уртитов Хибин может проявляться в технологических процессах, особенно при обогащении руд месторождений, расположенных на флангах ийолит-уртитовой дуги, где заметно повышается содержание стронция в апатитах, а процессы перекристаллизации максимальны.

Московский геологоразведочный институт им. Серго Орджоникидзе

Поступило 10 I 1980

ЛИТЕРАТУРА

¹ С.М. Кравченко, Д.А. Минеев, А.Ю. Беляков, ХІ Съезд ММА, тез. докл. т. 1, 1978. ² С.М. Кравченко, Д.А. Минеев и др., Геохимия, № 7 (1979). ³ Б.П. Романичев, Л.Н. Когарко и др., Тр. Минералогич. музея, в. 24 (1975). ⁴ Е.А. Каменев, Матер. по минералогич Кольского полуострова в. 6, 1968. ⁵ Минералогия Хибинского массива, т. 2, "Недра", 1978. ⁶ Р.Г. Кнубовец, Б.М. Масленников, ДАН, т. 164, № 2 (1965). ⁷ О.Б. Дудкин, В кн.: Типоморфизм минералов и его практическое значение, "Недра", 1972.

УДК 549.74 + 553.068.41(57)

МИНЕРАЛОГИЯ

Э.М. СПИРИДОНОВ

БАЛЯКИНИТ CuTeO₃ – НОВЫЙ МИНЕРАЛ * ИЗ ЗОНЫ ОКИСЛЕНИЯ

(Представлено академиком Н.В. Беловым 4 III 1980)

В зоне окисления малосульфидных месторождений Пионерское (Восточные Саяны) и Агинское (Центральная Камчатка), первичные руды которых содержат заметное количество минералов меди (халькопирит, тетраздрит) и теллура (алтаит и другие), нами установлен теллурит меди CuTeO₃ в ассоциации с теллуритом TeO₂, двойными теллуритами меди и свинца CuPb (TeO₃)₂ и CuPb (TeO₃)O (табл. 1), с билибинскитом (¹) и медистым богдановитом (²). Эти минералы слагают прожилки в агрегатах тетраздрита, халькопирита и теллуридов, а также псевдоморфозы по гипогенным минералам. Теллурит меди, кроме того, выполняет тонкие трещины в жильном кварце.

Природный теллурит меди назван балякинитом (balyakinite) в честь замечательного педагога Т.С. Балякиной, которая воспитала многие поколения геологов в стенах Московского университета.

Выделения балякинита представляют сростки различно ориентированных зерен, изредка наблюдаются мельчайшие короткопризматические кристаллы; размер сростков достигает 0,5 мм. Минерал полупрозрачный, серовато-зеленого или синевато-зеленого цвета, нередко голубоватый или светло-синий, что обусловлено наличием массы тончайших вростков тейнейита, замещающего балякинит. Цвет черты бледный голубовато-зеленый. В проходящем свете слабо плеохроирует в зеленоватых тонах, $n_g = 2,22$, $n_p = 2,11$, $n_m = 2,18$, $2V = +80^\circ$, оптическая ориентировка – Ng = c, Nm = b, Np = a. В отраженном свете балякинит серый и голубовато-серый, слабо анизотропный. Твердость по микровдавливанию составляет 80–125, в среднем 105 кгс/мм² (6 измерений, ПМТ-3 тарирован по NaCl, P = 10 гс). Спайность не наблюдалась. Плотность 5,6 кг/см³ (20 °C).

^{*} Минерал и его название утверждены КНМ ВМО СССР 7 X 1979 г. и КНМ Международной Минералогической Ассоциации 7 III 1980 г.

Таблица 1

Химический состав балякинита и ассоциирующих минералов зоны окисления Пионерского и Агинского месторождений, мас. %

Компонент	Балякинит CuTeO ₃ (3)	Теллурит TeO ₂ (2)	$CuPb(TeO_3)_2$ (2)	CuPb (TeO ₃)O (2) 14,24 0,09		
Cu	$26,7\pm0,3$	Следы	11,58			
Fe	0,06 ± 0,03	Следы	0,08			
Ag	0,24 ± 0,06 Следь		0,27	1,21		
Pb	$0,58 \pm 0,09$	2,03	33,7	41,1		
Te	Te $54,0 \pm 0.9$ $79,6$ Se $0,02 \pm 0,01$ $0,02$ He onp.He onp.He onp. $0,94 \pm 0,17$ $0,87$ O $19,5 \pm 0,4$ $20,0$		39,3	29,2		
Se			Не опр.	0,32		
S			Не опр.	0,74		
Sb			1,07	Не опр.		
0			15,0	14,0		
Сумма	102,0	102,5	99,9	100,9		

римечание. Анализы выполнены с помощью электронного микрозонда "Camebax". В кобках – число анализов, аналитик Э.М. Спиридонов.

Т	a	б	л	И	п	a	2
•	•••	~			-		-

Рентгенограммы балякинита и синтетического CuTeO₃ (⁴) (λ Cu)

Балякинит		Синтетический CuTeO ₃			Балякинит		Синтетический CuTeO3				
1	<i>d</i> , нм ⁻¹	I	d _{эксп} , нм ^{≈ 1}	hiki	d _{расч} , нм ⁻¹	.1	<i>d</i> , HM ⁻¹	Ι	d _{эксп} , нм ^{−1}	hkl	d _{расч} , нм ⁻¹
	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	1	6,34	002	6,35	li –	 	1	2,18,	312	2,183
	· - · ·	1	5,30	011	5,30		a. - 19	1	2,14,	024	2,149
	-	1	4,87	102	4,88	0,5-1	2,04	1	2,04	313	2,038
4	4,34	4	4,35	111	4,35		al C alie	1	1,990	016	1,9906
	-	1	4,29	012	4,30	1	1,987	1	1,985	215	1,9865
		1	3,80,	200	3,802	0,5-1	1,925	1	1,926	116	1,9257
	-	1	3,73,	112	3,742		-	1	1,916	025	1,9165
		ľ	3,63,	201	3,642	1	1,902	1	1,901	400	1,9009
3	3,43	3	3,42,	013	3,428			1	1,890	321	1,8923
	- 10 <u>-</u> - 10 - 1	1	3,26	202	3,262			1	1,883	130	1,8849
4	3,18	4	3,17,	004	3,17,			1	1,875	314	1,8760
		1	3,12,	113	3,12,		1	1	1,859	125	1,8583
5	3,09	6	3,09	211	3,09,		-	1	1,850	206	1,8500
3	2,93	3	2,93	104	2,931		-	1	1,831,	322	1,8323
	1 - C -	1	2,91,	020	2,919			1	1,805	132	1,8071
10	2,85	10	2,84,	212	2,848		-	1	1,789	411	1,7894
8	2,84	8	2,84	021	2,844		-	1	1,766,	107	1,7655
	_	1	2,78,	014	2,790	1	1,762	1	1,763,	216	1,7635
	<u> </u>	1	2,66	121	2,664		_	1	1,741,	323	1,7439
0, 5 - 1	2,64	1	2,65	022	2,652		_	1	1,738,	412	1,7385
		1	2,62	114	2,619	0,5-1	1,735	1	1,732,	017	1,7335
	- <u>-</u>	1	2,54,	213	2,546			1	1,720	133	1,7220
1	2,52	1	2,50,	122	2,504	34	1,716	4	1,716	231	1,7161
0, 5 - 1	2,42	1	2,43,	204	2,438	5	1,711	6	1,711,	225	1,7113
		1	2,40	023	2,403	0,5-1	1,690	1	1,690.	117	1,6899
	-	1	2,35.	302	2,354		-	1	1,670	232	1,6710
	- 1	1	2,33	015	2,330		_	1	1,662	413	1,6624
3-4	2,28	3	2,28	221	2,278	1	1,630	1	1,631	404	1,6311
1	2,21	1	2,22,	115	2,228		-	1	1,624,	306	1,6250
						1-2	1,588			006	

Химический состав балякинита и ассоциирующих минералов определен с помощью электронного микроанализатора "Сатевах" при ускоряющем напряжении 20 кВ. Эталонами при анализе служили химически анализированные куприт (для Cu и O), валентинит (для Sb), клаусталит (для Se), ангидрит (для S), синтетические TeO₂ (для Te и O), серебро; использовались аналитические линии Cu_{Ka}, Fe_{Ka}, Ag_{La}, Pb_{Ma}, Te_{La}, Se_{La}, S_{Ka}, Sb_{La}, O_{Ka}. Исследованные минералы устойчивы под электронным пучком. Химический состав минералов рассчитан методом последовательных приближений (4–6 итераций) по программе "Карат" (³) с введением поправок на поглощение, атомный номер и на флюоресценцию. Результаты анализов приведены в табл. 1. Изучение на микрозонде показало, что состав балякинита устойчив, заметно варьируют лишь концентрации элементов-примесей Fe, Ag, Pb. Химический состав минерала близок к теоретическому CuTeO₃: Cu 26,57, Te 53,36, O 20,07%. Эмпирическая формула балякинита, рассчитанная на основе пяти атомов,

$(Cu_{1,01}Ag_{0,01}Pb_{0,01})_{1,03}(Te_{1,02}Sb_{0,02})_{1,04}O_{2,93}.$

Рентгенограмма балякинита (табл. 2) идентична рентгенограмме синтетического CuTeO₃ (⁴), ромбического *Ртсп* (⁴,⁵) с параметрами элементарной ячей-ки: $a = 7,604 \pm 0,006$ нм⁻¹, $b = 5,837 \pm 0,004$, $c = 12,705 \pm 0,006$, Z = 8. Рентгенограмма порошка балякинита снята в камере РКД 57,3 мм, Си-антикатод, Ni-фильтр, образец "резиновый шарик", d около 0,2 мм, рентгенограмма исправлена по особому снимку с NaCl, интенсивности оценены визуально по 10-балльной шкале. Наиболее сильные отражения в рентгенограмме: 4,34 нм⁻¹ (4) (111) - 3,43 (3) (013) -3,18 (4) (004) -3,09(5)(211) - 2,93(3)(104) - 2,85(10)(212) - 2,84(8)(021) - 2,84(8)(12) - 2,84(8) - 2,84(8) - 22,28(3-4) (221) - 1,716(3-4) (231) - 1,711(5) (225). Параметры элементарной ячейки балякинита, рассчитанные методом наименьших квадратов, $a = 7,60_2$, $b = 5,83_9$, $c = 12,69_7$ нм⁻¹, Z = 8, рентгеновская плотность равна 5,64 гс/см³. Кристаллическая структура теллурита меди, по данным О. Линдквиста (⁵), Е. Филиппа и М. Морина (⁶), построена из пирамид CuO₅ и групп Te₂O₆, образующих трехмерный каркас. Расстояния Cu-O для четырех атомов кислорода составляют 1,94-1,98-1, для пятого 2,38 нм-1. Каждый из двух атомов теллура окружен тремя атомами кислорода (уплощенная тригональная призма с атомом теллура в вершине), расстояния Те-О равны 1,86-1,96 нм⁻¹; возле одного из двух структурно не экви-валентных атомов теллура находится еще один атом кислорода на расстоянии 2,32 нм⁻¹; группы TeO₃ и TeO₄ соединены через общий атом кислорода, образуя структурную единицу Te₂O₆.

Балякинит устойчив в нижней части зоны окисления, где развиты безводные теллуриты, теллурит TeO_2 и гипергенные теллуриды — плюмботеллуриды $(^{1},^{2})$. В верхней части зоны окисления балякинит замещается тейнейитом $\text{Cu}(\text{Te, S})O_3 \cdot 2H_2O$; тейнейит диагностирован оптически и рентгенометрически.

Образцы балякинита находятся в Минералогическом музее им. А.Е. Ферсмана АН СССР.

Московский государственный университет им. М.В. Ломоносова

Поступило 17 IV 1980

ЛИТЕРАТУРА

¹ Э.М. Спиридонов, М.С. Безсмертная и др. Зап. Всесоюзн. мин. общ-ва, в. 3-4 (1978). ² Э.М. Спиридонов, Т.Н. Чвилева, Вестн. МГУ, сер. геол., № 1 (1979). ³ Г.В. Бердичевский, Л.И. Чернявский, Ю.Г. Лаврентьев, Геол. и геофиз., № 3 (1977). ⁴ I. Moret, E. Philippot, M. Maurin, C.R., v. 269, Ser. C (1969). ⁵ O. Lindqvist, Acta chem. scand., v. 26, №4 (1972). ⁶ E. Philippot, M. Maurin, Rev. chim. mineral., v. 13, №2 (1976).