уртитов Хибин может проявляться в технологических процессах, особенно при обогащении руд месторождений, расположенных на флангах ийолит-уртитовой дуги, где заметно повышается содержание стронция в апатитах, а процессы перекристаллизации максимальны.

Московский геологоразведочный институт им. Серго Орджоникидзе

Поступило 10 I 1980

ЛИТЕРАТУРА

¹ С.М. Кравченко, Д.А. Минеев, А.Ю. Беляков, XI Съезд ММА, тез. докл. т. 1, 1978. ² С.М. Кравченко, Д.А. Минеев и др., Геохимия, № 7 (1979). ³ Б.П. Романичев, Л.Н. Когарко и др., Тр. Минералогич, музея, в. 24 (1975). ⁴ Е.А. Каменев, Матер. по минералогия Кольского полуострова в. 6, 1968. ⁵ Минералогия Хибинского массива, т. 2, "Недра", 1978. ⁶ Р.Г. Кнубовец, Б.М. Масленников, ДАН, т. 164, № 2 (1965). ⁷ О.Б. Дудкин, В кн.: Типоморфизм минералов и его практическое значение, "Недра", 1972.

УДК 549.74 + 553.068.41 (57)

МИНЕРАЛОГИЯ

э.м. Спиридонов

БАЛЯКИНИТ СиТеО3 - НОВЫЙ МИНЕРАЛ * ИЗ ЗОНЫ ОКИСЛЕНИЯ

(Представлено академиком Н.В. Беловым 4 III 1980)

В зоне окисления малосульфидных месторождений Пионерское (Восточные Саяны) и Агинское (Центральная Камчатка), первичные руды которых содержат заметное количество минералов меди (халькопирит, тетраэдрит) и теллура (алтаит и другие), нами установлен теллурит меди $CuTeO_3$ в ассоциации с теллуритом TeO_2 , двойными теллуритами меди и свинца $CuPb(TeO_3)_2$ и $CuPb(TeO_3)O$ (табл. 1) с билибинскитом (1) и медистым богдановитом (2). Эти минералы слагают прожилки в агрегатах тетраэдрита, халькопирита и теллуридов, а также псевдоморфозы по гипогенным минералам. Теллурит меди, кроме того, выполняет тонкие трещины в жильном кварце.

Природный теллурит меди назван балякинитом (balyakinite) в честь замечательного педагога Т.С. Балякиной, которая воспитала многие поколения геологов в стенах Московского университета.

Выделения балякинита представляют сростки различно ориентированных зерен, изредка наблюдаются мельчайшие короткопризматические кристаллы; размер сростков достигает 0,5 мм. Минерал полупрозрачный, серовато-зеленого или синевато-зеленого цвета, нередко голубоватый или светло-синий, что обусловлено наличием массы тончайших вростков тейнейита, замещающего балякинит. Цвет черты бледный голубовато-зеленый. В проходящем свете слабо плеохроирует в зеленоватых тонах, $n_g=2,22,\,n_p=2,11,\,n_m=2,18,\,2V=+80^\circ$, оптическая ориентировка – $Ng=c,\,Nm=b,\,Np=a$. В отраженном свете балякинит серый и голубовато-серый, слабо анизотропный. Твердость по микровдавливанию составляет $80-125,\,$ в среднем $105\,$ кгс/мм² (6 измерений, ПМТ-3 тарирован по NaCl, $P=10\,$ гс). Спайность не наблюдалась. Плотность $5,6\,$ кг/см³ ($20\,$ °C).

^{*} Минерал и его название утверждены КНМ ВМО СССР 7 X 1979 г. и КНМ Международной Минералогической Ассоциации 7 III 1980 г.

Таблица 1 Химический состав балякинита и ассоциирующих минералов зоны окисления Пионерского и Агинского месторождений, мас. %

Компонент	Балякинит CuTeO ₃ (3)	Теллурит ТеО ₂ (2)	CuPb (TeO ₃) ₂ (2)	CuPb (TeO ₃)O (2)		
Cu	26,7 ± 0,3	Следы	11,58	14,24		
Fe	$0,06 \pm 0,03$	Следы	0,08	0,09		
Ag	$0,24 \pm 0,06$	Следы	0,27	1,21		
Pb	$0,58 \pm 0,09$	2,03	33,7	41,1		
Te	$54,0 \pm 0,9$	79,6	39,3	29,2		
Se	$0,02 \pm 0,01$	0,02	Не опр.	0,32		
S	Не опр.	Не опр.	Не опр.	0,74		
Sb	$0,94 \pm 0,17$	0,87	1,07	Не опр.		
0	$19,5 \pm 0,4$	20,0	15,0	14,0		
Сумма	102,0	102,5	99,9	100,9		

Примечание. Анализы выполнены с помощью электронного микроронда "Camebax". В жобках — число анализов, аналитик Э.М. Спиридонов.

Таблица 2 Рентгенограммы балякинита и синтетического CuTeO₃ (⁴) (λ Cu)

Балякинит		Синтетический CuTeO ₃			Балякинит		Синтетический CuTeO ₃				
I	d, HM ⁻¹	I	dэксп; нм ⁻¹	hiki	dpacy,	. I	d, HM ⁻¹	I	d _{эксп} , нм ^{™1}	hkl	d _{расч} , нм ⁻¹
	era <u>e</u> es l'	1	6,34	002	6,35		-	1	2,18,	312	2,183
		1	5,30	011	5,30			1	2,14,	024	2,149
	_	1	4,87	102	4,88	0,5-1	2,04	1	2,04	313	2,038
1	4,34	4	4,35	111	4,35		-	1	1.990	016	1,9906
	_	1	4,29	012	4,30	1	1,987	1	1,985	215	1,9865
	_	1	3,80,	200	3,80,	0,5-1	1,925	1	1,926	116	1,9257
		1	3,73,	112	3,742		_	1	1,916	025	1,9165
	-	1	3,63,	201	3,642	1	1,902	1	1,901	400	1,9009
3	3,43	3	3,42,	013	3,428		_	1	1,890	321	1,8923
		1	3,26	202	3,26,		_	1	1,883	130	1,8849
4	3,18	4	3,17,	004	3,176		_	1	1,875	314	1,8760
		1	3,12,	113	3,12,		7. .	1	1,859	125	1,8583
5	3,09	6	3,09	211	3,09		_	1	1,850	206	1,8500
3	2,93	3	2,93	104	2,931		_	1	1,831,	322	1,8323
		1	2,91,	020	2,919		-	1	1,805	132	1,8071
10	2,85	10	2,84,	212	2,848		_	1	1,789	411	1,7894
8	2,84	8	2,84	021	2,844		_	1	1,766,	107	1,7655
	_	1	2,78,	014	2,790	1	1,762	1	1,763,	216	1,7635
	_	1	2,66	121	2,664		_	1	1,741,	323	1,7439
0,5-1	2,64	1	2,65	022	2,652		_	1	1,738,	412	1,7385
		1	2,62	114	2,619	0,5-1	1,735	1	1,732,	017	1,7335
		1	2,54	213	2,546		_	1	1,720	133	1,7226
1	2,52	1	2,50,	122	2,504	34	1,716	4	1,716	231	1,7161
0,5-1		1	2,43,	204	2,438	5	1,711	6	1,711,	225	1,7113
* 1		1	2,40	023	2,403	0,5-1	1,690	1	1,690,	117	1,6899
	_	1	2,35,	302	2,354	- 1 T. 1 T. 1	-	1	1,670	232	1,6710
		1	2,33	015	2,330		_	1	1,662,	413	1,6624
3-4	2,28	3	2,28	221	2,278	1:	1,630	1	1,631	404	1,6311
1	2,21	1	2,225	115	2,228		-	1	1,624,	306	1,6250
			× .			1-2	1,588			006	

Химический состав балякинита и ассоциирующих минералов определен с помощью электронного микроанализатора "Сатевах" при ускоряющем напряжении 20 кВ. Эталонами при анализе служили химически анализированные куприт (для Cu и O), валентинит (для Sb), клаусталит (для Se), ангидрит (для S), синтетические $\mathrm{TeO_2}$ (для Te и O), серебро; использовались аналитические линии Cu_{K_α} , Fe_{K_α} , Ag_{L_α} , Pb_{M_α} , Te_{L_α} , Se_{L_α} , Se_{L_α} , Sb_{L_α} , O_{K_α} . Исследованные минералы устойчивы под электронным пучком. Химический состав минералов рассчитан методом последовательных приближений (4—6 итераций) по программе "Карат" (³) с введением поправок на поглощение, атомный номер и на флюоресценцию. Результаты анализов приведены в табл. 1. Изучение на микрозонде показало, что состав балякинита устойчив, заметно варьируют лишь концентрации элементов-примесей Fe, Ag, Pb. Химический состав минерала близок к теоретическому CuTeO3: Cu 26,57, Te 53,36, O 20,07%. Эмпирическая формула балякинита, рассчитанная на основе пяти атомов,

$$(Cu_{1,01}Ag_{0,01}Pb_{0,01})_{1,03}(Te_{1,02}Sb_{0,02})_{1,04}O_{2,93}.$$

Рентгенограмма балякинита (табл. 2) идентична рентгенограмме синтетического ${\rm CuTeO_3}$ (4), ромбического ${\it Pmcn}$ (4,5) с параметрами элементарной ячейки: $a=7,604\pm0,006$ ${\rm \, km^{-1}}$, $b=5,837\pm0,004$, $c=12,705\pm0,006$, Z=8. Рентгенограмма порошка балякинита снята в камере РКД 57,3 мм, Си-антикатод, Ni-фильтр, образец "резиновый шарик", д около 0,2 мм, рентгенограмма исправлена по особому снимку с NaCl, интенсивности оценены визуально по 10-балльной шкале. Наиболее сильные отражения в рентгенограмме: $4,34 \text{ нм}^{-1}$ (4) (111) -3,43 (3) (013) -3,18 (4) (004) -3,09(5) (211) -2,93(3) (104) -2,85(10) (212) -2,84(8) (021) -2,28(3-4)(221) - 1,716(3-4)(231) - 1,711(5)(225). Параметры элементарной ячейки балякинита, рассчитанные методом наименьших квадратов, $a = 7.60_2$, $b = 5,83_9$, $c = 12,69_7$ нм⁻¹, Z = 8, рентгеновская плотность равна 5,64 гс/см³. Кристаллическая структура теллурита меди, по данным О. Линдквиста (5), Е. Филиппа и М. Морина (6), построена из пирамид CuO₅ и групп Te₂O₆, образующих трехмерный каркас. Расстояния Cu-O для четырех атомов кислорода составляют 1,94-1,98-1, для пятого 2,38 нм-1. Каждый из двух атомов теллура окружен тремя атомами кислорода (уплощенная тригональная призма с атомом теллура в вершине), расстояния Te-O равны 1,86-1,96 нм⁻¹; возле одного из двух структурно не эквивалентных атомов теллура находится еще один атом кислорода на расстоянии $2,32 \text{ нм}^{-1}$; группы TeO_3 и TeO_4 соединены через общий атом кислорода, образуя структурную единицу Те2 О6.

Балякинит устойчив в нижней части зоны окисления, где развиты безводные теллуриты, теллурит TeO_2 и гипергенные теллуриды — плюмботеллуриды $\binom{1,2}{2}$. В верхней части зоны окисления балякинит замещается тейнейитом $Cu(Te,S)O_3 \cdot 2H_2O$; тейнейит диагностирован оптически и рентгенометрически.

Образцы балякинита находятся в Минералогическом музее им. A.E. Ферсмана AH СССР.

Московский государственный университет им. М.В. Ломоносова

Поступило 17 IV 1980

ЛИТЕРАТУРА

¹ Э.М. Спиридонов, М.С. Безсмертная и др. Зап. Всесоюзн. мин. общ-ва, в. 3–4 (1978). ² Э.М. Спиридонов, Т.Н. Чвилева, Вестн. МГУ, сер. геол., № 1 (1979). ³ Г.В. Бердичевский, П.И. Чернявский, Ю.Г. Лаврентьев, Геол. и геофиз., № 3 (1977). ⁴ I. Moret, E. Philippot, M. Maurin, C.R., v. 269, Ser. C (1969). ⁵ O. Lindqvist, Acta chem. scand., v. 26, № 4 (1972). ⁶ E. Philippot, M. Maurin, Rev. chim. mineral., v. 13, № 2 (1976).