The temperatures were measured with Pt-PtRh thermocouples and are accurate to within ± 3 °C. Charges of 100 to 200 mg were carefully weighed out from the native elements. We used silver powder (Aldrich Chem. Co., 99.999% purity), Se pebbles (Aldrich Chem. Co., 99.999% purity), and Pd powder (Aldrich Chem. Co., 99.95% purity) as starting materials. The starting mixtures were first melted at 1200 °C for three days. Then the products from the 1200 °C melting were ground in an agate mortar under acetone and reheated to 350 °C (for 120 days), 430 °C (90 days), and 530 °C (70 days). In order to attain equilibrium, the experimental products were reground under acetone and reheated to the required temperature. After heating, quenching was done by dropping the capsules in cold water. A list of representative experimental starting materials and products is given in Table 3 and plotted in Figure 2. Phases in the experimental products were characterized by X-ray powder diffraction, in polished sections examined in reflected light, and with electron-microprobe techniques. In a few experiments exsolution was observed that was caused by the sluggish quench from 430 or 530 °C. When the experiment was repeated and rapidly quenched the exsolution was no longer observed.

X-ray diffraction analysis

Each experimental product was primarily studied with powder X-ray diffraction (XRD). Powder X-ray diffraction data for the products were collected with

Dhaaa	Crivatal	Straugture.		Unit cell parameters						
Fliase	Crystard	Siruciure	a (Å)	A) b(Å) c(Å)		β (°)	Relefence			
βAg₂Se	cubic	lm3m	4.983				1			
αAg₂Se	orthorhombic	P21212	4.333	7.062	7.764		2			
Pd ₉ Se ₂	trigonal						3			
βPd₄Se	unknown									
αPd₄Se	tetragonal	P421c	5.2302		5.6461		4*			
Pd ₇ Se ₂	monoclinic	P2 ₁ /a	9.4539	5.3520	5.4967	93.509	5*			
Pd ₃₄ Se ₁₁	monoclinic	P2 ₁ /n	21.454	5.5052	12.0348	99.454	5*			
Pd ₇ Se ₄	orthorombic	P21221	6.8618	5.3793	10.1613		6*			
Pd ₁₇ Se ₁₅	cubic	Pm3m		10.6048			7*			
PdSe	tetragonal	$P4_2/m$	6.7248		6.9128		8*			
PdSe ₂	orthorombic	Pbca	5.7394	5.8624	7.6926		9*			
$Ag_2Pd_3Se_4$	monoclinic	P21/c	5.6872(2)	10.410(1)	6.3545(3)	114.91(1)	this study			
AgPd₃Se	cubic	Pa3	8.6289				10			
$(Ag,Pd)_{22}Se_6$	cubic	Fm3m	12.3169				11			

TABLE 1. CRYSTALLOGRAPHIC DATA FOR SYNTHETIC PHASES IN THE SYSTEM Ag-Pd-Se

Notes: Crystal structure data are from: ¹Rahlfs (1936), ²Wiegers (1971), ³Takabatake *et al.* (1987), ⁴Grønvold & Røst (1962), ⁵Sato *et al.* (1989), ⁶Matkovic & Schubert (1978), ⁷Geller (1962), ⁸Ijjaali & Ibers (2001), ⁹Grønvold & Røst (1957), ¹⁰Laufek *et al.* (2011), ¹¹Laufek *et al.* (2013)

*Unit cell data are taken from Vymazalová et al. (2011).

Mino	rol	Ca	rotal Structura		Deference			
wine	Idi	Ciy		a (Å)	b (Å)	c (Å)	β (°)	Relefence
naumannite palladseite	Ag ₂ Se Pd ₁₇ Se ₁₅	orthorombic cubic	P21212 Pm3m	4.333	7.062 10.635	7.764		1 2
verbeekite chrisstanleyite	PdSe ₂ Ag ₂ Pd ₃ Se ₄	monoclinic monoclinic	C2/m, C2 or Cm P2 ₁ /c	6.659 6.676	4.124 10.342	4.438 6.341	92.76 114.996	3 4

TABLE 2. CRYSTALLOGRAPHIC DATA FOR MINERALS IN THE Ag-Pd-Se SYSTEM

Notes: ¹Wiegers (1971), ²Davis et al. (1977), ³Roberts et al. (2002), ⁴Topa et al. (2006).

TABLE 3. RESULTS OF SELECTED EXPERIMENTS IN THE Ag-Pd-Se SYSTEM

Experiment No.	Starting composition	Temperature/°C	Phase assemblages
A9	Ag _{22.2} Pd _{33.3} Se _{44.4}	350	Ag ₂ Pd ₃ Se ₄
		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
		530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A10	Ag ₄₀ Pd ₄₀ Se ₂₀	350	(Ag,Pd) ₂₂ Se ₆
		430	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd
		530	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd
A11	Ag ₂₀ Pd ₅₅ Se ₂₅	350	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Pd ₁₇ Se ₁₅
		430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Pd ₁₇ Se ₁₅
		530	AgPd ₃ Se, Ag ₂ Pd ₂ Se, L (Pd,Se)
A12	Ag ₂₀ Pd ₃₀ Se ₅₀	350	Ag ₂ Pd ₃ Se ₄ , Ag ₂ Se, PdSe ₂
		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
		530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A13	Ag ₃₀ Pd ₄₀ Se ₃₀	350	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
		430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
		530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
A14	Ag _{33.3} Pd ₂₅ Se _{41.7}	350	Ag ₂ Pd ₃ Se ₄ , Ag ₂ Se
		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
		530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A15	Ag ₂₀ Pd ₄₀ Se ₄₀	350	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
		430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
		530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
A16	Ag ₂₀ Pd ₂₀ Se ₆₀	350	Se, Ag ₂ Se, PdSe ₂
		430	Se _l , Ag ₂ Se, PdSe ₂
		530	Se ₁ , Ag ₂ Se, PdSe ₂
A17	Ag ₆ Pd ₄₇ Se ₄₇	350	Pd ₁₇ Se ₁₅ , PdSe ₂
		430	Pd ₁₇ Se ₁₅ , PdSe ₂
		530	Pd ₁₇ Se ₁₅ , PdSe ₂
A18	Ag _{22.5} Pd ₃₄ Se _{43.5}	350	Ag ₂ Pd ₃ Se ₄ , Ag ₂ Se, Pd ₁₇ Se ₁₅
		430	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
		530	Ag ₂ Se, Pd ₁₇ Se ₁₅ , PdSe ₂
A19	Ag ₂₀ Pd ₆₀ Se ₂₀	350	AgPd ₃ Se
		430	AgPd ₃ Se
		530	AgPd ₃ Se
A20	Ag ₆₀ Pd ₂₀ Se ₂₀	350	(Ag,Pd) ₂₂ Se ₆ , Ag ₂ Se, Ag-Pd
		430	(Ag,Pd) ₂₂ Se ₆ , Ag ₂ Se, Ag-Pd
		530	(Ag,Pd) ₂₂ Se ₆ , Ag ₂ Se, Ag-Pd
A21	Ag ₃₀ Pd ₅₀ Se ₂₀	350	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
	0	430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
		530	(Aq,Pd) ₂₂ Se ₆ , AqPd ₃ Se
A22	Ag ₂₀ Pd ₅₀ Se ₃₀	350	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Pd ₁₇ Se ₁₅
	020 00 00	430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Pd ₁₇ Se ₁₅
		530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , L

Heating time: 120 at days 350 °C, 90 days at 430 °C, 70 days at 530 °C

Experiment No	. Starting composition	Temperature/°C	Phase assemblages
A23	Ag10Pde0Se30	350	AaPd3Se, Pd17Se15, Pd34Se11
	··· 9 10· ···00 ···30	430	AqPd ₃ Se, Pd ₁₇ Se ₁₅ , L
		530	AqPd ₃ Se, $Pd_{17}Se_{15}$, L
A24	Aq ₂₅ Pd ₄₅ Se ₃₀	350	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
	020 10 00	430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
		530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅
A25	Ag7Pd70Se23	350	AgPd ₃ Se, Pd ₃₄ Se ₁₁
	u	430	AgPd ₃ Se, Pd ₇ Se ₂ , L
		530	AgPd ₃ Se, Pd ₇ Se ₂ , L
A26	Ag ₁₅ Pd ₇₀ Se ₁₅	350	AgPd ₃ Se, Pd₄Se, Ag-Pd
		430	AgPd ₃ Se, Ag ₆ Pd ₇₄ Se ₂₀ , Ag-Pd
		530	AgPd ₃ Se, Ag ₆ Pd ₇₄ Se ₂₀ , Ag-Pd
A27	Ag ₄₀ Pd ₄₅ Se ₁₅	350	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Ag-Pd
		430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Ag-Pd
		530	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se, Ag-Pd
A28	Ag ₇ Pd ₇₃ Se ₂₀	350	AgPd ₃ Se, Pd ₇ Se ₂
		430	AgPd ₃ Se, Pd ₇ Se ₂
		530	AgPd ₃ Se, Pd ₇ Se ₂
A29	Ag ₂ Pd ₄₅ Se ₅₃	350	PdSe ₂ , Pd ₁₇ Se ₁₅
		430	PdSe ₂ , Pd ₁₇ Se ₁₅
		530	PdSe ₂ , Pd ₁₇ Se ₁₅
A30	Ag ₅₅ Pd ₃₀ Se ₁₅	350	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd
		430	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd
		530	(Ag,Pd) ₂₂ Se ₆ , Ag-Pd
A31	Ag ₂ Pd ₅₆ Se ₄₂	350	Pd ₁₇ Se ₁₅ , Pd ₇ Se ₄
		430	Pd ₁₇ Se ₁₅ , L
		530	Pd ₁₇ Se ₁₅ , L
A32	Ag ₃₃ Pd ₄₆ Se ₂₁	350	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
		430	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
		530	(Ag,Pd) ₂₂ Se ₆ , AgPd ₃ Se
A33	$Ag_1Pd_{51}Se_{48}$	350	Pd ₁₇ Se ₁₅ , PdSe
		430	Pd ₁₇ Se ₁₅ , PdSe
		530	Pd ₁₇ Se ₁₅ , PdSe
A34	Ag ₆ Pd ₇₃ Se ₂₁	350	AgPd ₃ Se, Pd ₄ Se, traces Ag-Pd
		430	Ag ₆ Pd ₇₄ Se ₂₀ , traces Pd ₉ Se ₂
		530	Ag ₆ Pd ₇₄ Se ₂₀ , traces Pd ₉ Se ₂
A35	Ag ₃₃ Pd ₃₃ Se ₃₃	350	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
		430	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
		530	(Ag,Pd) ₂₂ Se ₆ , Pd ₁₇ Se ₁₅ , Ag ₂ Se
A36	$Ag_{50}Pd_{20}Se_{30}$	350	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se$
		430	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se$
		530	$(Ag,Pd)_{22}Se_6, Pd_{17}Se_{15}, Ag_2Se_6$

TABLE 3. - continued

Heating time: 120 at days 350 °C, 90 days at 430 °C, 70 days at 530 °C

a Philips X Pert diffractometer using CuK α radiation. The data were collected in the 2 θ theta range from 10 to 140°, with a step of 0.02°. The whole-profile-fitting method (WPPF) was applied to calculate unit-cell parameters from powder data, using the FULLPROF program (Rodríguez-Carvajal 2006).

Electron-microprobe analyses

Chemical analyses were performed with a CAMECA SX-100 electron probe microanalyzer (EPMA) in

wavelength-dispersion mode using an electron beam focused to 1–2 μ m. Pure elements were used as standards. Concentrations were quantified on the PdL α , AgL β , and SeL α lines with an accelerating voltage of 15 keV and a beam current of 10 nA on the Faraday cup. In each sample, compositional data were collected from several grains within a polished section (minimum n = 5) and then averaged. Electron probe microanalysis data are presented in Table 4.

FIG. 2. Experimental starting compositions in the ternary phase diagram.

RESULTS AND DISCUSSION

Phase relations

The Ag–Pd–Se system was studied at 350, 430, and 530 °C. Phase assemblages based on EPMA and powder XRD data are listed in Table 3; phase compositions are given in Table 4. The starting compositions are plotted in Figure 2. Three isothermal sections at 350, 430, and 530 °C are presented in Figure 3.

Phase relations at 350 °C

The isothermal section for 350 °C is shown in Figure 3a. At 350 °C, the system contains three ternary compounds: $Ag_2Pd_3Se_4$, $(Ag,Pd)_{22}Se_6$, and $AgPd_3Se$. Stable assemblages are listed in Table 5. The phase $Pd_{17}Se_{15}$, the analogue of palladseite, dissolves up to 7 wt.% Ag; the range of solid solution does not change with increasing temperature. The solid solution of

FIG. 3. Isothermal section of the phase diagram of the ternary Ag–Pd–Se system at: (a) 350 °C, (b) 430 °C, and (c) 530 °C. Due to the long-term kinetics in the Pd-rich corner the tie-line (Ag₆Pd₇₄Se₂₀ + Ag–Pd) is shown as tentative.

Ag_{1-x}Pd_{3+x}Se ss extends from Ag_{0.86}Pd_{3.16}Se_{0.98} up to composition Ag_{1.01}Pd_{3.00}Se_{0.99} and remains constant with increasing temperature. The $(Ag_{11\pm x}Pd_{11\pm x})_{\Sigma 22}Se_6$ solid solution extends from $(Ag_{8.99}Pd_{13.13})_{\Sigma 22.12}Se_{5.88}$ (34.2 wt.% Ag) to $(Ag_{14.83}Pd_{7.32})_{\Sigma 22.16}Se_{5.85}$ (55.9 wt.% Ag) at 350 °C; the solubility of Ag decreases with increasing temperature (Fig. 4).

Phase relations define the mineral assemblages that can be expected to occur in nature. Binary and ternary phases which are unknown as minerals coexist with phases that do occur naturally. For example, Pd₇Se₄ and Pd₃₄Se₁₁, unknown as minerals, coexist with palladseite, and (Ag,Pd)₂₂Se₆ coexists with naumannite and palladseite. Ternary phases AgPd₃Se and (Ag,Pd)₂₂Se₆ and the binary phases PdSe, Pd₇Se₄, and Pd₃₄Se₁₁ can be expected in associations with the mineral palladseite, among other selenides. Finding these phases is highly probable in telethermal selenide veins and unconformity-related uranium types of deposits.

Phase relations at 430 °C

The isothermal section for 430 °C is shown in Figure 3b. Phase relations are similar to those for 350 °C; however, at this temperature phases Ag₂Pd₃Se₄ (stability limit: 430 °C), Pd7Se4 (stability limit: 415 °C, Olsen et al. 1979), and Pd₃₄Se₁₁ (stability limit: 430 °C, Takabatake et al. 1987) are no longer stable. On the contrary, phases Ag₆Pd₇₄Se₂₀ and Pd₉Se₂ become stable. At 385 °C (Okamoto 1992) a binary eutectic liquid between Pd₃₄Se₁₁ and Pd₇Se₄ appears in the system. Subsequently assemblages Ag₂Se + PdSe₂ + Ag₂Pd₃Se₄; Ag₂Pd₃Se₄ + $PdSe_2 + Pd_{17}Se_{15 ss}; Ag_2Se + Ag_2Pd_3Se_4 + Pd_{17}Se_{15 ss};$ $Pd_{17}Se_{15 ss} + Pd_{7}Se_{4} + Pd_{34}Se_{11}$; and $Ag_{1-x}Pd_{3+x}Se_{ss}$ + Pd₃₄Se₁₁+ Pd₇Se₂ disappear from the system and new assemblages appear in the system (Table 5). At 430 °C, the solid solution $(Ag_{11\pm x}Pd_{11\pm x})_{\Sigma 22}Se_6$ slightly decreases compared to at 350 °C (Fig. 4); the range extends from $(Ag_{8.99}Pd_{13.11})_{\Sigma 22.11}Se_{5.89}$ (33.9 wt.% Ag) to $(Ag_{13} 29Pd_{8} 93)_{522} 22Se_{578}$ (50.0 wt.% Ag).

TABLE 4. COMPOSITIONAL DATA FOR THE STUDIED PHASES

wt.%		A	١g			F	⊃d			5	Se				apfu		
No.	I	Min	Max	Std.dev.		Min	Max	Std.dev.		Min	Max	Std.dev.	Total	Ag	Pd	Se	∑(Ag,Pd)
						4	Ag ₂ Pd	₃Se₄									
A9	25.46 25	5.05	25.86	0.34	37.94	37.31	38.57	0.54	36.40	36.05	36.41	0.17	99.79	2.02	3.05	3.94	
A12	25.39 25	5.36	25.42	0.02	37.94	37.54	38.17	0.28	35.82	35.72	35.95	0.09	99.15	2.03	3.07	3.90	
A14	24.66 23	3.91	25.15	0.54	37.89	37.75	38.07	0.14	36.11	35.76	36.69	0.42	98.65	1.97	3.08	3.95	
A18	23.77 23	3.21	24.21	0.42	38.03	37.59	38.72	0.49	37.07	37.05	37.11	0.02	98.87	1.89	3.07	4.03	
						(A	(g,Pd	22 Se 6									
A10	40.89 40	0.45	41.67	0.45	42.42	41.83	42.84	0.37	16.01	15.85	16.16	0.11	99.32	10.82	11.39	5.79	22.21
A13	47.64 46	6.58	48.50	0.33	35.16	34.76	35.40	0.28	16.47	16.20	16.99	0.37	99.27	12.61	9.43	5.96	22.04
A15	48.41 48	3.22	49.59	0.38	33.84	33.22	34.45	0.45	16.63	16.00	17.22	0.44	98.88	12.86	9.11	6.03	21.97
A20	55.89 56	6.07	56.30	0.11	27.30	27.08	27.67	0.30	16.05	16.18	16.23	0.03	99.77	14.83	7.32	5.85	22.16
A21	35.12 34	4.75	35.49	0.31	47.89	47.42	48.08	0.20	16.37	16.34	16.39	0.03	99.38	9.28	12.82	5.90	22.10
A22	34.22 33	3.94	34.50	0.28	49.38	49.36	49.40	0.02	16.43	16.37	16.48	0.05	100.03	8.99	13.13	5.88	22.12
A24	39.26 38	3.62	39.90	0.64	44.44	44.29	44.58	0.15	16.64	16.26	17.01	0.38	100.33	10.13	11.87	6.01	21.99
A27	35.65 35	5.61	35.70	0.05	47.45	47.04	47.86	0.41	16.24	16.24	16.25	0.00	99.35	9.42	12.71	5.86	22.14
A30	49.04 48	3.64	49.23	0.29	33.29	32.79	33.69	0.37	16.13	16.05	16.22	0.07	98.47	13.10	9.01	5.89	22.11
A32	36.47 35	5.63	36.77	0.34	47.38	45.31	46.51	0.09	16.00	15.97	16.02	0.02	99.85	9.67	12.49	5.85	22.15
A35	47.42 47	7.20	47.64	0.22	35.59	35.39	35.80	0.21	16.62	16.43	16.82	0.19	99.64	12.50	9.51	5.99	22.01
A36	48.08 47	7.71	48.75	0.48	35.30	34.98	35.65	0.27	16.52	16.45	16.62	0.07	99.90	12.65	9.41	5.94	22.06
							AgPd	₃Se									
A11	21.46 21	1.35	21.55	0.08	62.98	62.47	63.20	0.30	15.36	15.23	15.63	0.16	99.80	1.01	3.00	0.99	
A19	21.14 21	1.00	24.27	0.12	63.85	63.33	64.04	0.31	15.02	14.88	15.13	0.10	100.00	0.99	3.04	0.96	
A21	21.42 21	1.35	21.55	0.09	62.73	62.47	63.16	0.30	15.39	15.33	15.63	0.18	99.54	1.01	3.00	0.99	
A22	21.35 21	1.43	21.52	0.04	62.53	63.07	63.20	0.07	15.36	15.23	15.26	0.01	99.86	1.01	3.01	0.98	
A23	18.91 18	3.72	19.09	0.15	65.42	65.07	65.81	0.30	15.50	15.45	15.59	0.06	99.83	0.89	3.12	1.00	
A25	18.82 18	3.37	19.05	0.32	65.93	65.65	66.13	0.20	15.24	15.14	15.34	0.08	99.99	0.88	3.14	0.98	
A26	18.36 18	3.18	18.53	0.17	66.28	66.19	66.37	0.09	15.19	15.17	15.21	0.02	99.82	0.86	3.16	0.98	
A27	21.64 21	1.35	21.92	0.29	63.13	63.11	63.16	0.03	15.28	15.23	15.33	0.05	100.05	1.02	3.00	0.98	
A28	18.35 18	3.18	15.52	0.17	65.72	66.16	65.28	0.44	15.16	15.15	15.17	0.01	99.23	0.87	3.15	0.98	
A32	21.44 21	1.35	21.53	0.09	62.98	61.80	63.16	0.18	15.24	15.15	15.33	0.09	99.72	1.02	3.00	0.99	
A34	18.47 18	3.37	18.53	0.07	66.06	65.65	66.37	0.30	15.20	15.15	15.25	0.04	99.73	0.87	3.15	0.98	

d.l.: below detection limit

THE CANADIAN MINERALOGIST

TABLE 4. - continued

wt.%		A	Ag			F	Pd		Se							
No.		Min	Max	Std.dev.		Min	Max	Std.dev.		Min	Max	Std.dev.	Total	Ag	Pd	Se
						А	g ₆ Pd ₇₄	Se ₂₀								
A34*	6.70	6.44	6.91	0.14	77.85	77.28	78.47	0.36	15.25	15.21	15.34	0.04	99.80	6.29	74.14	19.57
							Ag₂S	е								
A12	73.33	72.95	73.52	0.27	0.16	0.10	0.28	0.08	26.08	26.01	26.23	0.10	99.58	2.02		0.98
A14	73.27	73.01	73.53	0.26	d.l.				25.85	25.51	26.19	0.34	99.23	2.01		0.99
A16	73.14	72.94	73.52	0.27	0.22	0.10	0.28	0.08	26.15	26.01	26.24	0.10	99.52	2.01	0.01	0.98
A20	72.84	72.97	72.99	0.01	d.l.				26.46	26.48	26.49	0.01	99.45	2.01		0.99
A35	74.17	72.97	74.87	0.70	d.l.				26.11	25.75	26.48	0.36	100.31	2.02		0.98
A36	72.54	72.97	73.02	0.02	0.10				26.41	26.48	26.51	0.02	99.49	2.00		1.00
							Ag–P	d								
A20	79.95	79.49	80.40	0.46	19.48	19.43	19.53	0.05	0.65	0.62	0.68	0.03	100.08	0.79	0.20	0.01
A26	30.59	30.40	30.77	0.15	67.91	67.40	68.29	0.38	1.01	1.00	1.02	0.01	99.52	0.30	0.68	0.01
A27	63.68	63.67	63.70	0.01	35.82	35.47	36.14	0.34	0.50	0.46	0.50	0.01	100.19	0.63	0.36	0.01
A30	72.49	72.34	72.74	0.25	25.75	25.57	25.93	0.18	0.45	0.42	0.46	0.02	98.69	0.73	0.26	0.01
							Pd ₁₇ S	e ₁₅								
A13	7.07	6.55	6.86	0.16	55.31	54.72	55.80	0.45	36.14	35.90	36.48	0.25	98.52	2.01	15.95	14.04
A15	6.10	5.93	6.23	0.15	56.29	56.20	56.72	0.26	36.56	36.46	37.40	0.47	98.95	1.73	16.15	14.13
A17	5.15	4.84	5.46	0.22	56.26	56.00	56.80	0.30	37.06	36.91	37.18	0.09	98.47	1.46	16.18	14.36
A18	6.88	6.82	6.94	0.06	54.05	53.59	54.51	0.46	38.48	38.30	38.65	0.18	99.41	1.93	15.35	14.72
A22	5.70	5.51	5.80	0.13	57.35	57.30	57.39	0.04	36.44	36.35	36.58	0.10	99.49	1.60	16.38	14.02
A23	5.11	4.68	5.45	0.32	57.34	57.14	57.55	0.17	37.03	36.81	37.30	0.20	99.49	1.44	16.34	14.22
A24	6.41	5.93	6.88	0.48	55.96	55.69	56.23	0.27	36.56	36.47	36.64	0.09	98.92	1.81	16.05	14.13
A25	4.94	4.68	5.20	0.26	57.45	57.34	57.55	0.10	37.14	36.98	37.30	0.16	99.53	1.39	16.36	14.25
A29	2.52	2.38	2.79	0.19	58.51	58.26	58.96	0.32	38.00	37.92	38.07	0.06	99.04	0.71	16.69	14.61
A31	4.54	4.40	4.68	0.14	57.99	57.81	58.17	0.18	36.34	36.10	36.59	0.25	98.87	1.31	16.73	13.97
A35	6.16	6.02	6.34	0.13	56.31	55.84	56.60	0.33	37.17	36.50	37.58	0.48	99.64	1.73	16.02	14.25
A36	7.01	6.16	6.85	0.16	56.17	56.54	55.79	0.38	37.00	36.97	37.03	0.03	100.17	1.99	15.98	14.19

d.l.: below detection limit * experimental product at 430 °C

wt.%			Ag			Pd Se					apfu					
No.		Min	Max	Std.dev.		Min	Max	Std.dev.		Min	Max	Std.dev.	Total	Ag	Pd	Se
							Pd ₃₄ S	6e ₁₁								
A23	d.l.				80.71	80.58	80.85	0.14	19.06	19.01	19.12	0.05	99.78		34.14	10.86
A25	0.29	0.22	0.38	0.07	81.34	81.27	81.46	0.09	18.78	18.76	18.79	0.01	100.41	0.12	34.23	10.65
							Pd₄	Se								
A26	d.l.				84.61	83.88	85.67	0.55	15.29	15.02	15.40	0.13	99.91		4.02	0.98
A34	d.l.				84.65	84.32	85.15	0.31	15.33	15.15	15.51	0.12	99.98		4.02	0.98
							Pd ₇ S	e ₂								
A28	0.12	0.06	0.18	0.06	82.41	82.03	82.79	0.38	16.97	16.96	16.98	0.01	99.50	0.01	7.04	1.95
							Pd ₇ S	e4								
A31	d.l.				69.90	69.44	70.98	0.47	29.45	29.19	29.77	0.10	99.71		7.03	3.97
							PdS	e ₂								
A12	d.l.				40.21	39.96	40.48	0.21	57.95	57.96	58.18	0.19	98.18		1.02	1.98
A16	d.l.				40.92	40.33	41.63	0.54	58.18	57.89	58.64	0.33	99.17		1.03	1.97
A29	d.l.				41.21	40.78	41.63	0.43	58.27	57.89	58.64	0.38	99.57		1.02	1.98
							PdS	ie 🛛								
A33	d.l.				57.70	57.19	58.13	0.36	41.85	41.65	42.15	0.19	99.55		1.01	0.99
							Pd ₉ S	e ₂								
A3*	d.l.				85.10	58.04	85.17	0.07	14.07	13.99	14.14	0.08	99.17		9.00	2.00

TABLE 4. - continued

d.l.: below detection limit

Stable assemblages in the Ag-Pd-Se system								
at 350 °C	at 430 °C	at 530 °C						
Se _l + PdSe ₂ + Ag ₂ Se	Se _l + PdSe ₂ + Ag ₂ Se	Se _l + PdSe ₂ + Ag ₂ Se						
$Ag_2Se + PdSe_2 + Ag_2Pd_3Se_4$	Ag ₂ Se + PdSe ₂ + Pd ₁₇ Se _{15 ss}	Ag ₂ Se + PdSe ₂ + Pd ₁₇ Se _{15 ss}						
PdSe + PdSe ₂ + Pd ₁₇ Se _{15 ss}	PdSe + PdSe ₂ + Pd ₁₇ Se _{15 ss}	PdSe + PdSe ₂ + Pd ₁₇ Se _{15 ss}						
$Ag_2Pd_3Se_4 + PdSe_2 + Pd_{17}Se_{15 ss}$	(Ag.Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss} + AgPd ₃ Se ss	(Ag.Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss} + L ₂						
Ag ₂ Se + Ag ₂ Pd ₃ Se ₄ + Pd ₁₇ Se _{15 ss}	Ag ₂ Se + (Ag Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss}	$(Ag,Pd)_{22}Se_{6ss} + AgPd_{3}Se_{ss} + L_{2}$						
Ag ₂ Se + (Ag Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss}	$AgPd_{3}Se_{ss} + Pd_{17}Se_{15}s_{ss} + L_{1}$	$Pd_{17}Se_{15 ss} + AgPd_3Se_{ss} + L_2$						
Pd ₁₇ Se _{15 ss} + Pd ₇ Se ₄ + Pd ₃₄ Se ₁₁	$AgPd_3Se_{ss} + Pd_7Se_2 + L_1$	Ag ₂ Se + (Ag Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss}						
(Ag.Pd) ₂₂ Se _{6 ss} + Pd ₁₇ Se _{15 ss} + AgPd ₃ Se ss	$AgPd_3Se_{ss} + Pd_7Se_2 + Ag_6Pd_{74}Se_{20}$	AgPd ₃ Se ss + Pd ₁₇ Se _{15 ss} + L_1						
AgPd ₃ Se _{ss} + Pd ₁₇ Se _{15 ss} + Pd ₃₄ Se ₁₁	$Ag_6Pd_{74}Se_{20} + Pd_4Se + Pd_7Se_2$	AgPd ₃ Se ss + Pd ₇ Se ₂ + L_1						
$AgPd_3Se_{ss} + Pd_{34}Se_{11} + Pd_7Se_2$	Ag ₆ Pd ₇₄ Se ₂₀ + Pd ₄ Se + Pd ₉ Se _{2 ss}	$AgPd_3Se_{ss} + Pd_7Se_2 + Ag_6Pd_{74}Se_{20}$						
$AgPd_{3}Se_{ss} + Pd_{7}Se_{2} + Pd_{4}Se$	$Ag_6Pd_{74}Se_{20} + Pd_9Se_{2ss} + (Ag,Pd)$ alloy	$Ag_6Pd_{74}Se_{20} + Pd_4Se + Pd_7Se_2$						
AgPd ₃ Se ss + Pd ₄ Se + (Ag,Pd) alloy	AgPd ₃ Se _{ss} + (Ag,Pd) alloy + Ag ₆ Pd ₇₄ Se ₂₀	Ag ₆ Pd ₇₄ Se ₂₀ + Pd ₄ Se + Pd ₉ Se _{2 ss}						
AgPd ₃ Se _{ss} + (AgPd) ₂₂ Se _{6ss} + (AgPd) alloy	AgPd ₃ Se _{ss} + (Ag,Pd) ₂₂ Se _{6ss} + (Ag,Pd) alloy	$Ag_6Pd_{74}Se_{20} + Pd_9Se_{2ss} + (Ag,Pd)$ alloy						
Ag ₂ Se + (Ag Pd) ₂₂ Se _{6 ss} + (Ag,Pd) alloy	Ag ₂ Se + (Ag Pd) ₂₂ Se _{6 ss} + (Ag,Pd) alloy	AgPd ₃ Se _{ss} + Ag ₆ Pd ₇₄ Se ₂₀ + (Ag,Pd) alloy						
		$AgPd_3Se_{ss} + (AgPd)_{22}Se_{6ss} + (AgPd) alloy$						
		Ag ₂ Se + (Ag,Pd) ₂₂ Se _{6 ss} + (Ag,Pd) alloy						

TABLE 5. STABLE ASSEMBLAGES IN THE SYSTEM Ag-Pd-Se at 350°C, 430°C, and 530°C

The subscript "ss" indicates a solid solution.

FIG. 4. Solubility of Ag in a (Ag,Pd)₂₂Se₆ solid solution with increasing temperature.

Phase relations at 530 °C

The isothermal section for 530 °C is shown in Figure 3c. At this temperature three ternary phases, $(Ag,Pd)_{22}Se_6$, $AgPd_3Se$, and $Ag_6Pd_74Se_{20}$, are stable in the system. The ternary eutectic liquid appears in the system between $(Ag_{11\pm x}Pd_{11\pm x})_{\Sigma 22}Se_{6ss}$, $Ag_{1-x}Pd_{3+x}$

Se_{ss}, and Pd₁₇Se_{15 ss}. Subsequently, assemblages L_2 + Ag_{11±x}Pd_{11±x}Se_{6 ss} + Pd₁₇Se_{15 ss}; L_2 + Ag_{11±x}Pd_{11±x}Se_{6 ss} + Ag_{1-x}Pd_{3+x}Se ss; and L_2 + Pd₁₇Se_{15 ss} + Ag_{1-x}Pd_{3+x}Se ss become stable (Table 5). The solid solution (Ag_{11±x}Pd_{11±x})₂₂₂Se₆ extends from (Ag_{8.99} Pd_{13.11})_{222.11}Se_{5.89} (33.9 wt.% Ag) to (Ag_{13.29}Pd_{8.93})_{222.22} Se_{5.78} (44.6 wt.% Ag) at 530 °C.

MINERALS AND PHASES, POTENTIAL NEW MINERALS

Binary phases

Palladseite. The experimental results show that the synthetic analogue of the mineral palladseite, Pd₁₇Se₁₅, forms a limited solid solution and dissolves up to 7 wt.% Ag. Silver substitutes for Pd and also for Se in the structure of Pd₁₇Se₁₅. In nature palladseite always contains some Cu (up to 4 wt.%), Hg (up to 3 wt.%; Davis et al. 1977, Olivo & Gauthier 1995), and also Pt (up to 3.5 wt.%), Ag, and Fe (Cabral et al. 2002, Cabral & Lehmann 2007). According to data available for natural palladseite, these elements substitute for both Pd and Se. Palladseite is stable up to 680 °C (Olsen et al. 1979). Palladseite was described from Itabira as an unnamed mineral by Clark et al. (1974), and was later identified as palladseite by Davis et al. (1977); it was also subsequently observed by Olivo & Gauthier (1995), Cabral et al. (2002), and Cabral & Lehmann (2007). In the Cauê iron mine in Itabira palladseite, palladian gold, and arsenopalladinite were formed during the main hypogene ore-forming event, where Pd (and Au) was likely transported as chlorine complexes by oxidized saline brines, and palladseite deposited as a result of changes in pH or oxygen fugacity (Olivo & Gammons 1996).

Verbeekite. According to the XRD powder data, the synthetic phase PdSe₂ at the studied temperature interval 350–550 °C is orthorhombic (Table 1; Grønvold & Røst 1957, Vymazalová et al. 2011). Its natural monoclinic analogue (Table 2), the mineral verbeekite (Roberts et al. 2002), could not be synthesized. Even long term (nine months) heating at 100 °C was not successful in obtaining the monoclinic variety of the PdSe₂ phase. The mineral verbeekite is rather rare; it was reported from the Musonoi deposit (Roberts et al. 2002) and Hope's Nose (Paar et al. 1998); in both localities it is considered to be a primary phase. At Hope's Nose, fluid inclusion studies (Stanley et al. 1990) suggest that selenide minerals formed from hydrothermal solutions at low temperatures in a range from 65 to 120 °C. This supports the experimental study and the formation of veerbekite below 100 °C.

Naumannite. The phase Ag_2Se was observed only in its low temperature orthorhombic modification, an analogue of the mineral naumannite, in all experiments. It was not possible to obtain the cubic beta modification of the phase Ag_2Se experimentally, as the process of rapid quenching causes the phase to transform to its orthorhombic, low-temperature alpha modification (Billetter & Ruschewitz 2008).

Under natural conditions the presence of naumannite defines the minimum Se fugacity conditions required to form selenide-bearing deposits (Simon *at al.* 1997). Naumanite is one of the dominant selenide minerals in Au-Ag epithermal deposits. Those types of deposits characteristically have a low fugacity Se/S ratio that prevents formation of other selenides, thus allowing significant amounts of Se to substitute for S in sulfides (Simon *et al.* 1997).

 Pd_9Se_2 . The Pd_9Se_2 phase is stable in temperature range 390 to 635 °C (Takabatake *et al.* 1987). A natural occurrence of Pd_9Se_2 was reported from the Serra Pelada Au-Pd-Pt deposit, northern Brazil by Cabral *et al.* (2002) and Cabral & Lehmann (2007). The thermal stability of the phase is not in agreement with the temperature of formation of the Serra Pelada mineralization (below 150 °C) (Cabral & Lehmann 2007). The phase Pd_9Se_2 is probably stabilized by another element (Pt or Au) at lower temperature in nature, or it corresponds to other palladium selenides (likely the phase Pd_4Se), but an X-ray study of the natural phase is desirable.

Ternary phases

In the Ag–Pd–Se system four ternary compounds were detected: the phase $Ag_2Pd_3Se_4$, analogue of the mineral chrisstanleyite, and the phases $AgPd_3Se$, $(Ag_Pd)_{22}Se_6$, and $Ag_6Pd_{74}Se_{20}$.

Chrisstanleyite. The powder XRD data for Ag2Pd3Se4 at 350 °C are in agreement with the crystal structure data determined by Topa et al. (2006) for natural Ag₂Pd₃Se₄, the mineral chrisstanleyite. The unit cell parameters for synthetic chrisstanleyite are given in Table 1. The phase is stable up to 430 °C. The phase Ag₂Pd₃Se₄ forms stable association with naumannite (Ag₂Se) and veerbekite (PdSe₂) (Fig. 5a). It also coexists with palladseite (dissolving 7 wt.% Ag) (Fig. 3a). In nature chrisstanlevite occurs with veerbekite (from Musonoi, Roberts et al. 2002; Hope's Nose, Paar et al. 1998) and other palladium selenides, such as milotaite (from Předbořice, Paar et al. 2005), jaguéite (from El Chire, Paar et al. 2004), tichendorfite (from Harz Mountains, Stanley et al. 2002, and Gongo Soco, Cabral & Lehmann 2007), or oosterboschite (Copper Hills in the East Pilbara region, Nickel 2002 and Musonoi, Roberts et al. 2002), among other selenides, native gold, and silver.

AgPd₃Se. This phase has a compositional range from Ag 18.3 wt.% to Ag 21.6 wt% (Table 4). The crystal structure of the phase was determined by Laufek *et al.* (2011; Table 1). The AgPd₃Se phase is cubic; the solid solution Ag_{1-x}Pd_{3+x}Se extends to x = 0.15, while the unit cell parameter changes from *a* 8.632(1) Å (at x = 0; 18.3 wt.% Ag, experiment A28) to 8.6155(6) Å (at x = 0.15; 21,4 wt.% Ag, experiment A21). The unit cell parameters increase with higher Ag contents. The range of solid solution is consistent in the studied temperate range (350–530 °C; Fig 3.a, b, c). The strongest five lines of the X-ray diffraction pattern [*d* in Å (I) (*hkl*)] are: 2.3925(85)(302), 2.3057(100)(231,321), 2.1569(51)(004), 2.0925(46)(410,322), 1.8829(49) (241,421).

The AgPd₃Se phase coexists with (Ag,Pd)₂₂Se₆ and palladseite, Fig 5b. The phase also forms stable associations with palladium binary selenides (Fig. 3a) unidentified in nature to date. In such mineral assemblages the phase AgPd₃Se can be expected to be found in nature, particularly in the presence of palladseite and its conditions of formation, like auriferous mineralization in Minas Gerais and Serra Pelada in Brazil.

 $(Ag,Pd)_{22}Se_6$. The ternary $(Ag,Pd)_{22}Se_6$ phase forms a broad solid solution $(Ag_{11\pm x}Pd_{11\pm x})_{22}Se_6$ where $0.2 \ge x \ge 3.9$. Silver substitutes for Pd in the $(Ag_{11\pm x}Pd_{11\pm x})_{22}Se_6$ structure with an almost constant Se content (Table 2). The solubility of Ag decreases with increasing temperature (Fig. 4). The $(Ag,Pd)_{22}Se_6$ phase is cubic; the crystal structure was determined by Laufek *et al.* (2013). The strongest five lines of the X-ray diffraction pattern [*d* in Å (I) (*hkl*)] are: 2.8267(28)(331), 2.3704(100)(511,333), 2.0524(73)(600,442), 1.8779(23)(335), 1.4513(55) (660,822). The unit cell parameters linearly increase with the Ag content from *a* 12.2697(5) Å (34 wt.% Ag, experiment A22) to 12.4143(9) Å (56 wt.% Ag, experiment A20).

 $(Ag,Pd)_{22}Se_6$ forms stable associations with palladseite and $AgPd_3Se$ (Fig. 5b). In nature it can also be expected in mineral assemblages with the mineral palladseite. It also coexists with naumannite.

 $Ag_6Pd_{74}Se_{20}$. This ternary phase appears in the system at 430 °C. Its crystal structure is unknown and requires further investigation. Our evaluation of the X-ray powder-diffraction data, in terms of crystal structure determination and peak indexing, was not successful. Auto-indexing did not succeed. Some difficulties in X-ray data evaluation of the phase $Ag_6Pd_{74}Se_{20}$ may have been caused by the presence of Pd_9Se_2 in the sample. The strongest five lines of the X-ray diffraction pattern [*d* in Å(I)] are: 2.3318(68), 2.2935(91), 2.2845(100), 2.2587(61) 2.1004(64).

The phase forms stable associations with AgPd₃Se and Pd₇Se₂. It also coexists with phases Pd₄Se and Pd₉Se₂. In nature the phase can be expected in a less traditional environment than is known for selenides, at temperatures of formation above 430 °C, likely in association with the phase Pd₉Se₂.

CONCLUSIONS AND IMPLICATIONS

1. The phase relations in the system Ag–Pd–Se have been studied at three isothermal sections at 350, 430, and 530 °C.

2. Four ternary phases were identified in the system: $Ag_2Pd_3Se_4$, the analogue of the mineral chrisstanleyite, and phases $AgPd_3Se$, $(Ag,Pd)_{22}Se_6$, and $Ag_7Pd_{73}Se_{20}$. The phase $Ag_2Pd_3Se_4$ is stable up to 430 °C and at this temperature $Ag_7Pd_{73}Se_{20}$ appears in the system.

3. The phase $Pd_{17}Se_{15}$, the analogue of palladseite, dissolves up to 7 wt.% Ag, and the phase Pd_9Se_2 dissolves up to 3 wt.% Ag. The phase AgPd₃Se forms a narrow solid solution $Ag_{1-x}Pd_{3+x}Se$ where *x* varies from 0 to 0.15. The range remains constant with increasing temperature. The phase $(Ag,Pd)_{22}Se_6$ forms an extensive solid solution $(Ag_{11\pm x}Pd_{11\pm x})_{22}Se_6$ with $0.2 \ge x \ge 3.9$, at 350 °C. The solid solution decreases towards Ag with increasing temperature. Silver substitutes for Pd in the AgPd₃Se and $(Ag,Pd)_{22}Se_6$ structures.

4. The phase $Ag_2Pd_3Se_4$, the analogue of the mineral chrisstanleyite, forms a stable association with naumannite (Ag_2Se) and veerbekite ($PdSe_2$); it also coexists with palladseite (dissolving 7 wt.% Ag). This phase is stable up to 430 °C.

5. Phase relations determined the mineral assemblages that can be expected to occur in nature. Ternary phases AgPd₃Se and $(Ag,Pd)_{22}Se_6$ and binary phases PdSe, Pd₇Se₄, and Pd₃₄Se₁₁ can be expected in associations with the mineral palladseite, among other selenides. Finding these phases is highly probable in telethermal selenide veins and unconformity-related uranium types of deposits, at conditions of high fugacity Se/S ratio, an oxidizing environment, and Se-rich

FIG. 5. BSE (backscattered electron) images illustrating the assemblages (a) chrisstanleyite (Ag₂Pd₃Se₄) + naumanite (Ag₂Se) + PdSe₂, (experiment A12, 350 °C), (b) AgPd₃Se ss + palladseite (Pd₁₇Se₁₅) ss + (Ag,Pd)₂₂Se₆ ss (experiment A22, 350 °C).

fluids, forming at low temperatures. These phases can be expected particularly at mineralizations where other Pd selenides are already known to occur, such as Au-Pd mineralization in Itabira, Minais Gerais (Brazil), selenide mineralization in the Harz Mountains (Germany), Hope's Nose (England), La Rioja province (Argentina), or Musonoi (D.R. Congo). The appearance of Pd (-Ag) selenides can be also expected in black shale deposits like Kupferschiefer-type deposits or other metal-rich black shales.

6. The phase $Ag_6Pd_{74}Se_{20}$ forms stable associations with $AgPd_3Se$ and Pd_7Se_2 . It also coexists with Pd_4Se and Pd_9Se_2 . This phase is stable above 430 °C. In nature, $Ag_6Pd_{74}Se_{20}$ and Pd_9Se_2 can be expected to occur in a less traditional environment than is known for selenides, forming at higher temperatures (above 430 °C).

ACKNOWLEDGEMENTS

Financial support through grant no. P210/11/P744 from the Grant Agency of the Czech Republic; the project LA 11125 / KONTAKT II from the Ministry of Education, Youth and Sports of the Czech Republic; a grant of the President of the Russian Federation for State Support of Young Russian Scientists (MK-1557.2011.5); and grant no. 12-05-31418 from the Russian Foundation for Basic Research are gratefully acknowledged. The authors are grateful to Dr. Vlasta Böhmová (Institute of Geology AS CR) for carrying out the electron-microprobe analyses. Comments by Associate Editor Chris Ballhaus, Louis Cabri, and an anonymous referee are greatly appreciated; they helped to improve this paper. We also thank Lee A. Groat and Mackenzie Parker for their careful editing.

REFERENCES

- AHLFELD, F. (1941) El yacimiento de selenio de Pacajake. Ministerio de la Economia Nacional Boletin Informativo, La Paz, Bolivia 1(2), 23–28.
- BILLETTER, H. & RUSCHEWITZ, U. (2008) Structural Phase Transitions in Ag₂Se (Naumanite). Zeitschrift für Anorganische und Allgemeine Chemie 634, 241–246.
- CABRAL, A.R. & LEHMANN, B. (2007) Seleniferous minerals of palladium and platinum from ouro preto-bearing mineralization in Brazil. Ore Geology Reviews 32, 681–688.
- CABRAL, A.R., LEHMANN, B., KWITKO, R., GALBIATTI, H.F., & PEREIRA, M.C. (2002) Palladseite and its oxidation: evidence from Au-Pd vein-type mineralization (jacutinga), Cuaê iron-ore mine, Quadrilátero Ferrífero, Minas Gerais, Brazil. *Mineralogical Magazine* 66(2), 327–336.
- CLARK, A.M., CRIDDLE, A.J., & FEJER, E.E. (1974) Palladium arsenide-antimonides from Itabira, Minas Gerais, Brazil. *Mineralogical Magazine* 39, 528–543.

- DAVIS, R.J., CLARK, A.M., & CRIDDLE, A.J. (1977) Palladseite, a new mineral from Itabira, Minas Gerais, Brazil. *Mineral*ogical Magazine. 41(123), M10–M13.
- GELLER, S. (1962) The crystal structure of Pd₁₇Se₁₅. Acta Crystallographica **15**, 713–721.
- GRØNVOLD, F. & RØST, E. (1957) The crystal structure of PdSe₂ and PdS₂. Acta Crystallographica 10, 329–331.
- GRØNVOLD, F. & RØST, E. (1962) The crystal structure of Pd₄Se and Pd₄S. *Acta Crystallographica* **15**, 11–13.
- GRUNDMANN, G., LEHRBERGER, G., & SCHNORRER-KÖHLER, G. (1990) The El Dragón mine, Potosi, Bolivia. *Mineralogical Record* 21, 133–146.
- HANSEN, M. & ANDERKO, K. (1958) Constitution of binary alloys. McGrow-Hill, New York, United States.
- IJJAALI, I. & IBERS, J.A. (2001) Crysral structure of palladium selenide, PdSe. Zeitschrift für Kristallographie 216, 485–486.
- JOHAN, Z. (1989) Merenskyite, Pd(Te,Se)₂, and the low-temperature selenide association from the Předbořice uranium deposit, Czechoslovakia. *Neues Jahrbuch für Mineralogie* (*Monatshefte*) **4**, 179–191.
- JOHAN, Z., PICOT, P., & RUHLMANN, F. (1982) Evolution paragénétique de la mineralisation uranifere de Chameane (Puy-de-Dome), France: Chameanite, geffroyite et giraudite, trois seleniures nouveaux de Cu, Fe, Ag et As. *Tschermaks Mineralogische und Petrographische Mitteilungen* 29, 151–165.
- KARAKAYA, I. & THOMPSON W.T. (1988) The Ag-Pd (silverpalladium) system. Bulletin of Alloy Phase Diagrams 9(3), 237–243.
- KARAKAYA, I. & THOMPSON, W.T. (1990) The Ag-Se (silverselenium) system. Bulletin of Alloy Phase Diagrams 11(3), 266–271.
- KULLERUD, G. (1971) Experimental techniques in dry sulfide research. *In* Research Techniques for High Pressure and High Temperature (G.C. Ulmer, ed.). Spinger-Verlag, New York, United States, 288–315.
- KVAČEK, M. (1979) Selenides from the deposits of western Moravia, Czechoslovakia. Acta Universitatis Carolinae-Geologica 1(2), 15–38
- LAUFEK, F., VYMAZALOVÁ, A., CHAREEV, D.A., KRISTAVCHUK, A.V., LIN, Q., DRAHOKOUPIL, J., & VASILCHIKOVA, T.M. (2011) Crystal and electronic structure study of AgPd₃Se. *Journal of Solid State Chemistry* **184(10)**, 2794–2798.
- LAUFEK, F., VYMAZALOVÁ, A., CHAREEV, D., KRISTAVCHUK, A., DRAHOKOUPIL, J., & VORONIN, M.A. (2013) Synthesis and crystal structure of (Ag,Pd)₂₂Se₆ (PD-2012-0053). *Powder Diffraction* 28(1), 13–17.

- MATKOVIC, T. & SCHUBERT, S. (1978) Kristallstruktur von Pd₇Se₄. Journal of the Less-Common Metals 59, P57–P63.
- NICKEL, E.H. (2002) An unusual occurence of Pd,Pt, Au, Ag and Hg minerals in the Pilbara Region of Western Australia. *Canadian Mineralogist* 40, 419–433.
- OKAMOTO, H. (1992) The Pd-Se (palladium selenium) system. Journal of Phase Equilibria 13(1), 69–72.
- OLIVO, G.R. & GAMMONS, C.H. (1996) Thermodynamic and textural evidence for at least two stages of A-Pd mineralization at the Cauê iron mine, Itabira district, Brazil. *Canadian Mineralogist* 34, 547–557.
- OLIVO, G.R. & GAUTHIER, M. (1995) Palladium minerals from the Cauê iron mine, Itabira district, Minas Gerais, Brazil. *Mineralogical Magazine* 59, 455–463.
- OLSEN, T., RIST, E., & GRØNVOLD, F. (1979) Phase relations of palladium selenides. Acta Chemica Scandinavica 33(4), 251–256.
- PAAR, W.H., SUREDA, R.J., & DE BRODTKORB, M.K. (1996) Oro y plata en los yacimientos de selenio de La Rioja, Argentina: hallazgo de fischesserita, Ag₃AuSe₂. III Reunion de Mineralogía y Metalogenia. *Publicación del Instituto de Recursos Minerales (Universidad Nacional de la Plata)* 5, 177–185.
- PAAR, W.H., ROBERTS, A.C., CRIDDLE, A.J., & TOPA, D. (1998) A new mineral, chrisstanleyite, Ag₂Pd₃Se₄, from Hope's Nose, Torquay, Devon, England. *Mineralogical Magazine* 6, 257–264.
- PAAR, W.H., TOPA, D., MAKOVICKY, E., & CULETTO, F.J. (2005) Milotaite, PdSbSe, a new palladium mineral species from Předbořice, Czech Republic. *Canadian Mineralogist* 43, 689–694.
- PAAR, W.H., TOPA, D., MAKOVICKY, E., SUREDA, R.J., DE BRODTKORB, M.K., NICKEL E.H., & PUTZ, H. (2004) Jaqueite, Cu₂Pd₃Se₄, a new mineral species from El Chire, La Rioja, Argentina. *Canadian Mineralogist* 42, 1745–1755.
- RAHLFS, P. (1936) Uber die kubischen Hochtemperatur modifikationen der Sulfide, Selenide und Telluride des Silbers und des einwertigen Kupfers. Zeitschrift für Physikalische Chemie B37, 157–194.
- ROBERTS, A.C., PAAR, W.H., COOPER, M.A., TOPA, D., CRID-DLE, A.J., & JEDWAB, J. (2002) Verbeekite, monoclinic PdSe₂, a new mineral from the Musonoi Cu-Co-Mn-U mine, near Kolwezi, Shaba Province, Democratic Republic of Congo. *Mineralogial Magazine* 66(1), 173–179.
- ROBINSON, S.C. (1955) Mineralogy of uranium deposits, Goldfields, Saskatchewan. *Geological Survey of Canada Bulletin* 31, 128p.

- RODRÍGUEZ-CARVAJAL, J. (2006) FullProf.2k: Rietveld Profile Matching & Integrated Intensities Refinement of X-ray and/or Neutron Data (powder and/or single-crystal). Laboratoire Léon Brillouin, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France.
- RUDASHEVSKIY, N.S., KNAUF, V.V., & CHERNYSHOV, N.M. (1995) Platinum-group minerals from Kurs magnetic anomaly black shales. *Doklady Akademii Nauk* 344(1), 91–95.
- SATO, S., TAKABATAKE, T., & ISHIKAWA, M. (1989) Structures of superconducting palladium selenides, Pd₇Se₂ and Pd₃₄Se₁₁. Acta Crystallographica C45, 1–3.
- SIMON, G. & ESSENE, E.J. (1996) Phase relations among selenides, tellurides, and oxides. I. Thermodynamic properties and calculated equilibria. *Economic Geology* 92, 468–484.
- SIMON, G., KESLER, S.E., & ESSENE E.J. (1997) Phase relations among selenides, sulphides, tellurides, and oxides: II.Applications to selenide-bearing ore deposits. *Economic Geology* 92, 468–484.
- STANLEY, C.J., CRIDDLE, A.J., & LLOYD, D. (1990) Precious and base metal selenide mineralization at Hopes Nose, Torquay, Devon. *Mineralogical Magazine* 54, 485–493.
- STANLEY, C.J., CRIDDLE, A.J., FÖRSTER, H.-J., & ROBERTS, A.C. (2002) Tischendorfite, Pd₈Hg₃Se₉, a new mineral species from Tilkerode, Harz Mountains, Germany. *Canadian Mineralogist* 40, 739–725.
- TAKABATAKE, T., ISHIKAWA, M., & JORDA, J.L. (1987) Superconductivity and phase relations in the Pd-Se system. *Journal of the Less-Common Metals* 134, 79–89.
- TISCHENDORF, G. (1959) Zur Genesis einiger Selenid-vorkommen, insbesondere von Tilkerode im Harz. *Freiburg Forschungshefte Hamburg* C208.
- TOPA, D., MAKOVICKY, E., & BALIC-ŽUNIC, T. (2006) The crystal structure of jagueite, Cu₂Pd₃Se₄, and chrisstanleyite, Ag₂Pd₃Se₄. *Canadian Mineralogist* 44, 497–505.
- VYMAZALOVÁ, A., DRÁBEK, M., & LAUFEK, F. (2011) Mineralogical significance of the system Pd-Se at 350°C. In Let's talk ore deposits (E.Campos, ed.). Proceedings of the 11th Biennial SGA Meeting, Antofagasta, Chile. 660–662.
- WALLIS, E. (1994) Erzparagenetische und mineralchemische Untersuchung der Selenide in Harz. Unpublished Diploma thesis, University of Hamburg, Hamburg, Germany.
- WIEGERS, G.A. (1971) The crystal structure of the low-temperature form of silver selenide. *American Mineralogist* 56, 1882–1888.
- Received March 27, 2013, revised manuscript accepted February 24, 2014.