ELEOMELANITE, (K₂Pb)Cu₄O₂(SO₄)₄, A NEW MINERAL SPECIES FROM THE TOLBACHIK VOLCANO, KAMCHATKA, RUSSIA

IGOR V. PEKOV[§] AND NATALIA V. ZUBKOVA

Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia

ATALI A. AGAKHANOV

Fersman Mineralogical Museum of Russian Academy of Sciences, Leninskiy Prospekt 18-2, Moscow, 119071 Russia

NIKITA V. CHUKANOV

Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia

DMITRY I. BELAKOVSKIY

Fersman Mineralogical Museum of Russian Academy of Sciences, Leninskiy Prospekt 18-2, Moscow, 119071 Russia

EVGENY G. SIDOROV

Institute of Volcanology and Seismology, Far Eastern Branch of the Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia

SERGEY N. BRITVIN

Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia

ANNA G. TURCHKOVA AND DMITRY YU. PUSHCHAROVSKY

Faculty of Geology, Moscow State University, Leninskie Gory, 119991 Moscow, Russia

Abstract

The new mineral eleomelanite, $(K_2Pb)Cu_4O_2(SO_4)_4$, was found in the Arsenatnaya fumarole on the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik Volcano, Kamchatka, Russia. It is associated with euchlorine, fedotovite, wulffite, chalcocyanite, dolerophanite, dravertite, hermannjahnite, alumoklyuchevskite, klyuchevskite, piypite, cryptochalcite, cesiodymite, anglesite, langbeinite, calciolangbeinite, metathénardite, belomarinaite, aphthitalite, krasheninnikovite, steklite, anhydrite, hematite, tenorite, sanidine, sylvite, halite, lammerite, urusovite, and gold. Eleomelanite occurs as interrupted crusts up to 6 mm across and up to 0.3 mm thick consisting of equant, prismatic, or tabular crystals or grains up to 0.3 mm. It is translucent and black. The luster is oleaginous on crystal faces and vitreous on a cleavage surface. D_{calc} is 3.790 g/cm³. Eleomelanite is optically biaxial (–), α 1.646(3), β 1.715(6), γ 1.734(6), $2V_{meas.} = 60(15)^{\circ}$. The chemical composition (wt.%, electron-microprobe) is K_2O 9.62, Rb_2O 0.49, Cs_2O 0.24, CaO 1.23, CuO 35.28, PbO 19.25, SO₃ 34.78, total 100.89. The empirical formula calculated based on 18 O *apfu* is (K_{1.88}Pb_{0.79}Ca_{0.20}Rb_{0.05}Cs_{0.00})_{22.94}Cu_{4.07}S_{3.99}O₁₈. Eleomelanite is monoclinic, $P2_1/n$, a 9.3986(3), b 4.8911(1), c 18.2293(5) Å, β 104.409(3)°, V 811.63(4) Å³, and Z = 2. The strongest reflections of the powder XRD pattern [d, Å(I)(hkI)] are: 9.07(63)(101) 7.38(44)(101), 3.699(78)(112), 3.658(100)($\overline{2}04$), 3.173(40)(211), 2.915(35)(114), 2.838(35)(204), 2.683(36)($\overline{2}15$), and 2.576(51)(310, $\overline{1}16$). The crystal structure was solved using single-crystal XRD data, $R_1 = 4.78\%$. It is based on heteropolyhedral Cu–S–O chains composed of Cu-centered polyhedra with [4+1+1] Cu²⁺ coordination and SO₄ tetrahedra. Adjacent Cu–S–O chains are connected *via* chains

[§] Corresponding author e-mail address: igorpekov@mail.ru

of (K,Pb)O₈ and KO₁₀ polyhedra. Eleomelanite belongs to a novel structure type but has common structural features with klyuchevskite, alumoklyuchevskite, wulffite, parawulffite, and piypite. The name is derived from the Greek $\epsilon\lambda\alpha$ iov (*eleon*), oil, and $\mu\epsilon\lambda\alpha\varsigma$ (*melas*), black, due to its black color and oleaginous luster on crystal faces that are uncommon for sulfate minerals.

Keywords: eleomelanite, new mineral, potassium lead copper sulfate, oxysulfate, crystal structure, fumarole, Tolbachik volcano, Kamchatka.

INTRODUCTION

Natural hydrogen-free alkali-copper oxysulfates form a specific family, in both crystal chemical and genetic aspects, which includes 15 minerals containing additional anion O^{2-} non-bonded to S^{6+} . These are euchlorine, KNaCu₃O(SO₄)₃ (Scordari & Stasi 1990); fedotovite, K₂Cu₃O(SO₄)₃ (Vergasova et al. 1988a, Starova et al. 1991); puninite, Na₂Cu₃O(SO₄)₃ (Siidra et al. 2017); wulffite, K₃NaCu₄O₂(SO₄)₄; parawulffite, K₅Na₃Cu₈O₄(SO₄)₈ (Pekov et al. 2014); cryptochalcite, K₂Cu₅O(SO₄)₅; cesiodymite, CsKCu₅O(SO₄)₅ (Pekov *et al.* 2018b); klyuchevskite, $K_3Cu_3Fe^{3+}O_2$ (SO₄)₄ (Vergasova et al. 1989, Gorskaya et al. 1992); alumoklyuchevskite, K₃Cu₃AlO₂(SO₄)₄ (Gorskaya et al. 1995, Krivovichev et al. 2009, Siidra et al. 2017); elasmochloite, Na₃Cu₆BiO₄(SO₄)₅ (Pekov et al. 2019); kamchatkite, KCu₃O(SO₄)₂Cl (Vergasova et al. 1988b, Varaksina et al. 1990, Siidra et al. 2017); piypite, K₄NaCu₄O₂(SO₄)₄Cl (Vergasova et al. 1984, Effenberger & Zemann 1984); nabokoite, KCu₇Te⁴⁺O₄ (SO₄)₅Cl; atlasovite, KCu₇Fe³⁺BiO₄(SO₄)₅Cl (Popova et al. 1987, Pertlik & Zemann 1988); and, described in the present paper, eleomelanite, $(K_2Pb)Cu_4O_2(SO_4)_4$. These copper oxysulfates occur only in high-temperature (>350-400 °C) oxidizing-type volcanic fumaroles. All 15 minerals are known at the Tolbachik

FIG. 1. Black aggregates of eleomelanite on a green euchlorine crust with (in the left upper part of the picture) dark steel-grey tenorite. FOV: 1 cm. Photo: I.V. Pekov & A.V. Kasatkin.

Volcano, Kamchatka, Russia, which is the type locality for 14 of them (euchlorine was first discovered at Vesuvius in Italy). A review of the crystal chemistry of fumarolic copper oxysulfates is given by Pekov *et al.* (2018b, c).

The name of the new mineral, eleomelanite (Cyrillic: элеомеланит), is derived from the Greek $\epsilon\lambda\alpha$ tov (*eleon*), oil, and $\mu\epsilon\lambda\alpha\zeta$ (*melas*), black, due to its black color and oleaginous luster on crystal faces that are uncommon for sulfate minerals: the surface looks oiled.

Both the new mineral and its name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA No. 2015– 118). The type specimen is deposited in the systematic collection of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow with the catalogue number 95347.

Occurrence, General Appearance, and Morphology

The new mineral was found in specimens collected by our team in July 2015 from the active Arsenatnaya fumarole located at the apical part of the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption (NB GTFE), Tolbachik Volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55°41'N 160°14'E, 1200 m asl). This scoria cone, which emerged in 1975, is a monogenetic volcano about 300 m high and approximately 0.1 km³ in volume (Fedotov & Markhinin 1983). Many oxidizing-type fumaroles, in which volcanic gas mixes with heated atmospheric air (Zelenski *et al.* 2011), are still active there. The Arsenatnaya fumarole was described by Pekov *et al.* (2018a).

Eleomelanite was recovered at a depth of 0.6–0.8 m from the surface. The temperature, measured using a chromel-alumel thermocouple at the time of collecting, was about 350 °C. This part of the Arsenatnaya fumarole is strongly enriched in alkali and copper sulfates. Eleomelanite is associated with euchlorine, fedotovite, wulffite, chalcocyanite, dolerophanite, dravertite, hermannjahnite, alumoklyuchevskite, klyuchevskite, piypite, cryptochalcite, cesiodymite, anglesite, langbeinite, calciolangbeinite, metathénardite,

FIG. 2. (a) Crude, equant crystals and (b) polygonal prismatic crystal of eleomelanite. SEM (SE) images.

belomarinaite, aphthitalite, krasheninnikovite, steklite, anhydrite, hematite, tenorite, pseudobrookite, sanidine, sylvite, halite, lammerite, lammerite- β , urusovite, and gold.

The new mineral occurs as interrupted, typically open-work crusts up to 6 mm across and up to 0.3 mm thick overgrowing bright green crystal crusts of euchlorine (Fig. 1). Eleomelanite aggregates usually consist of crude, equant, prismatic or tabular crystals or grains up to 0.3 mm in size (Fig. 2a). Rarely, euhedral polygonal crystals, prismatic (Fig. 2b) or tabular, are observed. A close association of the new mineral with tenorite is common (Fig. 1).

PHYSICAL PROPERTIES AND OPTICAL DATA

Macroscopically, eleomelanite is translucent and black. In very thin fragments it is dark green. The streak is dark green. The luster is strongly oleaginous on crystal faces (the surface looks oiled) and strongly vitreous on cleavage surfaces. The mineral is brittle. One direction of perfect cleavage is observed, presumably on (001) (this direction is assumed based

TABLE 1. CHEMICAL COMPOSITION (wt.%) OF ELEOMELANITE

Constituent	Mean	Range	Standard deviation	EMPA standard
K ₂ O	9.62	9.48–9.91	0.14	Microcline
Rb ₂ O	0.49	0.35-0.64	0.09	$Rb_2Nb_4O_{11}$
Cs ₂ O	0.24	0.00-0.48	0.23	$Cs_2Nb_4O_{11}$
CaO	1.23	0.96-1.52	0.18	Wollastonite
PbO	19.25	18.50-19.70	0.35	PbTiO ₃
CuO	35.28	34.88-35.78	0.33	Cu
SO3	34.78	34.42-35.49	0.31	ZnS
Total	100.89			

on the structure data), and the fracture is stepped. The Mohs hardness is ca. 3. Density was not measured because of the small size of solid individual crystals and the open-work character of aggregates. The density value calculated from the empirical formula is 3.790 g/cm³.

In plane-polarized transmitted light, eleomelanite is strongly pleochroic $Z \approx Y$ (dark green with brown hue, almost black in thicker grains) > X (green). It is optically biaxial (–), $\alpha = 1.646$ (3), $\beta = 1.715$ (6), $\gamma =$ 1.734 (6) (589 nm), $2V_{\text{meas.}} = 60$ (15)° (estimated from the curve of the conoscopic interference figures on sections perpendicular to the optical axes), $2V_{\text{calc.}} =$ 54° . Dispersion of the optical axes was not observed. In terms of orientation, XZ is coplanar to

FIG. 3. The IR spectra of (a) eleomelanite, (b) piypite, (c) wulffite, and (d) parawulffite from the Tolbachik volcano, Kamchatka, Russia. For wavenumbers of maxima of spectral bands see Table 3.

Mineral	Eleomelanite	Wulffite	Parawulffite	Piypite*	Klyuchevskite	Alumoklyuchevskite**
Formula	$(K_2Pb)Cu_4O_2(SO_4)_4$	K ₃ NaCu ₄ O ₂ (SO ₄) ₄	$K_5Na_3Cu_8O_4(SO_4)_8$	K ₈ Cu ₉ O ₄ (SO ₄) ₈ Cl ₂	$K_{3}Cu_{3}Fe^{3+}O_{2}(SO_{4})_{4}$	K ₃ Cu ₃ AlO ₂ (SO ₄) ₄
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Tetragonal	Monoclinic	Monoclinic or triclinic
Space group	P2 ₁ /n	Pn2 ₁ a	P2/c	4	5	12 or P1
a (Å)	9.399	14.281	13.904	13.60–13.67	18.667	18.772
<i>b</i> (Å)	4.891	4.948	4.977		4.94	4.967
<i>c</i> (Å)	18.229	24.113	23.586	4.94-4.98	18.405	18.468
β (°)	104.41		90.21		101.5	101.66
V (Å ³)	812	1704	1632	921–923	1663	1686
Z	2	4	2	+	4	4
Strongest reflections of	9.07 – 63	9.27 - 100	9.06 - 100	9.63 - 100	9.17 – 95	9.15 – 84
the powder XRD	7.38 – 44	7.16 - 22	7.00 – 26	6.79 - 40	9.03 - 100	9.04 - 100
pattern: d (Å) – I	3.699 – 78	3.125 - 16	5.903 – 12	4.305 - 20	7.20 – 35	7.20 – 52
	3.658 - 100	2.882 - 16	3.096 – 12	3.039 - 70	4.502 - 25	4.509 - 15
	3.173 – 40	2.780 - 33	2.736 – 33	3.006 - 30	3.762 - 55	3.781 – 37
	2.683 – 36	2.725 - 14	2.492 – 24	2.666 - 20	3.678 – 23	3.757 – 33
	2.576 – 51	2.472 - 20	2.321 – 26	1.924 – 20	3.409 – 28	2.786 – 21
Optical data						
α	1.646	1.582	1.585	ω 1.583–1.598	1.549	1.542
β	1.715	1.610	not determined		1.550	1.548
Å	1.734	1.715	1.717	ε 1.695–1.711	1.680	1.641
optical sign, 2 <i>V</i>	(−), 60°	(+), calc. 58 $^{\circ}$	(+), not determined	(+)	(+), calc. 11°	$(+)$, calc. 30°
D _{calc.} (g/cm ³)	3.79	3.19	3.32	3.0-3.22	2.98	2.95
Sources	This work	Pekov (20	<i>et al.</i> 14)	Vergasova <i>et al.</i> (1984); Clark <i>et al.</i> (1984); Effenberger & Zemann (1984)	Vergasova <i>et al.</i> (1989); Gorskaya <i>et al.</i> (1992)	Gorskaya <i>et al.</i> (1995); Krivovichev <i>et al.</i> (2009); Siidra <i>et al.</i> (2017)
* In some papers publi	shed in 1980s the sa	me mineral was des	cribed as "caratilite"	(Clark <i>et al.</i> 1984; Effenb	erger & Zemann 1984). T	his was because it w

was recognized by the International Mineralogical Association (Filatov & Vergasova 1989). ** The monoclinic unit-cell parameters from Krivovichev *et al.* (2009) are given.

TABLE 2. COMPARATIVE DATA FOR ELEOMELANITE AND RELATED MINERALS

Downloaded from http://pubs.geoscienceworld.org/canmin/article-pdf/58/5/625/5206347/i1499-1276-58-5-625.pdf

	Min	eral		
Eleomelanite	Piypite	Wulffite	Parawulffite	Assignment
1235sh 1202s 1145s 1108s 1080sh	1211s 1123s 1018s	1250sh 1123 1198 1153s 1118s	1212s 1202s 1149s 1116s 1060sh	$v_3(F_2)$ – antisymmetric stretching vibrations of SO ₄ ^{2–} anions
1025s 975sh	981s	1026s 989s 970sh	1036s 1025sh 1006s 981s	$v_1(A_1)$ – symmetric stretching vibrations of SO ₄ ^{2–} anions
662 615 601s 547	650 624 606s 567	671 645sh 630 612s	690 665 650sh 642 618s 572 550	$v_4(F_2)$ – bending vibrations of SO ₄ ^{2–} anions
508 500sh	543 497 480	535sh 511	503 490sh 450sh	Stretching vibrations of shorter bonds in Cu-centered polyhedra with [4+1] and [4+1+1] Cu ²⁺ coordination and the $v_2(E)$ bending mode of SO ₄ ²⁻ anions

TABLE 3. ABSORPTION BANDS AND ASSIGNMENTS IN THE IR SPECTRA OF ELEOMELANITE AND RELATED SULFATES (cm⁻¹; s – STRONG BAND, sh – SHOULDER)

the cleavage plane, such that if the cleavage plane is (001) then Y = c.

CHEMICAL DATA

Chemical data for eleomelanite were obtained using a Jeol 733 electron microprobe instrument operated in WDS mode with an accelerating voltage of 20 kV, a beam current of 20 nA, and a beam diameter of 3 μ m. The chemical composition (average of nine spot analyses) is given in Table 1. Contents of other elements with atomic numbers higher than that of carbon are below detection limits.

The empirical formula of the new mineral calculated on the basis of 18 O apfu is (K_{1.88}Pb_{0.79}Ca_{0.20} Rb_{0.05}Cs_{0.02})_{Σ 2.94}Cu_{4.07}S_{3.99}O₁₈. The simplified formula is (K₂Pb)Cu₄O₂(SO₄)₄ which requires K₂O 9.86, PbO 23.35, CuO 33.29, SO₃ 33.50, total 100 wt.%.

Eleomelanite hydrolyses (becomes dull and blue) after one hour and slowly dissolves in H_2O at room temperature.

Infrared Spectroscopy

In order to obtain infrared (IR) absorption spectra (Fig. 3), powdered samples of eleomelanite and related oxysulfate minerals were mixed with dried KBr, pelletized, and analyzed using an ALPHA FTIR spectrometer (Bruker Optics) with a resolution of 4 cm^{-1} . A total of 16 scans were collected for each spectrum. The IR spectrum of a pellet of pure KBr was used as a reference.

Infrared absorption bands and their assignments for eleomelanite and related minerals (see Table 2) are given in Table 3. Two nondegenerate bands, assigned to symmetric stretching vibrations of SO_4^{2-} anions, are observed in the IR spectrum of eleomelanite at 1025 and 975 cm⁻¹, corresponding to two nonequivalent distorted tetrahedra SO_4 . The infrared absorption bands of eleomelanite are broader and more poorly resolved than those in the IR spectra of related sulfates, which may be due to the mixed occupancy of the A(1) site containing cations with strongly different atomic numbers, K and Pb (see Discussion). Characteristic bands of BO_3^{3-} , CO_3^{2-} , NO_3^{-} , and hydrogen-bearing groups are absent in the IR spectrum of eleomelanite.

X-RAY CRYSTALLOGRAPHY AND CRYSTAL STRUCTURE DETERMINATION

Powder X-ray diffraction (XRD) data for eleomelanite (Table 4) were collected with a Rigaku R-AXIS Rapid II single-crystal diffractometer equipped with a cylindrical image plate detector (Debye-Scherrer geometry, d = 127.4 mm, CoK α radiation). Parameters of the monoclinic unit cell calculated from the powder

TABLE 4. POWDER X-RAY DIFFRACTION DATA (d IN Å) OF ELEOMELANITE

			,	
l _{obs}	$d_{\rm obs}$	I_{calc}^{*}	$d_{\rm calc}^{**}$	h k l
63	9.07	86	9.061	101
14	8.82	18	8.827	002
44	7.38	59	7.378	101
26	5.613	32	5.621	103
8	4.556	1, 14	4.551, 4.531	200, 202
5	4.405	4	4.414	004
33	4.304	42, 1	4.309, 4.304	110, 111
11	4.065	5, 6	4.077, 4.065	111, 112
3	3.800	1	3.762	013
78	3.699	89, 1	3.704, 3.689	112, 202
100	3.658	100	3.656	204
11	3.605	9	3.609	105
7	3.278	12, 2	3.282, 3.277	114, 014
40	3.173	55, 1	3.171, 3.157	211, 213
22	3.133	17	3.123	301
2	3.041	1	3.046	105
4	3.002	1	3.020	303
9	2.942	12	2.943	006
35	2.915	51, 4	2.916, 2.904	114, 115
35	2.838	42	2.836	204
32	2.695	38	2.697	213
36	2.683	50	2.679	215 205
14	2.654	9	2.650	305
34	2.635	42	2.629	312
51	2.570	32, 69 7	2.578, 2.575	310, 110
3	2.520	1	2.521	010
2	2.475	I 52 7		000 016
51	2.444	55,7	2.440, 2.437	101
1	2.000	2 3	2.302	107 400
18	2.204	5316	2.203, 2.270	307 206 215
3	2.200	2, 3, 10	2.252, 2.251, 2.223	208
14	2 184	20.4	2 181 2 169	200 316 221
3	2 156	4 1	2 154 2 152	220 222
4	2 139	5	2 139	024
7	2 107	2	2 105	<u>4</u> 11
4	2.088	9.6	2.101. 2.082	<u>4</u> 13, 402
6	2.068	3	2.066	<u>4</u> 06
17	2.049	26	2.046	314
12	2.033	4, 13, 2	2.038, 2.033, 2.030	222, 224, 317
12	2.026	6, 9	2.024, 2.024	Ī25, Ī09
5	1.994	7, 6	1.998, 1.987	411, 415
2	1.949	3, 2	1.950, 1.944	223, <u>2</u> 25
6	1.927	9, 3	1.925, 1.924	<u>3</u> 21, <u>3</u> 22
3	1.906	3, 2	1.907, 1.904	125, 320
6	1.878	4, 6, 4	1.885, 1.881, 1.877	<u>3</u> 18, 026, 118
8	1.866	2, 8, 2	1.862, 1.859, 1.857	321, 501, 324
8	1.849	7, 6, 4	1.852, 1.845, 1.844	224, 226, 404
9	1.826	5, 11	1.828, 1.826	4 08, 109
10	1.821	1, 4	1.823, 1.821	413, 019
3	1.799	10	1.797	<u>3</u> 25
6	1.765	6, 5	1.766, 1.763	0.0.10, 316
7	1.698	13	1.694	422
2	1.667	5, 1	1.671, 1.667	127, 128

l _{calc} *	d_{calc}^{**}	h k l
4, 2	1.662, 1.661	<u>4</u> 24, 0.1.10
1, 1, 5	1.653, 1.653, 1.648	516, 1.0.11, 226
1, 4	1.629, 1.626	415, 3.1.10
1, 2, 15	1.616, 1.615, 1.607	406, 419, 512
10, 1	1.592, 1.591	<u>3</u> .0.11, 1 32
6, 3	1.570, 1.567	1.1.10, 132
4, 3, 9	1.562, 1.562, 1.559	2.1.11, 602, 129
1	1.534	518
2, 2	1.525, 1.525	0.1.11, 318
4	1.518	231
9, 1, 3	1.487, 1.487, 1.486	134, 329, 135
10, 1	1.480, 1.480	<u>5</u> 21, 514
5, 11	1.464, 1.463	4 28, 129
8, 5	1.456, 1.455	525, 233
2, 6	1.445, 1.445	ī.1.12, <u>3</u> 32
1, 4, 15, 2	1.437, 1.436, 1.436, 1.433	135, 330, 136, 4.1.11
8, 1	1.418, 1.417	408, 327

TABLE 4. CONTINUED

* For the calculated pattern, only reflections with intensities ≥ 1 are given; ** for the unitcell parameters calculated from single-crystal data; the strongest reflections are marked with bold type.

1.395, 1.387

1.342, 1.340

1.294, 1.293

1.321

1.369, 1.369, 1.366

1.336, 1.335, 1.334

1.311, 1.308, 1.308

data are a = 9.396 (4), b = 4.895 (1), c = 18.219 (7) Å, $\beta = 104.36$ (3)°, and V = 811.7 (7) Å³.

dobs

1.660

1.650

1.627

1.612

1.592

1.568

1.562 1.538

1.526

1.520

1.485

1.481

1.464

1.455

1.447

1.436

1.418

1.391

1.368

1.341

1.334

1.322

1.309

1.294

2.3

1, 1

2

1, 1, 2

4, 3, 5

1, 1, 1

1.1

*I*_{obs} 2

З

2

10

6

8

6

1 3

2

8

7

6

3

2

7

6

2

1

4

4

2

1

4

Single-crystal XRD studies were carried out using an Xcalibur S CCD diffractometer. The structure was solved by direct methods and refined with the use of the SHELX-97 software package (Sheldrick 2008) to $R_1 = 0.0478$ on the basis of 2898 independent reflections with $I > 2\sigma(I)$. Table 5 gives crystal data, data collection information, and structure refinement details; Table 6 reports atom coordinates and displacement parameters; Table 7 gives selected interatomic distances; and Table 8 provides bond-valence calculations.

DISCUSSION

The crystal structure of eleomelanite (Fig. 4) is unique. It is based on heteropolyhedral Cu–S–O chains running along [010] and built of Cu-centered polyhedra with [4+1+1] Cu²⁺ coordination and SO₄ tetrahedra. Two crystallographically independent Cu atoms are involved in the construction of the chains and each of them form four short Cu–O bonds and two elongate Cu–O bonds (Table 7, Fig. 5a). In each [4+1+1] Cucentered polyhedron, two O atoms forming short Cu-O bonds occur at O(4) and are connected only with Cu cations while two others belong to two SO₄ groups of the same chain. Approximately flat Cu-centered squares involving short Cu-O bonds form two pairs sharing edges: Cu(1)-Cu(1) and Cu(2)-Cu(2). Adjacent pairs have common vertices and are located almost perpendicular to each other. The elongate Cu-O bonds complete coordination of the Cu cations to form octahedra that are significantly distorted due to the Jahn-Teller effect (Fig. 5a). Adjacent chains are connected via the polyhedra centered by the large A cations. The eight-coordinated A(1) site is occupied by K, Pb^{2+} , and Ca in the ratios 0.50:0.35:0.15. Thus, K and bivalent cations are disordered. The 10-coordinated A(2) site is also K-dominant with Rb and Cs occurring as minor components, K:Rb:Cs = 0.935:0.050:0.015 (Table 6). Both A(1)- and A(2)centered polyhedra form chains running parallel to b. They are different in configuration: the $A(1)O_8$ polyhedra share vertices to form double chains whereas the $A(2)O_{10}$ polyhedra share edges and form straight single chains (Figs. 5b, c).

1.0.13, 5.0.11

703, 4.2.10

707, 2.2.10

334

1.2.11, 037, 235

604, 613, 3.2.11

038, 2.0.12, 431

TABLE 5. CRYSTAL DATA, DATA COLLECTION INFORMATION, AND STRUCTURE REFINEMENT DETAILS FOR ELEOMELANITE

Formula	(K _{1,00} Pb _{0,70} Ca _{0,30})(K _{0,935} Rb _{0,05} Cs _{0,015})Cu ₄ O ₂ (SO ₄) ₄
Formula weight	909.38
Temperature (K)	293(2)
Radiation and wavelength (Å)	Μο <i>Κ</i> α; 0.71073
Crystal system, space group; Z	Monoclinic, <i>P</i> 2 ₁ / <i>n</i> ; 2
Unit cell dimensions (Å/°)	a = 9.3986(3)
	$b = 4.89110(10) \ \beta = 104.409(3)$
	c = 18.2293(5)
V (Å ³)	811.63(4)
Absorption coefficient μ (mm ⁻¹)	13.780
F ₀₀₀	854
Crystal size (mm)	0.06 imes 0.11 imes 0.24
Diffractometer	Xcalibur S CCD
$\boldsymbol{\theta}$ range for data collection (°)	3.62 – 34.85
Index ranges	–14 \leq h \leq 14 , –7 \leq k \leq 7, –28 \leq l \leq 29
Reflections collected	20947
Independent reflections	3389 ($R_{\rm int} = 0.0406$)
Independent reflections with $I > 2\sigma(I)$	2898
Data reduction	CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (Agilent 2014)
Absorption correction	Gaussian [Numerical absorption correction based on
	Gaussian integration over a multifaceted crystal model].
	Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Structure solution	direct methods
Refinement method	full-matrix least-squares on F ²
Number of refined parameters	134
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0478, w $R2 = 0.1187$
R indices (all data)	R1 = 0.0571, w $R2 = 0.1245$
GoF	1.097
Largest diff. peak and hole, e/Å ³	3.62 and -1.30

TABLE 6. COORDINATES AND EQUIVALENT DISPLACEMENT PARAMETERS (U_{eq} , in Å²) OF ATOMS, SITE MULTIPLICITIES (Q), AND SITE OCCUPANCY FACTORS (s.o.f.) FOR ELEOMELANITE

Site	X	у	Ζ	$U_{ m eq}$	Q	s.o.f.*
A(1)	0.02219(4)	0.02902(8)	0.23756(2)	0.02123(11)	4	K _{0.50} Pb _{0.35} Ca _{0.15}
A(2)	0.5	0.0	0.5	0.0419(4)	2	K _{0.935} Rb _{0.050} Cs _{0.015}
Cu(1)	0.85553(6)	0.47283(10)	0.44822(3)	0.01612(13)	4	1
Cu(2)	0.08276(7)	0.02650(10)	0.44327(4)	0.01942(14)	4	1
S(1)	0.24255(13)	0.5278(2)	0.37924(7)	0.0202(2)	4	1
S(2)	0.72731(13)	-0.0094(2)	0.35497(7)	0.0201(2)	4	1
O(1)	0.7184(4)	0.1509(7)	0.4230(2)	0.0240(7)	4	1
O(2)	0.8681(5)	0.0602(10)	0.3380(3)	0.0345(9)	4	1
O(3)	0.8999(6)	0.5501(10)	0.2076(3)	0.0451(12)	4	1
O(4)	-0.0056(3)	0.7495(6)	0.48913(17)	0.0161(6)	4	1
O(5)	0.7807(4)	0.1948(7)	0.1273(2)	0.0275(8)	4	1
O(6)	0.4015(7)	0.5831(17)	0.3988(4)	0.073(2)	4	1
O(7)	0.2060(8)	0.4098(15)	0.3035(3)	0.0652(17)	4	1
O(8)	0.7843(7)	0.6558(11)	0.5627(3)	0.0562(15)	4	1
O(9)	0.1676(7)	0.7943(10)	0.3769(3)	0.0518(15)	4	1

* Occupancy factors for the A(1) and A(2) sites were obtained on the basis of refined numbers of electrons (e_{ref}), analysis of interatomic distances (Table 5), and bond valence calculations (Table 6), also taking into account electron-microprobe data.

-					
A(1)	-O(3)	2.607(5)	Cu(2)	-O(4)	1.889(3)
	-O(2)	2.607(4)		-O(4)	1.921(3)
	-O(7)	2.620(7)		-O(9)	1.966(4)
	-O(5)	2.752(3)		-O(8)	2.014(5)
	-O(6)	2.765(7)		-O(2)	2.419(5)
	-O(3)	2.793(5)		-O(1)	2.815(4)
	-O(9)	2.813(5)			
	-O(7)	2.895(7)	S(1)	-O(7)	1.456(6)
				-O(8)	1.457(5)
A(2)	-O(6)	2.752(7) × 2		-O(6)	1.472(6)
	-O(1)	2.858(4) × 2		-O(9)	1.477(5)
	-O(8)	3.124(6) × 2			
	-O(6)	3.398(8) × 2	S(2)	-O(3)	1.461(4)
	-O(9)	3.509(7) × 2		-O(2)	1.472(5)
				-O(1)	1.487(4)
Cu(1)	-O(4)	1.899(3)		-O(5)	1.488(4)
	-O(4)	1.917(3)			
	-O(5)	1.959(3)			
	-O(1)	2.014(3)			
	-O(8)	2.510(6)			
	-O(2)	2.870(5)			

(Krivovichev et al. 2009), which are isostructural to

one another. The main structural unit of eleomelanite,

the heteropolyhedral Cu-S-O chain, is very similar to

those found in these sulfates and in wulffite, $K_3NaCu_4O_2(SO_4)_4$; parawulffite, $K_5Na_3Cu_8O_4(SO_4)_8$

(Pekov *et al.* 2014); and piypite, $K_8Cu_9O_4(SO_4)_8Cl_2 =$

A(1)

0.25

0.25

0.16

0.18

0.17

0.24

0.12

0.15

1.52

O(1)

O(2)

O(3)

O(4)

O(5)

O(6)

O(7)

O(8)

O(9)

Σ

Downloaded fr

A(2)

0.13 ×2↓

0.17 ^{×2↓}

0.03 ^{×2↓}

0.06 ×2↓

0.02 ×21

0.82

FIG. 4. The crystal structure of eleomelanite in the **ac** projection. The unit cell is outlined.

 $\begin{array}{c} (G_{2})^{-2.161}O(6)^{-$

S(1)

1.50

1.56

1.56

1.48

6.10

between eleomelanite, piypite, wulffite, and parawulffite result in significant differences in the unitcell dimensions, powder X-ray diffraction patterns, IR spectra, and optical characteristics (Tables 2 and 3). However, the unit-cell parameters of klyuchevskite and alumoklyuchevskite are comparable with the unitcell parameters of eleomelanite (Table 2).

S(2)

1.45

1.50

1.54

1.44

5.93

Σ

2.02

1.92

1.95

2.16

2.08

1.87

1.92

2.12

2.11

* Parameters are taken from Gagné & Hawthorne (2015).	
om http://pubs.geoscienceworld.org/canmin/article-pdf/58/5/625/5206347/i1499-1276-58-5-625.pdf	

TABLE 8. BOND-VALENCE CALCULATIONS* FOR ELEOMELANITE

Cu(2)

0.04

0.13

0.57

0.52

0.40

0.46

2.12

Cu(1)

0.40

0.04

0.55

0.52

0.46

0.10

2.07

FIG. 5. Fragments of the crystal structure of eleomelanite. (a) A heteropolyhedral Cu–S–O chain, (b) a chain composed of A(1)centered polyhedra, and (c) a chain built of A(2)-centered polyhedra.

FIG. 6. The heteropolyhedral Cu–S–O chains in (a) eleomelanite, (b) piypite (drawn using data from Effenberger & Zemann 1984), (c) wulffite, (d) parawulffite (both drawn using data from Pekov *et al.* 2014), and (e) the heteropolyhedral Cu–(Fe,Al)–S–O chain in klyuchevskite/alumoklyuchevskite [drawn using data from Gorskaya *et al.* (1992) for klyuchevskite]. Copper-centered polyhedra are blue, SO₄ tetrahedra are yellow.

The crystal structure of eleomelanite could also be described in terms of anion-centered tetrahedra (Krivovichev *et al.* 2013). The O(4) atoms bond only with Cu to form $[O_2Cu_4]^{\infty}$ chains composed of edge-

sharing OCu₄ tetrahedra extending parallel to [010] (Fig. 7). Analogous chains were reported in piypite (Effenberger & Zemann 1984); its synthetic sodium analogue, Na₄Cu₄O₂(SO₄)₂·MeCl (Me = Na, Cu, \Box)

FIG. 7. A $[O_2Cu_4]^{\infty}$ chain composed of oxocentered OCu_4 tetrahedra in the crystal structure of eleomelanite.

(Kahlenberg *et al.* 2000); coparsite, $Cu_4O_2(AsO_4)Cl$ (Starova *et al.* 1998); and wulffite and parawulffite (Pekov *et al.* 2014). In klyuchevskite (Gorskaya *et al.* 1992) and alumoklyuchevskite (Krivovichev *et al.* 2009) topologically identical chains are composed of tetrahedral [OFe³⁺Cu₃] and [OAlCu₃], respectively.

Eleomelanite is the only one of 15 naturally occurring H-free copper oxysulfates (see Introduction) in which a bivalent cation (Pb) plays an important role among large cations. In the other 14 minerals (see Introduction), only univalent cations of alkaline metals (K, Na, Cs) are significant in the large-cationic part of the structure.

ACKNOWLEDGMENTS

We thank referees Ulf Hålenius and Barbara Nash and Associate Editor Aaron Lussier for their valuable comments. This work was supported by the Russian Science Foundation, grant no. 19-17-00050. A part of this work (IR spectroscopic study) was carried out in accordance with the state task, state registration No. AAAA-A19-119092390076-7. Technical support by the SPbSU X-Ray Diffraction Resource Center for the powder XRD study is acknowledged.

References

- AGILENT TECHNOLOGIES (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Limited, Oxford, England.
- CLARK, A.M., FEJER, E.E., & COUPER, A.G. (1984) Caratilite, a new sulphate-chloride of copper and potassium, from the lavas of 1869 Vesuvius eruption. *Mineralogical Magazine* 48, 537–539.
- EFFENBERGER, H. & ZEMANN, J. (1984) The crystal structure of caratiite. *Mineralogical Magazine* 48, 541–546.
- FEDOTOV, S.A. & MARKHININ, Y.K., Eds. (1983) The Great Tolbachik Fissure Eruption. Cambridge University Press, New York, United States.
- FILATOV, S.K. & VERGASOVA, L.P. (1989) Discrediting of caratiite and priority for piypite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 118(3), 88–90 (in Russian).
- GAGNÉ, O.C. & HAWTHORNE, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica B71, 562–578.
- GORSKAYA, M.G., FILATOV, S.K., ROZHDESTVENSKAYA, I.V., & VERGASOVA, L.P. (1992) The crystal structure of klyuchevskite, K₃Cu₃(Fe,Al)O₂(SO₄)₄, a new mineral from Kamchatka volcanic sublimates. *Mineralogical Magazine* **56**, 411–416.
- GORSKAYA, M.G., VERGASOVA, L.P., FILATOV, S.K., ROLICH, D.V., & ANANIEV, V.V. (1995) Alumoklyuchevskite, K₃Cu₃AlO₂(SO₄)₄, a new oxysulfate of K, Cu and Al from volcanic exhalations, Kamchatka, Russia. *Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva* 124(1), 95–100 (in Russian).
- KAHLENBERG, V., PIOTROWSKI, A., & GIESTER, G. (2000) Crystal structure of $Na_4[Cu_4O_2(SO_4)_4]$ ·MeCl (Me: Na, Cu, \Box) – the synthetic Na-analogue of piypite (caratiite). *Mineralogical Magazine* **64**, 1099–1108.
- KRIVOVICHEV, S.V., FILATOV, S.K., & CHEREPANSKY, P.N. (2009) The crystal structure of alumoklyuchevskite, K₃Cu₃AlO₂(SO₄)₄. *Geology of Ore Deposits* **51**, 656–662.
- KRIVOVICHEV, S.V., MENTRE, O., SHIDRA, O.I., COLMONT, M., & FILATOV, S.K. (2013) Anion-centered tetrahedra in inorganic compounds. *Chemical Reviews* 113, 6459– 6535.
- PEKOV, I.V., ZUBKOVA, N.V., YAPASKURT, V.O., BELAKOVSKIY, D.I., CHUKANOV, N.V., LYKOVA, I.S., SAVELIEV, D.P., SIDOROV, E.G., & PUSHCHAROVSKY, D.YU. (2014) Wulffite, K₃NaCu₄O₂(SO₄)₄, and parawulffite, K₅Na₃Cu₈O₄(SO₄)₈, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. *Canadian Mineralogist* **52**, 699–716.

- PEKOV, I.V., KOSHLYAKOVA, N.N., ZUBKOVA, N.V., LYKOVA, I.S., BRITVIN, S.N., YAPASKURT, V.O., AGAKHANOV, A.A., SHCHIPALKINA, N.V., TURCHKOVA, A.G., & SIDOROV, E.G. (2018a) Fumarolic arsenates – a special type of arsenic mineralization. *European Journal of Mineralogy* **30**, 305– 322.
- PEKOV, I.V., ZUBKOVA, N.V., AGAKHANOV, A.A., PUSHCHAROVSKY, D.YU., YAPASKURT, V.O., BELAKOVSKIY, D.I., VIGASINA, M.F., SIDOROV, E.G., & BRITVIN, S.N. (2018b) Cryptochalcite K₂Cu₅O(SO₄)₅ and cesiodymite CsKCu₅O(SO₄)₅ – two new isotypic minerals and the K– Cs isomorphism in this solid-solution series. *European Journal of Mineralogy* **30**, 593–607.
- PEKOV, I.V., ZUBKOVA, N.V., & PUSHCHAROVSKY, D.YU. (2018c) Copper minerals from volcanic exhalations – a unique family of natural compounds: crystal chemical review. Acta Crystallographica B74, 502–518.
- PEKOV, I.V., BRITVIN, S.N., AGAKHANOV, A.A., VIGASINA, M.F., & SIDOROV, E.G. (2019) Elasmochloite, Na₃Cu₆BiO₄ (SO₄)₅, a new fumarolic mineral from the Tolbachik volcano, Kamchatka, Russia. *European Journal of Mineralogy* **31**, 1025–1032.
- PERTLIK, F. & ZEMANN, J. (1988) The crystal structure of nabokoite, Cu₇TeO₄(SO₄)₅·KCI: The first example of a Te(IV)O₄ pyramid with exactly tetragonal symmetry. *Mineralogy and Petrology* **38**, 291–298.
- POPOVA, V.I., POPOV, V.A., RUDASHEVSKIY, N.S., GLAVATSKIKH, S.F., POLYAKOV, V.O., & BUSHMAKIN, A.F. (1987) Nabokoite Cu₇TeO₄(SO₄)₅·KCl and atlasovite Cu₆ Fe³⁺Bi³⁺O₄(SO₄)₅·KCl. New minerals of volcanic exhalations. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 116(3), 358–367 (in Russian).
- SCORDARI, F. & STASI, F. (1990) The crystal structure of euchlorin, NaKCu₃O(SO₄)₃. Neues Jahrburh für Mineralogie - Monatshefte, 241–253.
- SHELDRICK, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112–122.
- SIIDRA, O.I., NAZARCHUK, E.V., ZAITSEV, A.N., LUKINA, E.A., AVDONTSEVA, E.Y., VERGASOVA, L.P., VLASENKO, N.S., FILATOV, S.K., TURNER, R., & KARPOV, G.A. (2017) Copper oxosulphates from fumaroles of Tolbachik volcano: Puninite, Na₂Cu₃O(SO₄)₃ – a new mineral species and structure refinements of kamchatkite and

alumoklyuchevskite. *European Journal of Mineralogy* 28, 499–510.

- STAROVA, G.L., FILATOV, S.K., FUNDAMENSKY, V.S., & VERGASOVA, L.P. (1991) The crystal structure of fedotovite, K₂Cu₃O(SO₄)₃. *Mineralogical Magazine* 55, 613– 616.
- STAROVA, G.L., KRIVOVICHEV, S.V., & FILATOV, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. The crystal structure of Cu₄O₂[(As,V)O₄]Cl. Zeitschrift für Kristallographie 213, 650–653.
- VARAKSINA, T.V., FUNDAMENSKY, V.S., FILATOV, S.K., & VERGASOVA, L.P. (1990) The crystal structure of kamchatkite, a new naturally occurring oxychloride sulphate of potassium and copper. *Mineralogical Magazine* 54, 613–616.
- VERGASOVA, L.P., FILATOV, S.K., SERAFIMOVA, E.K., & STAROVA, G.L. (1984) Piypite, K₂Cu₂O(SO₄)₂, a new mineral of volcanic exhalations. *Doklady Akademii Nauk* SSSR 275, 714–717 (in Russian).
- VERGASOVA, L.P., FILATOV, S.K., SERAFIMOVA, E.K., & STAROVA, G.L. (1988a) Fedotovite, K₂Cu₃O(SO₄)₃, a new mineral of volcanic exhalations. *Doklady Akademii Nauk SSSR* 299, 961–964 (in Russian).
- VERGASOVA, L.P., FILATOV, S.K., SERAFIMOVA, E.K., & VARAKSINA, T.V. (1988b) Kamchatkite, KCu₃OCl(SO₄)₂, a new mineral of volcanic sublimates. *Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva* 117, 459–461 (in Russian).
- VERGASOVA, L.P., FILATOV, S.K., GORSKAYA, M.G., ANANIEV, V.V., & SHAROV, A.S. (1989) Klyuchevskite, K₃Cu₃ (Fe,Al)O₂(SO₄)₄, a new mineral from volcanic exhalations. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 118(1), 70–73 (in Russian).
- ZELENSKI, M.E., ZUBKOVA, N.V., PEKOV, I.V., BOLDYREVA, M.M., PUSHCHAROVSKY, D.YU., & NEKRASOV, A.N. (2011) Pseudolyonsite, Cu₃(VO₄)₂, a new mineral species from the Tolbachik volcano, Kamchatka Peninsula, Russia. *European Journal of Mineralogy* 23, 475–481.
- Received April 8, 2020. Revised manuscript accepted June 9, 2020.