Доклады Академии наук СССР 1977. Том 235, № 5

КРИСТАЛЛОГРАФИЯ

Академик Н. В. БЕЛОВ, Г. С. ГАВРИЛОВА, Л. П. СОЛОВЬЕВА, А. Д. ХАЛИЛОВ

УТОЧНЕННАЯ СТРУКТУРА ЛОМОНОСОВИТА

Интерес к структуре ломоносовита обусловлен тем, что в природных условиях этот минерал энергично выветривается, теряя натрий-фосфатную группу Na₃PO₄, и через ряд промежуточных этапов переходит в конечный продукт — мурманит:

$Na_2Ti_2Si_2O_9 \cdot Na_3PO_4 + nH_2O = Na_2Ti_2Si_2O_9 \cdot nH_2O + Na_3PO_4.$ ломоносовит мурманит

Согласно И. Д. Борнеман-Старынкевич (⁴), натрий-фосфатная составляющая легко вымывается как при нагревании, так и на холоду и, следовательно, имеет слабую химическую связь с силикатной частью структуры. Окончательное решение о характере связи и механизме перехода ломоносовита в мурманит может быть вынесено только на основании знания структуры.

Впервые попытка дать структурное решение ломоносовита путем кристаллохимического сравнения его с другими известными структурами была в 1962 г. предпринята Н. В. Беловым и Н. И. Органовой (²). В 1963— 1965 гг. модель структуры, построенная с учетом кристаллохимических аналогий при использовании двумерного экспериментального материала (зоны h0l и 0kl), предложена А. Д. Халиловым и Х. С. Мамедовым (³⁻⁵). Однако структура с самостоятельной позицией марганца при содержании его 0,2 ат. % и трехвалентным титаном, не обнаруженным в минерале, вызвала возражения со стороны химиков; данные и.-к. спектроскопии не подтвердили и наличия диортогрупп [P₂O₇].

Полная структурная расшифровка ломоносовита выполнена Р. К. Расцветаевой, В. И. Симоновым, Н. В. Беловым (⁶) в 1971 г. без уточнения по трехмерным данным из-за отсутствия соответствующего массива интенсивностей. В предложенной структуре остается непонятным, почему в тройке Ті—О—Р атом О, который входит в натрий-фосфатную группу, удален как от Р в его тетраэдре (одно расстояние Р—О=1,63 Å при трех остальных 1,50—1,53 Å), так и от Ті, хотя более вероятно удлинение связи его только с Ті.

На основе трехмерного массива интенсивностей нами была повторена структурная расшифровка ломоносовита. Кристалл размером $0,2\times0,5\times$ $\times0,3$ мм³ отснят на Мо-излучении (1655 ненулевых рефлексов на слоевых 0kl - 3kl и h0l), с интенсивностями, измеренными по маркам почернения с шагом 2¹⁴. Параметры решетки, измеренные по рентгенограммам вращения и кфорограммам и уточненные по порошкограмме, близки к приведенным в (²): a=5,49; b=7,11; c=14,50 Å; $\alpha=101^{\circ}$; $\beta=96^{\circ}$; $\gamma=90^{\circ}$; в ячейке содержится две единицы $Na_5Ti_2Si_2O_9 \cdot Na_3PO_4$. Из двух возможных федоровских групп P1 и $P\overline{1}$ в результате структурной расшифровки предпочтение отдано голоэдрической группе $P\overline{1}$.

По найденным из трехмерной функции Патерсона векторам Ti—Ti методом минимализации выявлены положения Si, P и части Na. Недостающие атомы натрия и кислорода фиксированы из последовательных приближений фурье-синтеза. Уточненные методом наименьших квадратов координатные и изотропные температурные параметры со стандартными 1064 отклонениями приведены в табл. 1 (заключительный R-фактор по всему массиву составляет 14%) *. При уточнении использовалась весовая схема по Крукшенку (⁸). Основные межатомные расстояния собраны в табл. 2 (см. рис. 1).

В структуре четыре атома Ті занимают два двухкратных положения; по результатам же химического анализа их только три (⁹); недостающая

Рис. 1. Стереодиаграмма анион-катионных связей в ломоносовите

Рис. 2. Проекции структуры ломоносовита на плоскость xz (A) и yz (B). Точечной штриховкой обозначены Na-полиэдры, клетчатой — P-тетраэдры. Атомы Na в межпакетном пространстве показаны кружками

единица заполняется A=(Zr, Nb, Ta, Fe, Mg, Mn). Попытка понизить симметрию до P1 с самостоятельной позицией A не привела к успеху. Добавление A поочередно к Ti₁ и Ti₂ также не привело к улучшению R- и B-фактора. Расшифровка структуры подтвердила приводимую в (⁶) структурную формулу ломоносовита Na₅Ti₂[Si₂O₇][PO₄]O₂.

^{*} Все расчеты выполнены на ЭВМ «Минск-32» (7).

Таблица 1

1				물건의 신성과			
Атомы	$x \pm \sigma_x$	x *	$y\pm\sigma_y$	<i>y</i> *	$z \pm \sigma_z$	z *	$B \pm \sigma_B$
${f Ti_1} {Ti_2}$	0,1658(9) 0,7698(9)	0,053 0,219	0,9271(4) 0,3865(5)	0,923 0,388	0,2178(2) 0,0076(2)	0,216 0,007	0,06(5) 0,43(6)
Si_1 Si_2 P	0,6671(15) 0,6487(15) 0,1801(15)	$0,508 \\ 0,555 \\ 0.256$	$0,2031(8) \\ 0,6387(8) \\ 0.2942(8)$	0,200 0,638 0.223	0,1764(4) 0,1985(4) 0,4327(4)	$0,179 \\ 0,198 \\ 0,433$	0,63(10) 0,56(9) 0.78(10)
Na1 Na2	0,169(2) 0,757(2)	$0,054 \\ 0,231 \\ 0,682$	0,418(1) 0,882(1) 0,072(1)	0,416 0,880	0,2349(6) 0,0037(7)	0,227 0,008	1,65(17) 2,11(19)
Na3 Na4 Na5	0,082(2) 0,677(2) 0,239(2)	0,085 0,722 0,184	0,973(1) 0,459(1) 0,738(1)	0,975 0,460 0,738	0,397(0) 0,3975(7) 0,4148(7)	0,398 0,415	1,91(19) 1,76(18)
O_1 O_2 O_3	0,671(3) 0,642(4) 0,925(4)	$0,538 \\ 0,425 \\ 0,275$	0,430(2) 0,197(2) 0,120(2)	$0,425 \\ 0,200 \\ 0,1\bar{2}5$	0,232(1) 0,066(1) 0,213(1)	0,227 0,067 0,208	0,97(26) 1,42(29) 1,92(33)
$O_4 O_5$	0,432(4) 0,598(4) 0,004(3)	0,763 0,500	0,103(2) 0,609(2) 0,753(2)	0,108 0,612 0,752	0,209(1) 0,084(1) 0,247(1)	0,208	2,03 (32) 1,11 (26)
O_6 O_7 O_8	0,304(3) 0,413(4) 0,132(4)	0,825 0,956	0,734(2) 0,831(2)	0,737 0,834	0,247(1) 0,250(1) 0,091(1)	0,242	1,22(29) 1,38(31)
O_9 O_{10}	0,235(4) 0,092(4) 0,901(4)	0,146 0,977 0,538	0,034(2) 0,426(2) 0,225(2)	$0,022 \\ 0,429 \\ 0,221$	0,368(1) 0,071(1) 0,443(1)	0,365 0,072 0,442	1,32(31) 1,13(28) 1,91(32)
$ \begin{array}{c} 0_{12} \\ 0_{13} \end{array} $	0,250(4) 0,326(4)	$0,138 \\ 0,200$	$0,4_{0}0(2)$ $0,2_{2}8(2)$	0,396 0,227	0,391(1) 0,530(1)	0,395 0,529	1,65 (30) 1,42 (29)

Координаты базисных атомов и тепловые поправки в структуре ломоносовита

Примечания. 1) В скобках приводятся стандартные отклонения в единицах последнего знака. 2) x^* , y^* , z^* — координаты атомов, взятые из (⁶). Ячейка: a=5,44; b=7,16; c=14.83 Å; $a=99^\circ$, $\beta=106^\circ$, $\gamma=90^\circ$.

На рис. 2 показана проекция структуры на плоскость xz и yz соответственно. При внешнем сходстве мотива с (⁶), существенно различаются координаты x почти у всех атомов. В (⁶) несколько другая установка ячейки: вместо угла $\beta=96^{\circ}$ взят угол 106° , и, следовательно, должны наблюдаться закономерные различия в координатах x и z. На самом деле имеется полное совпадение координат y и z с (⁶) без соответствия в координатах x. Для сравнения координаты атомов из (⁶) также приведены в табл. 1. Если не принимать во внимание различия в координатах x, которые смещают отдельные полиэдры по этой оси, то оба структурных варианта сходны. Параллельные грани (001) стенки составлены из плотноупакованных Na-, Ti-октаэдров. Эти подобные «сейдозеритовым» стенки с двух сторон бронированы лентами, состоящими из Ti-октаэдров и Na-восьмивершинников. Ленты соединяются между собой диортогруппами [Si₂O₇], образуя «кольчугу». Na, Ti-стенки совместно с бронирующими их «кольчугами» образуют основной пакет структуры.

В межпакетном пространстве располагаются Р-тетраэдры и Na₃-, Na₄-, Na₅-полиэдры.

Легкий вынос натрий-фосфатной группы Na_3PO_4 , очевидно, есть результат слабости ее связи с основным пакетом структуры, что хорошо видно из приводимых межатомных расстояний на рис. 1. Атом Ti₄ сильно смещен из центра своего октаэдра: расстояние до O₉ 2,16 Å, а до диаметрально противоположного (O₈) 1,82; в то время как Р-тетраэдр практически изометричен (расстояния Р—О лежат в узких пределах 1,54—1,55 Å). Как и следовало ожидать, в тройке Ti₄—O₉—Р атом кислорода, входящий в натрий-фосфатную группу, удален только от Ti. Отчетливо выступает удаление катионов Na₃, Na₄ и Na₅ от атомов О основного пакета структуры.

1066

Таблица 2

	Si-tet;	раэдры			
Si ₁ -O ₁ 1,66(2) O ₂ 1,58(2) O ₃ 1,61(3) O ₄ 1,63(3) Среднее Si ₁ -O 1,62	$\begin{array}{cccccc} O_{4}-O_{2} & 2,64 & (2) \\ O_{3} & 2,59 & (3) \\ O_{4} & 2,62 & (3) \\ O_{2}-O_{3} & 2,65 & (3) \\ O_{4} & 2,66 & (3) \\ O_{3}-O_{4} & 2,70 & (4) \end{array}$	$\begin{array}{cccc} {\rm Si}_2 {-} {\rm O}_1 & 1,65(2) \\ {\rm O}_5 & 1,63(2) \\ {\rm O}_6 & 1,64(2) \\ {\rm O}_7 & 1,64(2) \\ {\rm Cpeднee} \\ {\rm Si}_2 {-} {\rm O} & 1,64 \end{array}$	$ \begin{array}{c} O_{1} - O_{5} & 2,69 & (2) \\ O_{6} & 2,59 & (3) \\ O_{7} & 2,57 & (3) \\ O_{5} - O_{6} & 2,77 & (2) \\ O_{7} & 2,70 & (3) \\ O_{6} - O_{7} & 2,70 & (3) \end{array} $		
Р-т	етраэдр	Ті-полиэдры			
$\begin{array}{cccc} P-O_9 & 1,54(2) \\ O_{11} & 1,55(3) \\ O_{12} & 1,55(2) \\ O_{13} & 1,54(2) \end{array}$	$\begin{array}{c cccc} O_9 - O_{11} & 2,50 & (3) \\ O_{12} & 2,56 & (3) \\ O_{13} & 2,49 & (2) \\ O_{11} - O_{12} & 2,54 & (4) \\ O_{13} & 2,53 & (3) \\ Q_{12} - O_{13} & 2,55 & (3) \end{array}$	$\begin{array}{ccccc} Ti_1 & & -O_3 & 1,92 (2) \\ & O_4 & 1,94 (3) \\ & O_6 & 2,04 (2) \\ & O_7 & 2,00 (2) \\ & O_8 & 1,82 (2) \\ & O_9 & 2,16 (2) \end{array}$	$\begin{array}{ccccc} {\rm Ti}_2 {\rm -O}_2 & 2,04(2) \\ {\rm /O}_5 & 2,15(2) \\ {\rm O}_{5c} & 2,20(2) \\ {\rm O}_{8c} & 1,89(2) \\ {\rm O}_{10} & 1,96(2) \\ {\rm O}_{10c} & 1,95(2) \end{array}$		
	Na-по	лиэдры			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} Na_{3}-O_{3} & 2,97(3)\\ O_{4} & 2,76(2)\\ O_{6} & 2,46(2)\\ O_{7} & 2,46(2)\\ O_{9} & 2,50(3)\\ O_{11} & 2,23(2)\\ O_{13c} & 2,34(2) \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		

Межатомные расстояния в структуре ломоносовита, А

Примечание. Индексами с отмечены атомы, связанные с базисным центром инверсии. t — трансляцией.

Искажение полиэдров Na и Ti из «сейдозеритовой» стенки (их координационное число можно рассматривать как 4+2) вызвано неравномерным распределением валентных усилий, сходящихся на атомах кислородного окружения.

Институт тектоники и геофизики Дальневосточного научного центра Академии наук СССР Хабаровск Поступило 6 V 1977

Институт нефтехимических прогессов Академии наук АзербССР Баку

ЛИТЕРАТУРА

¹ И. Д. Борнеман-Старынкевич, Вопросы минералогии, геохимии, петрографии, Изд-во АН СССР, 1946. ² Н. В. Белов, Н. И. Органова, Геохимия, № 1 (1962). ³ А. Д. Халилов, Е. С. Макаров, Геохимия, № 7 (1963). ⁴ А. Д. Халилов, Е. С. Макаров и др., ДАН, т. 162, № 1 (1965). ⁵ А. Д. Халилов, Е. С. Макаров, Геохимия, № 3 (1966). ⁶ Р. К. Расцветаева, В. И. Симонов, Н. В. Белов, ДАН, т. 197, № 1 (1971). ⁷ Е. Н. Ипатова, В. Е. Овчинников и др., Кристаллография, т. 19, в. 2 (1974). ⁸ D. W. Стийскватк et al., Сотриting Methods and Phase Problem in X-ray Analysis, London, 1961. ⁹ Е. И. Семенов, Н. Й. Органова, М. В. Кухарчик, Кристаллография, т. 6, в. 6 (1961).