Доклады Академии наук СССР 1988. Том 300, № 5

УДК 551.21 + 549.4

МИНЕРАЛОГИЯ

Л.П. ВЕРГАСОВА, С.К. ФИЛАТОВ, Е.К. СЕРАФИМОВА, Т.Ф. СЕМЕНОВА

ПОНОМАРЕВИТ $K_4Cu_4OCl_{10}$ — НОВЫЙ МИНЕРАЛ ИЗ ВУЛКАНИЧЕСКИХ ВОЗГОНОВ*

(Представлено академиком В.И. Смирновым 14 III 1987)

Минерал обнаружен в продуктах Большого трещинного Толбачинского извержения (БТТИ), происшедшего на Камчатке в 1975—1976 гг. [1]. В эруптивный период деятельности встречался в виде тонкозернистых налетов кирпично-красного цвета на павовых потоках Северного и Южного прорывов. В постэруптивный период вплоть до 1983 г. осаждался в значительных количествах в виде межзернового цемента, а также стекловатых корок толщиной 1—2 см от темно-красного до черного цвета в трещинах между первым и вторым шлаковыми конусами. В значительных количествах был распространен и в инкрустациях фумарол второго шлакового конуса в виде плотных желвачков (размером 0,1—0,3 см в диаметре) с микроотростками, а также в виде скелетоподобных форм и каплеобразных скоплений темно-красного цвета. Ассоциировал в основном с галитом, сильвином и теноритом, а в фумаролах второго шлакового конуса также с толбачитом, долерофанитом, пийпитом, халькокианитом и другими минералами. Температура поверхности отбора корок и тонкозернистых налетов соответствовала 280—320 °С, скелетоподобных, каплеобразных форм и желвачков — до 400 °С.

Пономаревит в очень тонких сколах прозрачен, красного цвета с золотистым оттенком. Цвет черты оранжево-красный. Микротвердость (ПМТ-3, $P=0,010~{\rm kr}$, n=8) 97—66 кг/мм², $H_{\rm cp}=71~{\rm kr/mm}^2$ (класс твердости 2,8), хрупкий. Спайность несовершенная, по данным кристаллооптических и рентгеновских исследований спайные выколки нередко уплощены по (001) и имеют неправильные контуры, реже они близки к прямоугольным за счет спайности по (110). На плоскости спайности блеск стеклянный, в агрегатах смоляной до жирного. В единичных случаях на желвачках и микроотростках проявляются слабо выраженные грани, не пригодные для проведения гониометрических исследований. Скол ограненной головки в форме пластины размером 0,20 \times 0,15 \times 0,05 мм³ исследован под микроскопом. Пластинка имеет псевдогексагональный контур за счет развития граней пинакоида $\{010\}$ и призмы $\{530\}$ (рис. 1a, измеренный угол δ равен $117,0^\circ$, вычисленный по параметрам ячейки $117,9^\circ$); наиболее развитой гранью головки является пинакоид $\{104\}$. Измеренный угол между ребром [001] и гранью (104) равен $67,5^\circ$, вычисленный по параметрам ячейки $67,2^\circ$.

Минерал неустойчив. На воздухе за несколько суток зерна становятся непрозрачными, цвет изменяется до травяно-зеленого. Продукты изменения представлены в основном митчерлихитом K_2 CuCl₄ · $2H_2$ O. Хорошо растворяется в холодной воде. В зернах, помещенных в каплю воды, сразу исчезает красный цвет, который, по-видимому, придает минералу незначительная примесь $FeCl_3$. Присутствие железа в образце подтверждается химическим анализом. Исчезновение красного цвета зерен пономаревита сопровождается образованием микрочешуек гематита (подтверждено рентге-

^{*} Утвержден Международной комиссией по новым минералам и названиям минералов 28 XI 1986 г.

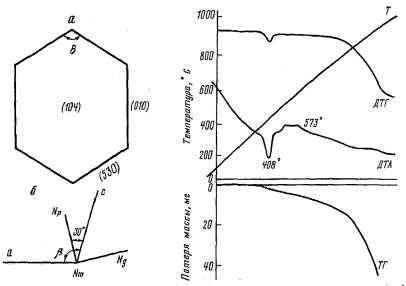


Рис. 1. Псевдогексагональный контур грани (104) за счет развития форм $\{010\}$, $\{530\}$ (a) и оптическая ориентировка пономаревита (б)

Рис. 2. Дериватограмма пономаревита. Чувствительность кривой ДТА $^1/5$, ДГТ 1/5, ТГ 300/100, навеска — смесь 100 мг пробы и 200 мг прокаленного кварца, тигель из кварцевого стекла

нографически). Растворение основной обесцветившейся массы зерна происходит также быстро с образованием белой взвеси.

Двуосный, оптически отрицательный, не плеохроирует. Оптических дисперсий не проявляет. $n_g=1,720,\,n_m=1,718,\,n_p=1,686$ (все $\pm\,0,005$), $n_g-n_p=0,034,\,2\,V_{\rm H3M}=28\pm5^\circ$. С осью симметрии совпадает $N_m,\,c:N_p=30^\circ$ в тупом угле β (рис. 16). Зерна минерала через несколько минут разлагались в иммерсионных жидкостях стандартного набора. Это не позволило работать методом вращающейся иглы. Показатели преломления n_g и n_m измерялись в разрезах, приближающихся к $\pm\,0.6$. и $\pm\,0.0$. По качественным признакам эти показатели различались, их значения оказались в интервале 1,710-1,720, но более точное измерение разности n_g-n_m не представлялось возможным. Эта разность, вычисленная по значениям $n_p,\,2\,V$ и $n_g=1,720$, оказалась равной 0,002.

Результаты количественного химического анализа (мас.%): Na_2O 2,76; K_2O 20,60; CuO 38,02; ZnO 0,31; PbO 0,03; Cl 42,50; F 0,03; SO_3 1,25; H_2O^- 0,62; H_2O^+ 0,37; н.о. 3,30; $-O=Cl_2+F_2$ 9,60. Сумма 100,19*. $+\Sigma$ K 1,49, $-\Sigma$ A 1,23. Методы анализа: пламенная фотометрия -K, Na; атомная абсорбция -Cu, Pb, Zn; объемно-весовой $-Cu^+$, Cl^- , SO_4^{2-} ; фтор определяли с помощью фторселективного электрода. При расчете формулы минерала из результатов химического анализа были вычтены 3,29 мас.% митчерлихита (по содержанию конституционной воды), который мог образоваться в процессе подготовки пробы к анализу; 2,22 мас.% тенардита Na_2SO_4 (по наличию SO_3), присутствие которого в пробе подтверждено рентгенографически; 3,30 мас.% нерастворимого остатка и 0,62 мас.% адсорбированной воды. Дефицит анионов по отношению к катионам, а также поведение минерала при растворении в воде, свидетельствуют о наличии в пономаревите, кроме хлора, дополнитель-

THE ...

^{*} В реферате, прошедшем через Комиссию по новым минералам, из анализа вычтены примесные фазы и полученная таким образом сумма принята за 100%.

Таблица 1 Дебаеграмма пономаревита

I/I_1	d _{изм} , Å	<i>d</i> выч, А	hkl	I/I_1	d _{изм} , Å	d _{выч} , Å	hkl
55	7,41	7,73	020	 30	2,921	2,919	422
80	7,31	7,31	111	100	2,801	2,803	421
50	7,14	7,12	200			2,802	$15\overline{1}$
70	6,074	6,077	111			2,797	312
3	5,625	5,630	021	80	2,787	2,782	242
45	5,142	5,140	220	45	2,735	2,735	$22\overline{3}$
25	4,828	4.826	$22\overline{1}$	15	2,717	2,714	151
2	4,691	4,679	130	4	2,675	2,674	$51\overline{2}$
10	4,590	примесь		45	2,598	2,598	$44\overline{1}$
15	4,473	4,479	$31\overline{1}$	45	2,569	2,570	440
50	4,268	4,270	112	4	2,456	2,548	133
50	4,094	4,094	221	25	2,522	2,526	531
15	3,976	3,975	131			2,519	350
30	3,737	3,738	112	65	2,470	2,473	152
		3,731	022		Λ.	2,469	332
60	3 ,6 54	3,655	$22\overline{2}$			2,4.68	530
		3,653	311	55	2,440	2,441	42 3
50	3,587	3,589	312			2,436	333
20	3,559	3,558	400	15	2,414	2,413	$44\overline{2}$
50	3,413	3,412	041	40	2,317	2,318	513
		3,408	331			2,317	35 <u>2</u>
30	3,316	3,314	132	60	2,306	2,308	261
5	3,259	3,265	$42\overline{1}$			2,306	$24\overline{3}$
60	3,048	3,046	132	10	2,231	2,229	204
30	2,998	2,999	331	15	2,157	2,157	004
40	2,962	2,964	$33\overline{2}$	15	2,133	2,135	224
	•	2,962	241			2,133	$26\overline{2}$

Рентгенографическое исследование монокристаллов пономаревита в камере РГНС-2 показало принадлежность минерала к моноклинной сингонии. Дифракционная группа C-/c, возможные пространственные группы $C\,2/c$ и Cc,Z=4. Структура минерала определена с использованием автоматического монокристального дифрактометра $P\,2_1$ (R=0,038), подтверждена пространственная группа $C\,2/c$. Исследование порошков проводилось на дифрактометре ДРОН-2, $Cu\,K_\alpha$ -излучение, с германием в качестве внутреннего эталона. Дебаеграмма (табл. 1) проиндицирована с использованием данных об интенсивностях рефлексов и параметров ячейки, измеренных на монокристалле. Непроиндицированная линия с d=4,59 Å отнесена к микропримеси тенардита (4,66 Å). Уточненные по дебаеграмме значения параметров ячейки: $a=14,73\,(2)$, $b=14,86\,(1)$, $c=8,93\,(1)$ Å, $\beta=104,9\,(1)^\circ$, $V=1889\,(5)$ ų.

По данным терморентгенографии минерал устойчив при нагревании на воздухе

до температуры 250 °C, при которой начинается его распад с образованием главным образом тенорита и сильвина, Распад завершается при 375 ± 25 °C.

Исследование на дериватографе "Orion" выполнено с кварцем в качестве разбавителя, α — β-превращению которого соответствует пик при 573 °C (рис. 2). Эндоэффект при 408 °C для корок и 406 °C для зерен характеризует разрушение минерала. С момента разрушения до максимальной температуры исследования (1000 °C) идет непрерывная потеря массы за счет выделения хлора.

Плотность, вычисленная в соответствии с реальной химической формулой, равна 2,72 г/см³, измеренная методом уравновешивания зерен минерала в жидкости (йодистый метилен + толуол) с помощью весов Вестфаля 2,78 (1) г/см³.

Минерал назван пономаревитом (ponomarevite) в честь вулканолога В.В. Пономарева (1940—1976 гг.), который был одним из первых исследователей возгонов БТТИ [4].

Благодарим Г.А. Ильинского за помощь в определении микротвердости минерала.

Институт вулканологии Дальневосточного отделения Академии наук СССР, Петропавловск-Камчатский Ленинградский государственный университет Поступило 1 IV 1987

ЛИТЕРАТУРА

1. Большое трещинное Толбачинское извержение / Под ред. С.А. Федотова. М.: Наука, 1984. 638 с. 2. Вергасова Л.П., Филатов С.К. — Зап. ВМО, 1982, т. 3, вып. 5, с. 562—565. 3. Вергасова Л.П., Филатов С.К., Серафимова Е.К., Старова Г.Л. — ДАН, 1984, т. 275, № 3, с. 714—717. 4. Серафимова Е.К., Пономарев В.В., Игнатович Ю.А., Перетолчина Н.А. — Бюл. вулканол. станций, 1979, № 56, с. 162—177.

УДК 549 + 669.2 + 553.311 (470.5)

МИНЕРАЛОГИЯ

В.В. МУРЗИН, В.П. МОЛОШАГ, Ю.А. ВОЛЧЕНКО

ПАРАГЕНЕЗИС МИНЕРАЛОВ БЛАГОРОДНЫХ МЕТАЛЛОВ В МЕДНО-ЖЕЛЕЗО-ВАНАДИЕВЫХ РУДАХ ВОЛКОВСКОГО ТИПА НА УРАЛЕ

(Представлено академиком В.И. Смирновым 14 III 1987)

В пределах платиноносного пояса Урала, фиксирующего согласно последним представлениями зону каледонской стабилизации с обстановкой, приближенной к платформенной [1, 2], издавна известны проявления вкрапленного медносульфиднотитаномагнетит-апатитового оруденения в массивах дифференцированных габброидов (габбро пироксеновые, оливинсодержащие и биотитсодержащие, диориты, габбро-диориты и др.). Основные рудные минералы представлены ассоциирующими борнитом, халькопиритом, титаномагнетитом и апатитом, присутствующими преимущественно в такситовых разностях габброидов в виде вкрапленников в различных количественных соотношениях.

В качестве примесей в борнит-халькопиритовых рудах давно установлены золото, серебро, папладий, теллур и другие элементы [3], однако их минеральные формы до настоящего времени оставались неизвестными. Характерная черта благороднометальной специализации руд — резкое преобладание золота и папладия над