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in the nepheline syenites of this area is noteworthy, as it has not been
reported from anywhere else. This intergrowth may be the result of
post-magmatic replacement.
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OPTICAL ABSORPTION STUDIES OF GROSSULAR, ANDRADITE
(var. COLOPHONITE) AND UVAROVITE

P. G. MANNING*

In this note are reported the optical absorption spectra of an andradite
(var. colophonite), two grossulars and an uvarovite. The purpose of the
work is the identification of the band marking electronic transitions to
the second field-independent state in octahedrally-bonded Fe*t, i.e., the
¢4 — *E(D) transition in Fig. 1.

A very sharp band in andradite spectra at 22,700 cm! has earlier been
assigned to transitions to the first field-independent state (Fig. 1) in Fe¥*
(Manning, 1967; Grum-Grzhimailo et al., 1963). The same band is observed
in the colophonite spectrum (Fig. 2) at 22,700 cm—! and also in the spectra
of the two grossulars at 22,800 cm—! (Figs. 3 and 4). The spectra of the
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F16. 1. Energy level diagram for Fe®+ in cubic fields.

grossulars are significantly different from the grossular spectra reported
by Grum-Grzhimailo et al. (1954). The grossulars used in the current
work were checked by x-ray to show that they were indeed grossulars.
Chemical analyses of the garnets studied are listed in Table 1. In
general, the garnets are low in Ti and Mn. The grossular showed weak
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F16. 2. Spectrum of andradite (var. colophonite) from Willsboro County, N.Y.
Thickness = 0.32 mm.

8-coordinate Fe?t bands in the infrared at 8,200 cm—! and 5,700 cm™,
corresponding to 19, Fe*t, if ¢ = 1 litre/mole-cm, for the York River
grossular. The extinction coefficient, e, is defined in the usual manner,
and the value e = 1has been taken from an earlier work (Manning, 1967b).

The uvarovite spectrum (Fig. 5) shows the two strong octahedrally-
bonded Cr3+ bands at 16,600 cm™! and 23,100 cm™!. These bands are
attributed to the spin-allowed transitions in Cr3+,44y — 4T yand 44, — 4T,
respectively (Fig. 6). Two Cr** bands have been observed in the spectra
of blood-red pyrope (Manning, 1967) at 17,800 cm™* and 24,100 cm™. For
octahedrally-bonded Cr¥+, AE(*T', — ¢4,) = 10 Dgq, where 10 Dg is the
splitting of e, and #,, orbitals. The larger splitting in pyrope reflects the
shorter Cr3+-O distances in pyralspites than in ugrandites (Abrahams &
Geller, 1958 ; Zemann & Zemann, 1961).
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F1G. 3. Absorption spectrum grossularite from York River, Ontario. Thickness =
0.9 mm.
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F16. 4. Absorption spectrum of grossular from Ruberoid Mine, Vermont.
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TaBLE 1. CONCENTRATIONS OF CATIONS IN GARNETS IN Wr. 9,

Andradite
(Colophonite) Grossular Grossularite Uvarovite
Cation Willsboro York River Ruberoid Thetford
Fe 16.8 3.39 1.5 2.2
Mn 0.2 0.20
Ti 0.07 0.19 0.03
Cr 10

The spectra of all garnets studied here show a relatively prominent
and sharp absorption at ~27,000 cm—!. The sharpness of the band suggests
it marks transitions to the second field-independent state, *E(D), in
octahedrally-bonded Fe®+. All spectra also show a shoulder at ~26,000
cm™ that can very reasonably be assigned to the transition 841 — To(D).
The 22,700 cm™ band that would mark the first field-independent state in
uvarovite is probably “swamped” by the strong 23,100 cm—* Cr¥+ band.

The distinctive nature of the 27,000 cm— band in ugrandites suggests
it could be used for Fe*+ analyses, provided sufficient chemical analyses
were available to obtain a reliable value for . An approximate value of e
taken from Figs. 24 is 2.

Absorption bands below 22,700 cm—! are not well resolved in the
andradite and grossular spectra (F igs. 2-4). Bands at ~21,500 cm— and
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F16. 5. Absorption spectrum of uvarovite from Thetford, Quebec. Thickness = 0.03
mm.
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F1c. 6. Energy level diagram for Cr3* in octahedral fields. Dotted line gives ap-
proximate 10 Dg for Cr(OHy),3*.

~12,000 co* are readily evident in all three spectra while the colophonite
spectrum (Fig. 2) shows weakly-resolved shoulders at ~16,700 cm™ and
~19,200 cm—, These bands could be assigned in the following manner to
Fedt:

~12,000 cm ) ¢4, —*T1(G)

~16,700 cm™!
and ~19,200 cn) 84; —*T(G)

~21,500 cm™!

The electronic configurations of the 474(G) and *T'+(G) levels are fq,%,",
so that a dynamic Jahn-Teller mechanism could lead to a splitting of
the bands. The assignments of these bands must be considered tentative.

Note added in proof:—

The absorption spectrum of a green muscovite from Villeneuve, P.Q.,
that contained 69, Fe*', showed well-resolved bands at the following
energies:— 11,000 cm™!; 16,600 cm™; 22,600 cm— (sharp) ; 26,000 cm™
and 27,000 cm™ (sharp). The assignments of these bands seem straight-
forward:—

64, —*T4(G) 11,000 cm™*
64, — ¢To(G) 16,600 cm™
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841 — 44,*E(G) 22,600 cm™!
84, —4T5(D) 26,000 cm—
and 64, —*E(D) 27,000 cm™,

At the higher energies, the spectra of Fe3* in muscovite and garnet are
very similar.
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SULPHIDE RESEARCH CONTRIBUTIONS FROM THE MINERAL
SCIENCES DIVISION, MINES BRANCH, DEPARTMENT OF ENERGY,
MINES AND RESOURCES

E. H. Ni1ckeL
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Several years ago it was decided that a significant proportion of the
research activity of the scientific personnel of the Mineral Sciences
Division should be directed toward astudy of the properties and behaviour
of sulphides and related minerals. This decision was based on the fact
that sulphides represent an extremely important part of Canada’s mineral
economy and that the knowledge about the fundamental properties of
sulphides and their genesis in nature is far from complete. Furthermore,
it is generally recognized that advances in technology, in this case the
recovery of sulphides from ore and their subsequent utilization, are
ultimately predicated onincreasing thereservoir of fundamentalknowledge.
The sulphide research programme, as it was conceived and put into prac-
tice, is a broadly inter-disciplinary one, with contributions being made by
scientific personnel with a wide range of specialties.
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