С использованием данных проведенных исследований выращены на затравку кристаллы RFe₃(BO₃)₄ размером до 15 мм, а в результате спонтанной кристаллизации – до 8–10 мм. Таким образом, впервые удалось получить кристаллы редкоземельно-железистых боратов, пригодные для исследования их физических свойств.

Московский государственный университет им. М.В. Ломоносова

Поступило 17 XI 1978

ЛИТЕРАТУРА

¹ J.-C. Joubert, W.B. White, R. Roy, J. Appl. Cryst., v. 1, 318 (1968). ² Л.И. Альшинская, Т.И. Тимченко, А.А. Липатова, Вестн. МГУ, геол., № 2, 120 (1977). ³ Т. Takahashi, O. Yamada, К. Ametani, Mat. Res. Bull., v. 10, 153 (1975). ⁴ Н.И. Леонюк, Изв. АН СССР, Неорг. матер., т. 12 554 (1976). ⁵ Л.И. Альшинская, Н.И. Леонюк и др., Кристаллография, т. 23, 534 (1978).

УДК 548.736

А.А. ВОРОНКОВ, З.В. ПУДОВКИНА, В.А. БЛИНОВ, В.В. ИЛЮХИН, Ю.А. ПЯТЕНКО

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА КАЗАКОВИТА $Na_6 Mn \{Ti[Si_6 O_{18}]\}$

(Представлено академиком Н.В. Беловым 1 XII 1978)

Впервые описанный в 1974 г. титано-силикат казаковит на основании химических, спектральных и кристаллохимических характеристик был помещен в группу ловозерита Na₂ZrSi₆O₁₂ (OH)₆. Первоначально (¹) ему была приписана формула Na₆H₂TiSi₆O₁₈, в дальнейшем (²) она была уточнена и приняла современный вид Na₆MnTiSi₆O₁₈, подчеркивающий отсутствие водорода и наличие ионов Mn²⁺ в структуре минерала. Такому уточнению способствовало кристаллохимическое обобщение (³), посвященное структурному семейству ловозерита, содержащему несколько природных и синтетических фаз.

Интерес к исследованию атомного строения казаковита усиливался тем обстоятельством, что среди структурно изученных представителей названного семейства до сих пор фигурировали лишь объекты с низкой, моноклинной или ромбической, симметрией. Казаковит же относился к тригональной сингонии (класс Лауэ $\overline{3}m$) и по предварительным данным (¹) характеризовался ромбоэдрической ячейкой с ребром $a_r \approx 7$ Å и углом $\alpha_r \approx 88^\circ$.

Настоящее полное рентгенографическое исследование минерала (выполненное с помощью автоматического дифрактометра "Enraf-Nonius" САД-4) подтвердило исходные кристаллографические данные — было доказано наличие *R*-ячейки и уточнены ее параметры: $a_r = 7,310 \pm 0,003$ Å, $\alpha_r = 88^{\circ}11' \pm 02'$ (в гексагональном аспекте $a_h = 10,174$ Å, $c_h = 13,053$ Å). На объем элементарного ромбоэдра, метрика которого носит ярко выраженный псевдокубический характер, приходится одна формульная единица выше приведенного состава (Z = 1, $\rho_{\rm B \, bi \, y} = 2,97$ г/см³, $\rho_{\rm эк \, cn} = 2,84$ г/см³).

Трехмерный набор интенсивностей, полученный от сферического образца диаметром 0,25 мм при вращении вокруг ребра ромбоэдра (λ Mo), содержал 665 независимых отражений с $I(hkl) > 2\sigma$ в диапазоне $0 \le \sin\theta/\lambda \le 1,0$ Å⁻¹. Съемка проводилась ω -методом с переменной скоростью сканирования. При обработке экспериментального материала поправка на поглощение не вводилась ($\mu r = 0,22$).

Атом	x/a	y/b	z/c	В	
Ti	1 0	0	0	0,22(2)	
Si	0,2791(1)	0,2791(1)	0,7348(2)	0,78(2)	
Mn	0,2438(3)	0,2438(3)	0,2438(3)	1,60(5)	
$Na_{(1)}$	0	0	1/2	1,59(5)	
$Na_{(2)}$	1/2	1/2	0	2,08(7)	
0 ₍₁₎	0,2133(5)	0,2133(5)	0,5472(8)	1,98(8)	
$0_{(2)}$	0,1843(5)	0,1843(5)	0,9149(7)	1,46(6)	
0(3)	0,2416(5)	0,7584(5)	1/2	1,83(7)	

Таблица 1 Позиционные и тепловые параметры структуры казаковита

Примечания. Ф.г. $R\bar{3}m$, R = 0.082. $O_{(1)}$ – "свободные" вершины Si-тетраздров, $O_{(2)}$ – мостики Si-O-Ti, $O_{(3)}$ – мостики Si-O-Si.

Таблица 2

Атомы	Расстояния, А	Углы	Атомы	Расстояния, А	Углы
	Ті-октаэдр		1	Мп-октаэдр	
Ti0(2)	2,006(4)(× 6)		$Mn-O_{(1)}$	2,227(6)(× 3)	
$O_{(2)} - O'_{(2)}$	2,740(6)(×6)	86,15°(15)	O ₍₂₎	2,511(4)(×3)	
$O_{(2)}^{"}$	2,931(5)(×6)	93,85 (15)	$O_1 - O'_{(1)}$	3,397(7)(×3)	99,40°(18)
	Si-tetnaaun		O ₍₂₎	3,504(7)(×6)	95,19 (17)
Si-O ₍₁₎	1,562(6)		$O_2 - O'_{(2)}$	2,740(6)(×3)	66,15 (13)
O ₍₂₎	1,616(4)			Na-полиэдры	
O ₍₃₎	1,643(4)(×2)		$Na_{(1)} - O_{(1)}$	2,281(4)(×2)	
$0_{(1)} - 0_{(2)}$	2,692(7)	115,78(23)	O(2)	2,715(4)(×4)	
O ₍₃₎	2,659(6)(×2)	112,08(22)	O ₍₃₎	2,458(4)(×2)	
$0_{(2)} - 0_{(3)}$	2,584(5)(×2)	104,92(18)	$Na_{(2)} - O_{(1)}$	2,593(5)(×4)	
$O_{(3)} - O_{(3)}$	2,629(5)	106,28(17)	O ₍₃₎	2,626(3)(×4)	

П р и м е ч а н и я. Приведены центральные углы, опирающиеся на соответствующие ребра полиэдров. Штрихами обозначены атомы, выводимые из базисных операциями симметрии.

Отсутствие систематических погасаний рефлексов указывало на рентгеновскую группу $\overline{3}mR$ — , которая содержит три пространственные: $R\overline{3}m$, R3m и R32. Все дальнейшие расчеты проведены на ЭВМ ЕС-1020 по программе, разработанной Л.П. Соловьевой и др. (⁴).

Положение всех катионов в структуре найдено из трехмерной функции Патерсона, а позиции атомов О – из синтезов электронной плотности. Уже на этом этапе в основе полученной модели был подтвержден мотив ловозерита. Главная же тонкость в строении казаковита оказалась связанной с ионами ${\rm Mn}^{2+}$. В соответствии с материальным содержанием ячейки в ее объеме может находиться только один атом названного сорта, однако на синтезе $\rho(xyz)$ фиксируются два максимума с подходящей мощностью – двухкратный комплекс xxx в группах R3m и R32 или два однократных в R3m. Этот факт объясняется только при допущении статистического распределения атомов Mn по указанным позициям. Именно на этом обстоятельстве было сосредоточено главное внимание в ходе уточнения структуры

107

м.н.к. Схема м.н.к. включала уточнение кратностей позиций, занятых нетеграэдрическими катионами, а также координат и тепловых параметров всех атомов. Расчеты проводились независимо в рамках трех возможных федоровских групп: $R\overline{3}m$, R3m и R32.

Результаты уточнения оказались практически тождественными для всех названных аспектов. Кратность позиций, занятых ионами Ti^{4+} и Na^+ , близка к теоретической (1 и 3 соответственно); последняя и принята в окончательном варианте структуры. В то же время кристаллографические комплексы, соответствующие атомам Mn, оказались наполовину вакантными. Таким образом, на ячейку в целом приходится лишь один атом данного элемента, что и отвечает исходной химической формуле минерала.

Близость значений *R*-факторов, а также позиционных и тепловых параметров, полученных для трех перечисленных выше федоровских групп симметрии, явилось основанием для предпочтения центросимметричной группы $R\overline{3}m$. Окончательная величина R = 8,2 % в изотропном и 5,4 % в анизотропном приближении. Итоговые параметры структуры приведены в табл. 1, а отвечающие им межатомные расстояния и валентные углы – в табл. 2. В дополнение укажем важнейшие расстояния катионкатион: Ti-Si 3,442, Ti-Mn = 3,183, Mn-Si = 3,624, Si-Si = 3,226 Å. Валентный угол Si-O-Si = 158°10'.

Структурному мотиву ловозерита посвящено уже несколько работ $({}^{3}, {}^{5-7})$, однако в атомной постройке казаковита он впервые предстает в своем наиболее симметричном варианте, предсказанном в $({}^{3})$. Два аспекта этой постройки – псевдокубической и гексагональный – изображены на рис. 1. Первый из них полнее отражает материальное содержание ячейки (ромбоздра – псевдокуба), в узлах которой располагаются "октаэдрические" катионы Ti^{4+} , а на середине ребер и в центрах граней – щелочные Na⁺. Кремнекислородные тетраэдры, связанные в шестичленное кольцо, размещаются в шести из восьми октантов, на которые разбивается ячейка тремя центральными сечениями. Два остающиеся октанта наполовину (статистически) заселены двухвалентными ионами Mn^{2+} .

Благодаря высокой точечной симметрии $(\bar{3}m)$ форма Ті-октаэдров близка к правильной: все шесть расстояний Ті-О в них одинаковы и практически равны сумме табличных значений ионных радиусов Ті⁴⁺ и O²⁻ (2,00 Å). Полинговские октаэдры Мп, напротив, сильно искажены: они имеют два неравноценных по площади основания и два типа резко различающихся расстояний Мп-О (2,23 и 2,51 Å). Одно из оснований (меньшее) они делят с Ті-октаэдрами*, тогда как второе опирается на О-вершины трех Si-тетраэдров. Последние также заметно деформированы и по линейным и по утловым параметрам, хотя средние значения длины связей

^{*} Весьма редкий случай, при котором в согласии с 3-м правилом Полинга устойчивость структуры должна понижаться.

Si-O (1,614 Å) и валентных углов O-Si-O (109°20') близки к табличным (1,612 Å и $109^{\circ}28'$ соответственно).

Оба кристаллографически независимых атома Na имеют одинаково высокое к.ч. 8. По своей конфигурации Na₂-полиздр близок к слегка скрученному кубу с узким интервалом расстояний Na₂-O = 2,59-2,63 Å. Форма Na₁-восьмивершинника менее определенна и диапазон расстояний Na₁-O более широк: 2,28-2,72 Å. Чередуясь вдоль всех координатных направлений и соприкасаясь общими ребрами, описанные многогранники образуют трехмерную систему попарно пересекающихся колонок — своеобразный "сруб" или катионный остов структуры. Ранее (⁸) аналогичная "штабельная укладка" кальциевых колонок была установлена в строго кубической постройке боро-карбоната сахаита.

Анионную основу структуры казаковита составляет бесконечная трехмерная вязь из Si-тетраэдров и Ti-октаэдров — радикал смешанного типа $\{Ti[Si_6O_{18}]\}_{\infty=\infty}^{8}$. Соответствующий структурный мотив изображен на рис. 16, где подчеркнута его высокая ромбоэдрическая симметрия. Здесь послойно расположенные в узлах ромбоэдра октаэдры Ti связаны между собой шестичленными кольцами из Si-тетраэдров, каждый из которых имеет по одной свободной вершине. Геометрические особенности "ловозеритового" кольца и смешанного каркаса подробно описаны в цитированных выше работах. В частности в (³) дана обобщенная кристаллохимичьская формула, отвечающая предельному насыщению катионами рассматриваемого структурного мотива,

 $A_3B_3C_2\{M[Si_6O_{18}]\}.$

Особенно примечательна здесь позиция С-катионов, на долю которых выпадает роль главных "нормализаторов" локального баланса валентностей на свободных О-вершинах Si-тетраэдров. В казаковите такими катионами являются атомы Mn²⁺, которые, однако, заполняют С-комплекс лишь наполовину. Наличие вакансий понижает эффективную валентность атомов Mn до +1, что отрицательно сказывается на выполнении Второго правила Полинга.

Несовершенства локального баланса валентностей, видимо, являются одной из главных причин неустойчивости казаковита в естественных условиях. По данным (¹,²) разрушение минерала сопровождается выносом из решетки большого количества Na, который замещается протонами H⁺. При этом казаковит переходит в гидратированную форму с примерным составом Na₃H₃MnTiSi₆O₁₈ = = Na₃MnTiSi₆O₁₅ (OH)₃ и близкими к исходной фазе кристаллографическими характеристиками. Этот гидратированный аналог казаковита вполне устойчив и в природе не подвергается дальнейшим изменениям. Таким образом, как и предполагалось в (³), для стабилизации ловозеритового структурного мотива необходимо присутствие в решетке H, который наиболее эффективно исправляет нарушения локального баланса валентностей в каркасной части атомной постройки.

Институт минералогии, геохимии и кристаллохимии редких элементов Академии наук СССР Москва Поступило 1 XII 1978

ЛИТЕРАТУРА

¹ А.П. Хомяков, Е.И. Семенов и др., Зан. Всесоюзн. мин. общ-ва, т. 103, 3, 342 (1974). ² А.П. Хомяков, ДАН, т. 237, № 1, 199 (1977). ³ Н.М. Черницова, З.В. Пудовкина и др., Зап. Всесоюзн. мин. общ-ва, т. 104, 1, 18 (1975). ⁴ L.P. Solovjeva, V.E. Ovchinnikov et al., XI Intern. Congress of Crystallogr. Collected Abstr., Warszawa, Poland, 1978. ⁵ В.В. Илюхин, Н.В. Белов, Кристаллография, т. 5, № 2, 200 (1960). ⁶ Н.В. Белов, Очерки по структурной минералогии, XIX, Минералогич. сб. Львовск. геол. общ-ва, № 22, 1968. стр. 2. ⁷ А.А. Воронков, Н.Г. Шумяцкая, Ю.А. Пятенко, Кристаллохимия минералов поркония и их искусственных аналогов, "Наука", 1978. ⁸ А.В. Чичагов, М.А. Симонов, Н.В. Белов, ДАШ, т. 218, № 3, 576 (1974).