RAYGRANTITE, Pb₁₀Zn(SO₄)₆(SiO₄)₂(OH)₂, A NEW MINERAL ISOSTRUCTURAL WITH IRANITE, FROM THE BIG HORN MOUNTAINS, MARICOPA COUNTY, ARIZONA, USA

HEXIONG YANG[§], MARCELO B. ANDRADE, ROBERT T. DOWNS, RONALD B. GIBBS, AND ROBERT A. JENKINS

Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721, U.S.A.

Abstract

A new mineral species, raygrantite, ideally $Pb_{10}Zn(SO_4)_6(SiO_4)_2(OH)_2$, has been found in the Big Horn Mountains, Maricopa County, Arizona, USA. Associated minerals are galena, anglesite, cerussite, lanarkite, leadhillite, mattheddleite, alamosite, hydrocerussite, caledonite, and diaboleite. Raygrantite crystals are bladed with striations parallel to the elongated direction (the **c** axis). Twinning (fish-tail type) is pervasive on (1 2 1). The mineral is colorless, transparent with white streak, and has a vitreous luster. It is brittle and has a Mohs hardness of ~3; cleavage is good on {120} and no parting was observed. The calculated density is 6.374 g/cm³. Optically, raygrantite is biaxial (+), with $n_{\alpha} = 1.915(7)$, $n_{\beta} = 1.981(7)$, $n_{\gamma} = 2.068(9)$, $2V_{meas} = 76(2)^\circ$, and $2V_{calc} = 85^\circ$. It is insoluble in water, acetone, or hydrochloric acid. An electron microprobe analysis yielded the empirical formula $Pb^{2+}_{9.81}Zn^{2+}_{0.93}(S_{1.00}O_4)_6(Si_{1.05}O_4)_2(OH)_2$.

Raygrantite is a new member of the iranite mineral group. It is triclinic, with space group $P\overline{1}$ and unit-cell parameters *a* 9.3175(4), *b* 11.1973(5), *c* 10.8318(5) Å, α 120.374(2), β 90.511(2), γ 56.471(2)°, and *V* 753.13(6) Å³. Its crystal structure, refined to $R_1 = 0.031$, is characterized by slabs that lie parallel to (120) of SO₄ and SiO₄ tetrahedra with ZnO₄(OH)₂ octahedra, held together by Pb²⁺ cations displaying a wide range of Pb–O bond distances. The discovery of raygrantite indicates that, in addition to complete OH–F and Cu–Zn substitutions, there is also a complete substitution between $(CrO_4)^{2-}$ and $(SO_4)^{2-}$ in the iranite group of minerals, pointing to the possible existence of a number of other $(SO_4)^{2-}$ -bearing iranite-type phases yet to be found or synthesized.

Keywords: raygrantite, iranite, hemihedrite, crystal structure, X-ray diffraction, Raman spectra.

INTRODUCTION

A new mineral species, raygrantite, ideally Pb₁₀Zn(SO₄)₆(SiO₄)₂(OH)₂, has been found in Arizona, USA. The mineral is named in honor of Dr. Raymond W. Grant, a retired professor of geology at Mesa Community College in Mesa, Arizona. Dr. Grant's primary scientific interest is minerals found in Arizona. His publications include several articles on Arizona mineral localities, the Checklist of Arizona Minerals, and the 3rd edition of Mineralogy of Arizona. Ray Grant is the past and current President of the Mineralogical Society of Arizona, past Chairman of the Flagg Mineral Foundation, and a principal organizer of the Arizona Mineral Symposium. The new mineral and its name have been approved by the Commission on New Minerals and Nomenclature and Classification (CNMNC) of the International Mineralogical Association (IMA2013-001). Part of the co-type samples has been deposited in the University of Arizona Mineral Museum (Catalogue # 19345) and the RRUFF Project (deposition # R120151, www:// rruff.info/raygrantite). This paper describes the physical and chemical properties of raygrantite and its structural characterization based on single-crystal Xray diffraction and Raman spectroscopic data.

SAMPLE DESCRIPTION AND EXPERIMENTAL METHODS

Occurrence, physical and chemical properties, and Raman spectra

Raygrantite was found at the Evening Star mine (a former underground Cu-V-Pb-Au-Ag-W mine, also previously called Old Queen Group or Silver Queen mine), Big Horn District, Big Horn Mountains, Maricopa County, Arizona, USA (Lat. 33°70' N,

[§] Corresponding author e-mail address: hyang@u.arizona.edu

FIG. 1. The rock sample on which the raygrantite crystals were found.

Long. 113°21′W). The crystals were found within a small cavity in a mass of galena (Fig. 1). Associated minerals include galena, anglesite, cerussite, lanarkite, leadhillite, mattheddleite, alamosite, hydrocerussite, caledonite, and diaboleite. Also, among the "rind" are fornacite, iranite, phoenicochroite, cerussite, and murdochite. Raygrantite is believed to have a secondary origin as a remnant of a galena-pyrite-chalcopyrite vein. Mineral occurrences in the Big Horn district are gold-rich, basement-hosted narrow quartz pods and veins associated with late Cretaceous intrusives (Allen 1985).

Raygrantite crystals are bladed and elongated along the **c** axis (up to $0.05 \times 0.10 \times 0.30$ mm), with striations parallel to the **c** axis (Fig. 2). Twinning (fishtail type) is pervasive on $(1 \ 2 \ \overline{1})$, with the twin axis along [0 1 0] (Fig. 3). The mineral is colorless in transmitted light, transparent with white streak, and has a vitreous luster. It is brittle and has a Mohs hardness of ~3; cleavage is good on {120} and no parting was observed. Fractures are uneven. The calculated density is 6.37 g/cm³. Optically, raygrantite is biaxial (+), with $n_{\alpha} = 1.915(7)$, $n_{\beta} = 1.981(7)$, $n_{\gamma} =$ 2.068(9), $2V_{\text{meas}} = 76(2)^{\circ}$, and $2V_{\text{calc}} = 85^{\circ}$. Dispersion is strong (r > v) and absorption is Z > Y > X. The Gladstone Dale compatibility index is 0.04 (good). Raygrantite is insoluble in water, acetone, or hydrochloric acid.

The chemical composition of raygrantite was determined with a CAMECA SX100 electron microprobe operating at 20 kV and 20 nA with the beam diameter of $\sim 1 \ \mu m$. The standards include wollastonite for Si, barite for S, wulfenite for Pb, and ZnO for Zn, vielding an average composition (wt.%) (18 points) of SiO₂ 4.30(19), SO₃ 16.49(33), PbO 74.91(34), ZnO 2.59(11), H₂O 0.62 (added to bring the total close to the ideal value), and total = 98.81(45). The presence of OH in raygrantite was also confirmed by Raman spectroscopic measurements and structure determination (see below). Trace amounts of Cu, Cr, and F were observed from WDS, but they are under the detection limits of electron microprobe analysis. The resultant chemical formula, calculated on the basis of 34 O atoms (from the structure determination), is Pb_{9.81}Zn_{0.93}(S_{1.00}O₄)₆(Si_{1.05}O₄)₂(OH)₂, which can be simplified as $Pb_{10}Zn(SO_4)_6(SiO_4)_2(OH)_2$.

The Raman spectrum of raygrantite was collected from a randomly oriented crystal with a Thermo Almega microRaman system, using a 532-nm solidstate laser with a thermoelectric cooled CCD detector. The laser is partially polarized with a 4 cm⁻¹ resolution and a spot size of 1 μ m.

FIG. 2. A microscopic view of raygrantite crystals in a vug.

X-ray crystallography

Both the powder and single-crystal X-ray diffraction data for raygrantite were collected using a Bruker X8 APEX2 CCD X-ray diffractometer equipped with graphite-monochromatized MoK α radiation. However, due to severe overlaps, it is difficult to unambiguously index all the powder X-ray diffraction peaks. Thus, no unit-cell parameters were determined from the powder X-ray diffraction data. Listed in Table 1 are the measured powder X-ray diffraction data, along with those calculated from the determined structure using the program XPOW (Downs *et al.* 1993).

FIG. 3. A backscattered electron image of fish-tail type twinning in raygrantite.

E	xperimental		Theoretical	
Intensity	d-spacing (Å)	Intensity	d-spacing (Å)	hkl
9	5.521	9.40	5.4655	111
56	4.753	60.42	4.7761	120
26	4.608	28.59	4.6153	122
32	4.288	28.48	4.2852	220
17	3.872	24.97	3.8800	201
18	3.604 (2 overlaps)	11.15	3.6297	132
		18.91	3.5987	200
27	3.492 (3 overlaps)	11.11	3.4987	222
		13.17	3.4878	013
		16.76	3.4857	202
25	3.362	22.82	3.3614	123
63	3.267	100.00	3.2743	122
100	3.102 (3 overlaps)	76.06	3.1139	103
		60.92	3.1055	320
		15.81	3.0876	111
29	2.996 (3 overlaps)	12.99	3.0055	123
		7.97	2.9841	212
		9.88	2.9529	201
35	2.851	46.00	2.8590	021
31	2.783	45.34	2.7926	242
31	2.707	33.59	2.7185	223
20	2.648	17.20	2.6544	231
16	2.557 (2 overlaps)	6.40	2.5659	034
		5.04	2.5425	302
15	2.535 (3 overlaps)	10.52	2.5396	322
		7.03	2.5078	322
		5.54	2.4875	030
7	2.379 (2 overlaps)	7.28	2.3991	300
		3.71	2.3869	103
10	2.312 (3 overlaps)	8.23	2.3238	303
		6.49	2.3142	430
		6.93	2.3065	313
19	2.270	19.75	2.2826	042
15	2.155 (3 overlaps)	9.99	2.1649	004
		10.68	2.1635	223
		5.85	2.1565	332
21	2.128 (3 overlaps)	13.17	2.1371	4 4 2
		7.77	2.1354	025
		8.59	2.1163	301
10	2.062	17.43	2.0676	145

TABLE 1. POWDER DIFFRACTION DATA FOR RAYGRANTITE

Single-crystal X-ray diffraction data were collected from a nearly equidimensional twinned crystal ($0.05 \times 0.04 \times 0.04$ mm) with frame widths of 0.5° in ω and 30 s counting time per frame. Figure 4 is the reciprocal plot of X-ray reflections viewed down **c***. The two twin components are related to each other by the twin law ($\overline{1}$ 1 0, 0 1 0, 0 $\overline{1}$ $\overline{1}$). All reflections were indexed on the basis of a triclinic unit-cell (Table 2) and processed with the software TWINABS (Sheldrick 2007). The intensity data were corrected for X-ray absorption using the Bruker program SADABS. The systematic absences of reflections suggest possible space group P1 or $P\overline{1}$. The crystal structure was solved and refined using SHELX97 (Sheldrick 2008) based on space group $P\overline{1}$, because it produced the better refinement statistics in terms of bond lengths and angles, atomic displacement parameters, and *R* factors. The positions of all atoms were refined with anisotropic displacement parameters. The H atoms were not located from the difference Fourier maps.

FIG. 4. A reciprocal plot of X-ray reflections of raygrantite viewed down c*, showing the two twin components.

TABLE 2.	COMPARISON OF	CRYSTALLOGRAPHIC DAT	A FOR RAYGRANTITE.	IRANITE,	AND HEMIHEDRITE

	raygrantite	iranite	hemihedrite
Ideal chemical formula	Pb ₁₀ Zn(SO ₄) ₆ (SiO ₄) ₂ (OH) ₂	Pb ₁₀ Cu(CrO ₄) ₆ (SiO ₄) ₂ (OH) ₂	Pb ₁₀ Zn(CrO ₄) ₆ (SiO ₄) ₂ F ₂
Crystal symmetry	Triclinic	Triclinic	Triclinic
Space group	P1 (#2)	P1 (#2)	P1 (#2)
<i>a</i> (Å)	9.3175(4)	9.5416(4)	9.497(3)
b(Å)	11.1973(5)	11.3992(5)	11.443(5)
<i>c</i> (Å)	10.8318(5)	10.7465(4)	10.841(4)
$\alpha(^{\circ})$	120.374(2)	120.472(2)	120.50(4)
β(°)	90.511(2)	92.470(2)	92.10(4)
γ(°)	56.471(2)	55.531(2)	55.84(3)
<i>V</i> (Å ³)	753.13(6)	780.08(6)	787.183
Ζ	1	1	1
$\rho_{cal}(g/cm^3)$	6.38	6.49	6.42
λ (Å)	0.71073	0.71073	1.5418
μ (mm ⁻¹)	56.02	56.58	
2θ range for data collection	≤65.24	<u>≤</u> 69.3	
No. of reflections collected	32373	14248	
No. of independent reflections	5286	6319	2790
No. of reflections with $l > 2\sigma(l)$	4543	5022	2428
No. of parameters refined	243	242	
R(int)	0.042	0.036	
Final R_1 , wR_2 factors $[l > 2\sigma(l)]$	0.031, 0.073	0.034, 0.062	0.041
Final R_1 , wR_2 factors (all data)	0.041, 0.076	0.050, 070	
Goodness-of-fit	1.093	1.013	
Reference	(1)	(2)	(3)

Reference: (1) This work; (2) Yang et al. (2007); (3) McLean & Anthony (1970).

Atom	x	У	Ζ	$U_{ m eq}$	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pb1	0.25929(4)	0.11301(4)	0.25132(4)	0.01533(8)	0.0136(2)	0.0155(2)	0.0121(1)	0.0061(1)	-0.0053(1)	-0.0090(1)
Pb2	0.26564(4)	0.08114(4)	0.64895(3)	0.01200(7)	0.0104(1)	0.0102(1)	0.0117(1)	0.0050(1)	-0.0023(1)	-0.0062(1)
Pb3	0.92660(4)	0.23610(4)	0.02931(3)	0.01273(7)	0.0149(2)	0.0127(1)	0.0123(1)	0.0073(1)	-0.0040(1)	-0.0097(1)
Pb4	0.72237(4)	0.41691(4)	0.75348(4)	0.01446(8)	0.0154(2)	0.0172(2)	0.0161(2)	0.0118(1)	-0.0089(1)	-0.0113(1)
Pb5	0.31236(4)	0.46321(4)	0.53615(3)	0.01209(7)	0.0145(1)	0.0169(2)	0.0127(1)	0.0102(1)	-0.0078(1)	-0.0124(1)
Zn	0	0.5	0	0.0119(3)	0.0156(7)	0.0104(6)	0.0109(6)	0.0062(5)	-0.0045(5)	-0.0090(6)
S1	0.9580(3)	0.0793(3)	0.3619(2)	0.0107(4)	0.0131(9)	0.0122(9)	0.0096(8)	0.0056(8)	-0.0040(7)	-0.0102(8)
S2	0.5697(3)	0.1766(3)	0.1512(2)	0.0093(3)	0.0079(8)	0.0071(8)	0.0077(8)	0.0033(7)	-0.0007(7)	-0.0034(7)
S3	0.4433(3)	0.3275(3)	0.8370(2)	0.0096(3)	0.0093(8)	0.0109(9)	0.0108(8)	0.0066(8)	-0.0036(7)	-0.0073(7)
Si	0.0259(3)	0.4474(3)	0.6572(3)	0.0077(4)	0.0098(10)	0.0099(10)	0.0077(9)	0.0069(8)	-0.0041(8)	-0.0069(9)
6	0.7667(9)	0.2146(9)	0.4768(7)	0.019(1)	0.020(3)	0.021(3)	0.014(3)	0.006(3)	0.000(3)	-0.016(3)
02	0.0929(10)	0.0688(9)	0.4360(8)	0.025(1)	0.029(4)	0.024(4)	0.030(4)	0.015(3)	-0.021(3)	-0.022(3)
03 O	0.0017(9)	0.0971(8)	0.7301(7)	0.015(1)	0.020(3)	0.012(3)	0.013(3)	0.005(2)	-0.003(2)	-0.012(3)
04	0.9727(10)	0.1230(9)	0.2571(8)	0.022(1)	0.028(4)	0.027(4)	0.015(3)	0.014(3)	-0.006(3)	-0.019(3)
05	0.5321(9)	0.1389(8)	0.2552(7)	0.014(1)	0.018(3)	0.016(3)	0.013(3)	0.011(3)	-0.003(2)	-0.010(3)
90	0.4389(9)	0.1985(9)	0.0717(7)	0.022(1)	0.013(3)	0.027(4)	0.018(3)	0.013(3)	-0.010(3)	-0.011(3)
07	0.7616(8)	0.0297(8)	0.0375(7)	0.016(1)	0.008(3)	0.013(3)	0.018(3)	0.009(3)	-0.001(2)	-0.002(2)
80	0.5482(9)	0.3422(8)	0.2466(8)	0.017(1)	0.016(3)	0.009(3)	0.024(3)	0.009(3)	-0.008(3)	-0.008(3)
60	0.5779(8)	0.3031(9)	0.9108(8)	0.019(1)	0.010(3)	0.023(3)	0.024(3)	0.015(3)	-0.010(3)	-0.011(3)
010	0.4526(9)	0.3892(9)	0.7476(8)	0.020(1)	0.028(4)	0.031(4)	0.023(3)	0.022(3)	-0.013(3)	-0.024(3)
011	0.2490(8)	0.4725(8)	0.9598(7)	0.014(1)	0.013(3)	0.010(3)	0.009(3)	0.001(2)	0.001(2)	-0.006(2)
012	0.4688(9)	0.1611(8)	0.7378(8)	0.018(1)	0.012(3)	0.013(3)	0.019(3)	0.005(3)	-0.004(3)	-0.008(3)
013	0.2242(8)	0.2933(8)	0.5076(6)	0.013(1)	0.011(3)	0.013(3)	0.006(2)	0.000(2)	0.003(2)	-0.008(2)
014	0.0338(8)	0.3846(7)	0.7657(6)	0.011(1)	0.014(3)	0.009(3)	0.009(3)	0.007(2)	-0.005(2)	-0.006(2)
015	0.9897(8)	0.3735(8)	0.2571(7)	0.012(1)	0.015(3)	0.007(3)	0.012(3)	0.005(2)	-0.002(2)	-0.007(2)
016	0.8516(8)	0.4772(8)	0.6090(7)	0.014(1)	0.011(3)	0.019(3)	0.018(3)	0.015(3)	-0.010(2)	-0.010(3)
017	0.1363(8)	0.2497(7)	0.9300(6)	0.009(1)	0.014(3)	0.007(3)	0.009(3)	0.006(2)	-0.005(2)	0.007(2)

TABLE 3. COORDINATES AND DISPLACEMENT PARAMETERS OF ATOMS IN RAYGRANTITE

		Distance (Å)			Distance (Å)			Distance (Å)
S1	-02 -01 -04 -03 Ave.	1.467(7) 1.473(7) 1.478(6) 1.494(6) 1.478	Pb1	-013 -015 -04 -05 -012	2.347(6) 2.558(6) 2.610(7) 2.711(6) 2.761(6)	Pb4	-08 -016 -01 -010 -014	2.474(6) 2.520(6) 2.531(6) 2.694(6) 2.730(6)
S2	-06 -07 -08 -05 Ave.	1.467(6) 1.470(6) 1.484(6) 1.490(6) 1.478		-07 -02 -06 -09 -06 Ave.	2.767(6) 2.925(7) 3.052(7) 3.326(6) 3.348(7) 2.840		-011 -03 -06 -09 -09 -02 Ave	2.777(6) 2.909(6) 3.008(7) 3.137(7) 3.236(7) 3.275(7) 2.845
S3	-09 -010 -012 -011 Ave.	1.453(6) 1.472(6) 1.475(6) 1.515(6) 1.479	Pb2	-014 -017 -03 -012 -02 -05	2.325(6) 2.454(5) 2.500(6) 2.505(6) 2.791(6) 2.850(6)	Pb5	-O16 -O13 -O15 -O5 -O10	2.268(5) 2.350(6) 2.563(6) 2.713(6) 2.883(6)
Si	-016 -014 -015 -013 Ave.	1.608(6) 1.630(6) 1.644(6) 1.649(6) 1.633		-01 -013 -012 Ave.	3.074(6) 3.284(6) 3.509(7) 2.810		-08 -04 -08 -01 -01 Ave.	3.006(7) 3.091(7) 3.140(6) 3.339(6) 3.362(7) 2.872
Zn	-017 -014 -011 Ave.	1.994(5) ×2 2.111(5) ×2 2.181(6) ×2 2.096	Pb3	-017 -015 -07 -011 -03 -010 -04 -04 -09 -07 -08 Ave.	2.352(6) 2.436(6) 2.656(6) 2.674(6) 3.074(7) 3.154(7) 3.228(6) 3.313(6) 3.443(6) 3.475(6) 2.934			

TABLE 4. SELECTED BOND DISTANCES IN RAYGRANTITE

The number and locations of the OH groups were determined from the bond-valence sum calculations. During the structure refinement, the ratio of the two twin domains was also refined to 0.64:0.36. Final coordinates and displacement parameters of the atoms in raygrantite are listed in Table 3 and selected bond-distances in Table 4.

DISCUSSION

Crystal Structure

Raygrantite, $Pb_{10}Zn(SO_4)_6(SiO_4)_2(OH)_2$, is isotypic with iranite $Pb_{10}Cu(CrO_4)_6(SiO_4)_2(OH)_2$ (Yang *et al.* 2007) and hemihedrite $Pb_{10}Zn(CrO_4)_6(SiO_4)_2F_2$ (McLean & Anthony 1970) (Table 2). Its structure contains 10 symmetrically independent non-H cation sites, with five occupied by Pb^{2+} (Pb1, Pb2, Pb3, Pb4, and Pb5), three by S^{6+} (S1, S2, and S3), one by Si^{4+} , and one by Zn^{2+} . The SO₄ and SiO₄ tetrahedra and ZnO₄(OH)₂ octahedra form layers parallel to (120), which are linked together by Pb²⁺ cations displaying a wide range of Pb–O bond distances (Fig. 5, Table 4). The ZnO₄(OH)₂ octahedra are corner-linked to two symmetrically equivalent SO₄ and two SiO₄ tetrahedra, while two additional nonequivalent SO₄ groups (S1 and S2) are isolated (Fig. 6). As measured by the octahedral quadratic elongation (OQE) parameter (Robinson *et al.* 1971), the CuO₄(OH)₂ octahedron in iranite is more distorted (1.015) than the ZnO₄(OH)₂

FIG. 5. Crystal structure of raygrantite. The yellow and red tetrahedra, green octahedra, and gray spheres represent SO₄, SiO₄, ZnO₄(OH)₂, and Pb, respectively.

octahedron (1.008) in hemihedrite, likely a consequence of the Jahn-Teller effect of Cu^{2+} (Yang *et al.* 2007).

From bond-valence considerations for iranite, Yang *et al.* (2007) showed that atom O17 represents the OH

group with a hydrogen bond to O6 [O17-O6 = 2.852(6) Å]. The O17 site is also where the F atom is situated in hemihedrite (McLean & Anthony 1970). The same conclusion can be drawn for raygrantite, based on the calculations of the bond-valence sums

FIG. 6. A polyhedral layer in raygrantite. The yellow and red tetrahedra and green octahedra represent SO₄, SiO₄, and ZnO₄(OH)₂ groups, respectively.

	Pb1	Pb2	Pb3	Pb4	Pb5	Zn	S1	S2	S3	Si	Sum
01		0.07		0.32	0.04 0.03		1.50				1.96
02	0.11	0.16		0.04			1.53				1.84
O3		0.35	0.22	0.12			1.43				2.11
04	0.26		0.06 0.05		0.07		1.48				1.92
O5	0.20	0.14			0.20			1.44			1.98
O6	0.08 0.04			0.09				1.53			1.74
07	0.17		0.37 0.03					1.52			2.09
08			0.03	0.38	0.09 0.06			1.46			2.02
O9	0.04		0.04	0.06	0100				1.59		1.78
010			0.07	0.05	0.13				1.51		1 92
011			0.23	0.17	0.10	0.28			1.34		2.02
012	0.17	0.35 0.02				¥			1.50		2.04
013	0.53	0.04			0.53					0.93	2.03
014		0.56		0.19		0.33 0.33				0.98	2.06
O15	0.30		0.42		0.30					0.95	1.97
O16				0.33	0.66					1.04	2.03
017		0.40	0.52			0.46 0.46↓					1.38
Sum	1.90	2.09	2.04	1.95	2.09	2.14	5.94	5.94	5.94	3.91	

TABLE 5. CALCULATED BOND-VALENCE SUMS FOR RAYGRANTITE

using the parameters given by Brese & O'Keeffe (1991) (Table 5). In raygrantite, O17 is the only O atom that does not participate in tetrahedral coordination with S^{6+} or Si^{4+} . The O17–O6 distance (3.108 Å) in raygrantite is longer than that in iranite [2.852(6) Å]. A comparison of the environment around O17 in iranite or raygrantite with that around the F atom in hemihedrite indicates that the bonding topologies of these ions are rather alike, suggesting no impediment to a complete solid solution between OH and F in hemihedrite, iranite, or raygrantite. Accordingly, we may postulate the possible existence of the OHanalogue of hemihedrite and the F-analogues of iranite and raygrantite, as well as the Cu-analogue of raygrantite. In fact, Cesbron & Williams (1980) successfully synthesized iranite, Pb₁₀Cu(CrO₄)₆ (SiO₄)₂(OH)₂, and the OH-analogue of hemihedrite, Pb10Zn(CrO4)6(SiO4)2(OH)2, hydrothermally at 230 °C and in a pH range between 9 and 9.5, and concluded that a complete solid solution exists between iranite and the OH-analogue of hemihedrite.

Raman spectra

Displayed in Figure 7 is the Raman spectrum of raygrantite. Based on the Raman spectroscopic measurements on iranite and hemihedrite by Frost (2004), we made the following tentative assignments of major Raman bands for raygrantite: The relatively broad band at 3515 cm⁻¹ can be ascribed to the O-H stretching vibrations. The bands between 800 and 1200 cm⁻¹ are due to the S–O and Si–O stretching vibrations within the SO₄ and SiO₄ tetrahedral groups, whereas the bands between 380 and 660 cm⁻¹ are primarily attributable to the O-S-O and O-Si-O bending vibrations. The bands below 350 cm⁻¹ are of a complex nature and are mostly associated with the rotational and translational modes of SO₄ and SiO₄ tetrahedra, Zn-O interactions, and the lattice vibrational modes. According to Libowitzky (1999), an O-H···O distance of 3.1 Å would correspond to an O-H stretching frequency of \sim 3500 cm⁻¹, which is close to the value of 3515 cm⁻¹ we measured for ravgrantite.

FIG. 7. Raman spectrum of raygrantite.

The complete substitution of S^{6+} for Cr^{6+} has been found in a number of mineral systems, such as the $BaCrO_4$ (hashemite) – $BaSO_4$ (barite) and $Pb_2O(CrO_4)$ (phoenicochroite) - Pb₂O(SO₄) (lanarkite) solid solutions. Through hydrothermal synthesis, Cesbron & Williams (1980) found that it was possible to partially replace some of the $(CrO_4)^{2-}$ groups by $(SO_4)^{2-}$ groups and the resulting crystals, all of them twinned, contain about 6 wt.% SO3, or 2.2 S apfu. The discovery of raygrantite indicates that, in addition to the complete OH-F and Cu-Zn substitutions, there is also a complete substitution between $(CrO_4)^{2-}$ and $(SO_4)^{2-}$ in the iranite group of minerals, pointing to the possible existence of a number of other $(SO_4)^{2-}$ bearing phases yet to be found or synthesized in this mineral group.

ACKNOWLEDGMENTS

This study was funded by the Science Foundation Arizona and the Sao Paulo Research Foundation (Grant: 2013/03487-8).

References Cited

- ALLEN, G.B. (1985) Economic Geology of the Big Horn Mountains of West-Central Arizona. Arizona Geological Survey, Open File Report 85–17.
- BRESE, N.E. & O'KEEFFE, M. (1991) Bond-valence parameters for solids. Acta Crystallographica B47, 192–197.
- CESBRON, F. & WILLIAMS, S.A. (1980) Iranite-hémihédrite, bellite, phoenicochroite, vauquelinite et fornacite: syn-

thèse et nouvelles données. *Bulletin de Minéralogie* **103**, 469–477.

- DOWNS, R.T., BARTELMEHS, K.L., GIBBS, G.V., & BOISEN, M.B., JR. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. *American Mineralogist* 78, 1104–1107.
- FROST, R.L. (2004) Raman microscopy of selected chromate minerals. *Journal of Raman Spectroscopy* 35, 153–158.
- LIBOWITZKY, E. (1999) Correlation of O-H stretching frequencies and O-H…O hydrogen bond lengths in minerals. *Monatshefte für Chemie* 130, 1047–1059.
- MCLEAN, W.J. & ANTHONY, J.W. (1970) The crystal structure of hemihedrite. *American Mineralogist* 55, 1103–1114.
- ROBINSON, K., GIBBS, G.V., & RIBBE, P.H. (1971) Quadratic elongation, a quantitative measure of distortion in coordination polyhedra. *Science* 172, 567–570.
- SHELDRICK, G.M. (2007) TWINABS. University of Göttingen, Göttingen, Germany.
- SHELDRICK, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112–122.
- YANG, H., SANO, J.L., EICHLER, C., DOWNS, R.T., & COSTIN, G. (2007) Iranite, CuPb₁₀(CrO₄)₆(SiO₄)₂(OH)₂, isomorphous with hemihedrite. *Acta Crystallographica* C63, i122– i124.
- Received May 5, 2015. Revised manuscript accepted October 14, 2015.