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Abstract: Dellagiustaite, ideally Al2V2+O4, is a new spinel-group mineral from Sierra de 

Comechingones, San Luis, Argentina, where it is found associated with hibonite (containing 

tubular inclusions, 5–100 μm, of metallic vanadium), grossite, and two other unknown phases with 

ideal stoichiometry of Ca2Al3O6F and Ca2Al2SiO7. A very similar rock containing dellagiustaite has 

been found at Mt Carmel (northern Israel), where super-reduced mineral assemblages have 

crystallized from high-T melts trapped in corundum aggregates (micro-xenoliths) within 

picritic-tholeiitic lavas ejected from Cretaceous volcanoes. In the holotype, euhedral grains of 

dellagiustaite are found as inclusions in grossite. The empirical average chemical formula of 

dellagiustaite is (Al1.09V2+0.91V3+0.87Mg0.08Ti3+0.04Mn0.01)Σ3O4, but it may show limited replacement of V2+ 

by Mg and of V3+ by Al. As Al is the dominant trivalent cation, the ideal formula is Al2V2+O4 

according to the current IMA rules. Dellagiustaite shows the usual space group of spinel-group 

minerals (Fd 3� m, R1 = 1.46%) with a = 8.1950(1) Å. The observed mean bond lengths  

<T–O> = 1.782(2) Å and <M–O> = 2.0445(9) Å, the observed site scattering (T = 13.3 eps, M = 22.5 

eps), and the chemical composition show that dellagiustaite is an inverse spinel: T tetrahedra are 

occupied by Al3+, whereas M octahedra are occupied by V2+ and V3+, leading to the site assignment 

as TAlM( V�.��
��  V�.��

��  Al�.��
��  Mg0.08 Ti�.��

�� Mn0.01)O4. 

Keywords: dellagiustaite; spinel supergroup; oxyspinel subgroup; new mineral species; crystal 

structure; Sierra de Comechingones; Argentina; Mt Carmel; Israel 

 

1. Introduction 

A new classification has been introduced recently for the spinel supergroup [1], based on 

chemical information alone. It has two criteria: the cation to anion ratio (3:4) represented by the 

general formula AB2X4, the dominant charge and the dominant constituent (A or B). From a 

structural point of view, minerals of the spinel supergroup show a structure consisting on a 

heteropolyhedral framework of 4-fold and 6-fold polyhedra (T-sites and M-sites, respectively), the 

latter sharing half of the edges, which host A and B cations, whereas anions form a cubic 

close-packing and are four-fold coordinated. The new classification distributes 52 mineral species 

into three groups based on anion type (O, S or Se). Those mineral species having the above 

organization and oxygen as the packing anion are classified into the oxyspinel group, internally 
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subdivided in terms of dominant charge and dominant constituent: oxyspinel species with A2+B3+2O4 

formula belong to the spinel subgroup. Spinel structures frequently show cation order/disorder 

among the T- and M-sites, leading to a structural formula T(A1−iBi)M(AiB2−i)X4, with two extreme 

distributions corresponding to i = 0 (normal spinels) and i = 1 (inverse spinels). The new 

classification scheme, being based on chemical data only, does not take into account this feature. 

However, it is not a negligible one, as the value of i depends on equilibration temperature, oxygen 

fugacity, crystal growth kinetics, covalence effects and stabilization energies at the M-sites ([2] and 

references therein). Cation order–disorder phenomena in spinel-group minerals represent a 

non-convergent ordering transformation [3,4] and knowledge of the equilibrium energetics allows 

for the estimation of the equilibration temperature, from which geothermometric determinations can 

be obtained. The inversion parameter is also important because physical properties of spinel, such as 

magnetism, electrical conductivity, bulk modulus, thermal expansion, and compressibility, are 

largely affected by the order–disorder cation distribution [5]. Among the accepted V-bearing mineral 

species belonging to the spinel subgroup, three dominant compositions are known: coulsonite 

(Fe2+ V�
��O4) magnesiocoulsonite (Mg2+ V�

��O4) and vuorelainenite (Mn2+ V�
��O4), all having V3+ as the 

dominant B constituent, while A is a divalent element. Based on the X-ray absorption work in [6] and 

the optical studies in [7], the coordination of V3+ in oxides and silicates is likely to be octahedral and 

therefore we expect i = 0 in V3+-bearing spinels. However, the scenario can change if we consider 

different oxidation states for vanadium. Remarkably, vanadium oxidation state in spinels has been 

considered as an oxybarometer [8]. 

Dellagiustaite, V2+Al2O4, is a new mineral of the spinel supergroup. Its peculiarity resides in the 

fact that vanadium is the dominant A constituent, i.e. it is in the divalent state. Dellagiustaite 

therefore belongs to the oxyspinel group and the spinel subgroup. The mineral was found in rock 

samples coming from Sierra de Comechingones, San Luis, Argentina. The sample was provided by 

the mineral dealer Jorge Dascal (Buenos Aires, Argentina), who reported that the material was 

collected at Sierra de Comechingones, San Luis, Argentina. Unfortunately, no more details on the 

locality were made available. 

Recently, dellagiustaite has also been found in late-stage pyroclastic ejecta of small Cretaceous 

basaltic volcanoes exposed on Mt Carmel (Israel); aggregates of hopper-formed corundum crystals 

(Carmel Sapphire TM) are common in the tuffs of these volcanoes and in associated alluvial deposits, 

mainly in the Kishon River [9–12]. Later stage ejecta show the crystallization sequence: corundum + 

Liq → (low-REE) hibonite → grossite + spinel ± krotite → Ca2Al3O6F + fluorite. Spinel grains are  

V-rich but classifiable as spinel sensu lato. However, a new retrieval contained high-V spinel grains 

whose compositions fit with dellagiustaite. 

Dellagiustaite is named to honor Prof. Antonio Della Giusta (University of Padova, Italy, born 

1941), an expert on the crystal chemistry and cation order–disorder phenomena in spinel group 

minerals. The new mineral and mineral name have been approved by the Commission on New 

Minerals, Nomenclature and Classification, International Mineralogical Association (IMA 2017-101). 

The holotype material (the refined crystal and a rock chip) is deposited in the mineral collections of 

the Museo delle Collezioni di Mineralogia, Gemmologia, Petrologia e Giacimentologia, 

Dipartimento di Scienze della Terra “A. Desio”, Università di Milano, under the catalogue number  

MCMGPG-H2017-001, and in the mineral collection of A. and R. Pagano with a catalogue number 

12794C. 

2. Occurrence and Paragenesis  

Sierra de Comechingones is a 100 km long formation at the southern sector of the Sierra Grande 

de Cordoba. It is composed of Neoproterozoic metamorphic rocks, mainly high grade migmatites, as 

well as Paleozoic granitoids. The Comechingones Metamorphic Complex, located between the 

Achala and Alpa Corral batholiths, encompasses cordierite-bearing diatexites and stromatic 

migmatites (Yacanto Group), with intercalations of mafic and ultramafic rocks (San Miguel Group), 

and garnet gneisses, marbles and kinzigites at granulite facies [13,14]. However, the metamorphic 

grade is not high enough for the formation of the peculiar mineral assemblage in which 
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dellagiustaite is found. In fact, dellagiustaite is associated with hibonite (CaAl12O19) and grossite 

(CaAl4O7), which constitute the modal composition of the rock. Hibonite crystals are remarkable, 

and it is common to find cm-size purple euhedral phenocrysts (Figure 1).  

 

Figure 1. Section of the rock sample showing the hibonite phenocrysts (deep purple) in a matrix of 

grossite (violet) as well as other fluorine-bearing calcium aluminates and dellagiustaite. Field of view 

(FOV), 1.64 cm. 

Grossite occurs as interstitial light violet crystals up to a few millimeters across. Other phases 

present are gehlenite, aluminum-rich perovskite and a new calcium aluminate with ideal formula 

(Ca2Al3FO6) corresponding to the synthetic phase calfidine [15,16]. Hibonite and grossite crystals 

frequently have tubular inclusions of a V-rich phase that is isostructural with a non-stoichiometric 

vanadium oxide with formula approximately of V2O. These inclusions are related to pores running 

in the same direction and containing hexagonal plates of medium-crystalline graphite, which will be 

described in future publications. Dellagiustaite occurs in fractured hibonite and grossite crystals 

(Figures 2a,b and 3). Tubular inclusions (Figure 4) resemble sulfide tubular inclusions within  

Al-augite pyroxenite xenoliths in undersaturated continental basalts. These inclusions could have 

formed due to immiscibility of sulfide melts, which nucleated on crystal surfaces ([17] and references 

therein). 

  
(a) (b) 

Figure 2. The type specimen with dellagiustaite: (a) euhedral crystals (dgs) are embedded in grossite 

containing also skeletal crystals of high-Al perovskite (pv); FOV 1.72 mm; and (b) metallic vanadium 

(V) rimmed by dellagiustaite in grossite (grs) light violet matrix. Lower right angle is a portion of 

hibonite (hib) phenocryst. FOV, 1.72 mm. 

At Mt Carmel, dellagiustaite is associated with V-rich hibonite, grossite, krotite, Ca2Al3O6F and 

fluorite, as well as an unidentified phase with stoichiometry close to a (K,V,Mg,Na)-rich Ca-depleted 

grs 
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hibonite. The remarkable similarity of the assemblages from the two localities is also confirmed by 

the presence of metallic V and V alloys as spherules, rods and dense branching structures in hibonite 

and grossite.  

 

Figure 3. Backscattered Secondary Electrons Scanning Electron Microscopy (BSE-SEM) image of 

dellagiustaite (dgs) in the type specimen, rimming metallic V (V) included in grossite (grs). Lower 

darker right angle is hibonite (hib). Grossite shows veins of Na-rich Ca2Al3FO6. 

 

Figure 4. SEM-BSE image of dellagiustaite (bright idiomorphic crystals) in the type specimen and 

associated minerals (metallic V small bright spots and long darker trails related to tubular inclusions 

plunging deeper into the host, grossite lighter grey in upper half of the image, hibonite darker grey in 

lower part of the image). Dellagiustaite is associated with a sodium-rich Ca2Al3O6F phase under study. 

V 
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Figure 5 reports the textural relations between the associated minerals at Mt Carmel. The rocks 

of Mt Carmel are also notable due to the significant amount of a V-Al alloy. This is the first reported 

in situ terrestrial Al-alloy, which probably is representative of the most reducing conditions yet 

documented on Earth. 

 

Figure 5. Optical image (a,b) and X-ray map image (c,d) of sample from Mt Carmel showing 

millimeter-size hibonite (hib) flat crystals embedded in a matrix of grossite (grs) and associated 

minerals (dellagiustaite, dgs: krotite, kro; V-Cr alloy, V). Smaller spinel grains are richer in the 

dellagiustaite molecule. Hibonite grains are richer in K, Na, Mg and V, and depleted in Ca in the rims 

(zone marked with red arrow). (b,d): Enlarged view of the central-right part of the sample reported 

in Figure 5a and c, showing optical image (b) and X-ray map (d). 

3. Mineral Description and Physical Properties 

Dellagiustaite exhibits idiomorphic morphology (Figure 2a) with frequent {111} forms; the 

crystals (up to 200 μm) are euhedral and/or subhedral and commonly overgrow tubular inclusions 

of a non-stoichiometric vanadium oxide. 

Dellagiustaite crystals are black, opaque, show metallic luster and black streak, and are not 

fluorescent. Mohs hardness is ca 6.5–7, analogous to spinel. Tenacity is brittle and cleavage is not 

observed. Parting is irregular and conchoidal and fracture is uneven and splintery. Density could 

not be determined due to the frequent presence of vanadium inclusions in the crystals. Calculated 

density is 4.6 g·cm−3 (from ideal formula and unit-cell parameters from X-ray single-crystal data). 

In reflected light, the mineral is light grey and isotropic. In the holotype, no evidence of growth 

zonation is observed. Reflectance measurements were performed in air using an MPM-200 Zeiss 

microphotometer equipped with an MSP-20 system processor on a Zeiss Axioplan ore microscope. 

Filament temperature was approximately 3350 K. An interference filter was adjusted, in turn, to 

a b 

c d 
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select four wavelengths for measurement (471.1, 548.3, 586.6, and 652.3 nm). Readings were taken for 

specimen and standard (SiC) maintained under the same focus conditions. The diameter of the 

circular measured area was 0.07 mm. Measurements of reflectance (in %) are 14.1 (471.1 nm), 13.8 

(548.3 nm), 13.6 (586.6 nm), and 13.7 (652.3 nm). 

4. Chemical Data 

The chemical composition of dellagiustaite was determined using a JEOL 8200 Super Probe 

electron microprobe analyzer (EMPA) operating in X-ray wavelength-dispersive mode 

(WDS-EMPA) at the Department of Earth Sciences, University of Milan, Milan, Italy. Operating 

conditions included an accelerating voltage of 15 kV, a beam current of 5 nA, and a beam diameter of 

1 μm, peak counting-time 30 s and 10 s in both peak sides background. Corrections of the raw data 

were made with the ΦρZ procedures [18]. Spectral lines, analyzing crystals and standards used 

were: F Kα (LDE1, hornblende 123), S Kα (PET, galena), V Kα (LIF, metallic vanadium), Sr Kα (PET, 

celestine), Na Kα (TAP, omphacite 154), Ti Kα (LIF, ilmenite 149), Mn Kα (LIF Kα, rhodonite), Cl Kα 

(PET, scapolite), Mg Kα (TAP, olivine 153), La Lα (LIF, synthetic LaPO4), Fe Kα (LIF, fayalite 143), K 

Kα (PET, K-feldspar), Al Kα (TAP, grossular), Ce Lα (LIF, synthetic CePO4), Ca Kα (TAP, grossular), 

Si Kα (TAP, grossular), Cr Kα (LIF, metallic Cr), and Ba Lα (LIF, sanbornite). Overlap corrections of 

V on Ti and Cr on V were applied. Detection limits (in ppm) were F 599, S 259, V 299, Sr 350, Na 240, 

Ti 291, Mn 331, Cl 119, Mg 146, La 598, Fe 292, K 103, Al 180, Ce 588, Ca 147, Si 143, Cr 325, and Ba 

321. The analytical results for dellagiustaite (mean results of eight spot analyses) are given in Table 1. 

Elements sought but not detected in dellagiustaite were Si, Fe and Cr. VO/V2O3 ratio was calculated 

to obtain 3 atoms per formula unit (apfu). Ti was considered to be all as Ti3+ because the presence of 

V2+ implies that all the Ti must be trivalent at reduced conditions. 

Table 1. Chemical analytical data (in wt.%) for dellagiustaite. 

Constituent Mean Range Probe Standard 

MnO 0.20 0.14–0.31 Rhodonite 

MgO 1.82 1.17–2.24 olivine   

VO § 32.38 29.73–33.15  

V2O3 34.83 33.14–40.67 V metal 

Al2O3 29.55 24.47–31.18 Grossular 

Ti2O3 1.66 1.18–2.32 Ilmenite 

Total 100.44   
§ calculated by stoichiometry. 

Associated minerals were also analyzed and the results of representative analyses are reported 

in Table 2.  

Samples from Mt Carmel were analyzed at the CCFS/GEMOC, Earth and Planetary Sciences, 

Macquarie University, Sydney, Australia with a Zeiss EVO MA15 scanning electron microscope 

operating in X-ray energy-dispersive mode (EDS) using an accelerating voltage of 15 keV and a 

beam current of 1 nA. The SEM-EDS employs a standardless analysis technique, with peak positions 

recalibrated when necessary by analysis of a copper grid. The results are closely comparable to  

WDS-EMPA analysis for major elements and for minor elements at levels >1 wt.% (cf. [12]). The 

analytical results for dellagiustaite in Mt Carmel are given in Table 3. 

 V�.��
��  V�.��

��  Mg0.08 Ti�.��
�� Mn0.01 

The empirical formula of dellagiustaite from the type locality, based on 4 O apfu, is 

(Al1.09 V�.��
��  V�.��

�� Mg0.08 Ti�.��
�� Mn0.01)Σ3O4. Based on the new classification of the spinel supergroup [1], 

dellagiustaite therefore belongs to the oxyspinel group (AB2O4). According to the dominant valence 

and then the dominant B constituent, dellagiustaite belongs to the spinel subgroup 2–3 (A2+ B�
�� O4) 

because the B constituents (V3+ + Al) amount to 1.96 apfu. The mineral species is identified by the 

dominant A-cation, in this case V2+ (0.91 apfu). Because Al > V3+, the ideal formula of dellagiustaite is 

therefore V2+Al2O4, which require Al2O3 60.25 wt.% and VO 39.75 wt.%. However, as discussed 
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below, the V3+ abundance is important for cation ordering and other features. If a crystal with 

composition V3+ > Al were to be found, it would represent a successive member of the spinel 

subgroup, however with a new root-name. Dellagiustaite can be slightly zoned due to limited  V��
�� 

Mg substitution in the crystals from the type locality (Table 1), whereas significant variation is 

observed in samples from Israel (Table 3). 

Table 2. Representative chemical compositions (in wt.%) of phases associated with dellagiustaite in 

samples from Sierra de Comechingones. 

 Dgs * Spinel Spinel Spinel Grs *** Grs Hib Hib **** 
Ca2Al3  

O6F 
Pv ** 

Rock/Point 
12794B-

2 

12794B-

7 

12794B-

10 

12794B-

11 

12794B-

19 

12794B-

5 

12794B-

4 

12794B-

6 
12794B-8 

12794B

-12 

No. Oxy † 4 4 4 4 7 7 19 19 7 3 

SiO2 0.02 0.04 0.00 0.04 0.14 0.06 0.03 0.09 1.16 3.29 

TiO2 0.73 0.00 b.d.l. b.d.l. 0.01 b.d.l. 0.09 0.35 0.13 35.16 

Al2O3 32.63 39.61 38.47 50.51 77.35 77.35 90.12 85.24 54.35 13.46 

Ti2O3 0.66 1.37 0.81 0.72 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 

V2O3 34.88 28.01 32.43 20.93 0.52 0.74 2.41 6.12 0.27 4.86 

VO 23.50 16.68 10.71 3.83 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.48 

CrO 1.14 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.00 b.d.l. b.d.l. 

MnO 0.41 0.85 1.05 1.36 0.00 b.d.l. 0.05 0.01 b.d.l. b.d.l. 

MgO 7.23 12.99 16.64 22.87 0.08 0.03 0.18 0.63 0.05 0.05 

CaO 0.57 0.80 0.91 0.68 21.65 21.84 8.50 8.41 36.33 38.74 

SrO b.d.l. 0.06 b.d.l. 0.08 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 

BaO b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.06 b.d.l. b.d.l. b.d.l. b.d.l. 

Na2O~ 0.17 0.07 0.05 b.d.l. b.d.l. 0.07 b.d.l. 0.04 2.99 0.32 

K2O 0.01 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.66 0.35 

La2O3 0.07 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.07 b.d.l. 0.00 

Ce2O3 b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 0.12 b.d.l. 0.10 b.d.l. 

F b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. b.d.l. 5.42 b.d.l. 

TOTAL 102.02 100.51 101.09 101.03 99.76 100.16 101.51 100.97 101.46 96.38 

O=F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.28 0.00 

TOTAL 102.02 100.51 101.09 101.03 99.76 100.16 101.51 100.97 99.18 96.38 
             

Si 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.05 0.07 

Ti4+ 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.60 

Al 1.12 1.32 1.26 1.54 3.96 3.96 11.73 11.31 2.99 0.36 

Ti3+ 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

Cr3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

V3+ 0.81 0.64 0.72 0.43 0.02 0.03 0.21 0.55 0.01 0.10 

V2+ 0.61 0.42 0.27 0.09 0.00 0.00 0.00 0.00 0.00 0.00 

Cr2+ 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mn2+ 0.01 0.02 0.02 0.03 0.00 0.00 0.01 0.00 0.00 0.00 

Ca 0.02 0.02 0.03 0.02 1.01 1.02 1.01 1.01 1.82 0.94 

Mg 0.31 0.55 0.69 0.88 0.01 0.00 0.03 0.11 0.00 0.00 

Na 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.27 0.01 

K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.01 

Sum 3.01 2.99 3.00 3.00 5.01 5.02 13.00 13.03 5.18 2.10 
             

Ba 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Sr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

La 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ce3+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.00 

Notes: * dgs, dellagiustaite; ** pv, high-Al perovskite, grains are too small for the electron probe 

analyses; *** grs, grossite; **** hib, hibonite; † No. Oxy, number of oxygen atoms per formula unit 

used for normalization. Spinel grains: #2 rim of V-alloy; #7; #10 core and #11 rim of a single 

idiomorphic grain in grossite. 
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Table 3. Representative average chemical analyses (in wt.%) for dellagiustaite, hibonite and grossite 

from Mt Carmel. 

Mineral Dellagiustaite Hibonite Grossite 

n. Points 15 Min. Max. sd. 3 Min. Max. Sd. 5 Min. Max. Sd. 

No. Oxy 4    19    7    

SiO2 b.d.l.    b.d.l.    0.05 0.00 0.27 0.12 

Al2O3 34.45 27.00 37.79 3.12 85.59 82.37 87.73 2.84 77.06 76.55 77.34 0.30 

TiO2 b.d.l.    b.d.l.    b.d.l.    

Cr2O3 0.66 0.00 2.72 0.89 b.d.l.    b.d.l.    

MnO 0.33 0.00 1.01 0.34 b.d.l.    b.d.l.    

V2O3 31.27 28.51 36.99 2.27 5.91 3.67 9.60 3.22 0.82 0.64 1.07 0.16 

VO 21.42 13.65 30.26 4.83         

MgO 8.61 2.21 13.95 3.42 0.10 0.00 0.31 0.18 b.d.l.    

CaO 0.66 0.28 0.83 0.15 8.18 7.91 8.60 0.37 22.05 21.80 22.16 0.15 

Na2O~ b.d.l.    b.d.l.    0.02 0.00 0.10 0.04 

K2O b.d.l.    0.22 0.00 0.65 0.37 b.d.l.    

TOTAL 97.40    100.00    100.00    

Si 0.00    0.00    0.00    

Ti4+ 0.00    0.00    0.00    

V3+ 0.76    0.54    0.03    

V2+ 0.58    0.00    0.00    

Al 1.23    11.44    3.95    

Cr3+ 0.02    0.00    0.00    

Mn2+ 0.01    0.00    0.00    

Ca 0.02    0.99    1.03    

Mg 0.39    0.02    0.00    

Na 0.00    0.00    0.00    

K 0.00    0.03    0.00    

Sum 3.00    13.02    5.01    

Along with dellagiustaite, other spinel grains in samples from the same locality can occur and 

they show zonation from V-rich cores (close in composition to dellagiustaite), and increasing Mg 

and Al towards the rim of the crystals, suggesting that substitution of V��
��Mg is more pronounced 

than V��
��Al (Table 2). In Sierra de Comechingones, hibonite is rich in V3+ (ca. 0.21–0.24 apfu), while 

grossite is depleted in V3+ (<0.03 apfu). 

At Mt Carmel, dellagiustaite is generally richer in Mg and is highly zoned with rims being 

richer in Mg and poorer in V2+, while V3+ and Al maintain an almost constant ratio. Smaller grains are 

richer in V2+, as are micrometer-sized inclusions included in hibonite and grossite.  

Hibonite at Mt Carmel is rich in V and is zoned to rims that are depleted in Ca and richer in V, K 

and Na (Table 3). This phase, closely related to hibonite, is presently under study. Grossite at Mt 

Carmel is very similar in composition to that of Sierra de Comechingones (Table 3). Krotite (Table 4) 

and Ca2Al2O5 are also observed at Mt Carmel but not observed at Sierra de Comechingones yet. 

In both localities, a high-Al perovskite phase is present as dendritic crystals (Tables 2 and 4). 

The substitution of Ti4+ by V3+ and Al can be coupled with some H, involving contemporaneous 

vacancies at A sites. Further study is necessary but is hampered by the small size of these crystals. 
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Table 4. Representative average chemical analyses (in wt.%) for krotite, perovskite and (K,Na,V)-rich 

hibonite at Mt Carmel. 

Comment Krotite Perovskite K,Na,V-Rich Hibonite 

n. Points 3 Min. Max. Sd. 1 9 Min. Max. Sd. 

No. Oxy 4    3 19    

SiO2 0.68 0.55 0.77 0.12 0.32 b.d.l.    

Al2O3 63.14 62.64 63.47 0.43 3.52 85.10 83.27 87.60 1.49 

TiO2 b.d.l.    39.05 b.d.l.    

Cr2O3 b.d.l.    1.37 b.d.l.    

MnO b.d.l.    b.d.l. b.d.l.    

V2O3 0.19 0.00 0.56 0.32 5.77 5.04 3.67 5.77 0.78 

VO     b.d.l.     

MgO b.d.l.    b.d.l. 2.24 0.68 4.45 1.27 

CaO 35.72 35.56 36.02 0.26 39.22 2.39 0.00 6.47 2.58 

Na2O~ b.d.l.    b.d.l. 1.24 0.19 2.84 1.04 

K2O b.d.l.    b.d.l. 3.93 1.89 6.84 1.57 

TOTAL 99.05    89.25* 99.94    

Si 0.02    0.01 0.00    

Ti4+ 0.00    0.70 0.00    

V3+ 0.00    0.11 0.46    

V2+ 0.00    0.00 0.00    

Al 1.96    0.10 11.47    

Cr3+ 0.00    0.02 0.01    

Mn2+ 0.00    0.00 0.00    

Ca 1.01    0.99 0.29    

Mg 0.00    0.00 0.38    

Na 0.01    0.00 0.28    

K 0.00    0.00 0.57    

Sum 2.98    1.93** 12.61    

* Plus ZrO2 = 6.46 wt.%, Nb2O5 1.70 wt.%, UO2 0.98 wt.%, ThO2 0.59 wt.%, F 1.04 wt.%, O–F  0.044, 

total 99.58 wt.%; ** Zr 0.08 apfu, Nb 0.02 apfu, U 0.01 apfu, F 0.08 apfu. 

4. X-Ray Crystallography 

X-ray diffraction data for dellagiustaite were obtained by Debye–Scherrer geometry using an 

Oxford Diffraction Xcalibur diffractometer at the Department of Earth Sciences, University of Milan, 

Milan, Italy, operating at 50 kV and 30 mA, with a monochromatized MoK radiation and equipped 

with a CCD detector at 80 mm from the sample position. The one-dimensional pattern was refined 

by the Le Bail method using JANA2006 [19]. Indexed d values and relative peak heights above 

background are given in Table 5. Refined cell parameters are a = 8.1877(10) Å, V = 548.89(6) Å3. 

Table 5. X-ray powder diffraction pattern for dellagiustaite (reflections with I > 3%). Observed 

interplanar spacings (dobs in Å) and calculated interplanar spacings (dcalc in Å) and observed 

intensities (I) are reported. 

dobs dcalc I h k l 

4.727 4.731 5 1 1 1 

2.895 2.897 5 2 0 2 

2.469 2.471 19 1 1 3 

2.047 2.049 58 0 0 4 

1.576 1.577 38 3 3 3 

   1 1 5 

1.447 1.449 100 4 0 4 

1.249 1.250 8 3 3 5 

1.234 1.235 6 2 2 6 

1.182 1.183 27 4 4 4 

1.066 1.067 18 3 1 7 

   5 3 5 

1.023 1.024 87 0 0 8 
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0.945 0.946 16 5 1 7 

   5 5 5 

0.939 0.940 5 6 2 6 

0.915 0.916 21 4 0 8 

0.873 0.874 18 6 4 6 

0.858 0.859 8 3 1 9 

0.836 0.836 35 4 4 8 

0.803 0.804 12 6 2 8 

   2 0 10 

A small dellagiustaite fragment was extracted from the polished section. X-ray single-crystal 

intensity data were collected using the same instruments and conditions. A combination of ω/φ 

scans, with step scan 1° and exposure time 30 s per frame at low theta angles, and duplicating 

counting time at high-theta angles, was used to maximize redundancy and data coverage. A second 

data collection was performed on a V-rich spinel grain coming from another Argentinian sample 

corresponding to the spinel composition #7 reported in Table 2, collecting images at 20 s per frame. 

Crystal data and details of the intensity data collection and refinement are reported in Table 6. 

The structure of dellagiustaite was refined using SHELX-97 [20] starting from the atomic 

coordinates of magnetite. Scattering curves for fully ionized chemical species were used at cation 

sites; neutral vs. ionized scattering curves were used at the anion sites. This strategy allowed 

accounting for the ionization of anions. Scattering curves were taken from the International Tables 

for X-ray Crystallography [21]. The Fourier difference map did not reveal any maximum over 0.28 

e−Å3. Refined atom coordinates and equivalent isotropic displacement parameters are reported in 

Table 7. Selected interatomic distances and bond angles are given in Table 8. Crystallographic 

information files and lists of observed and calculated structure factors for both crystals are available 

as Supplementary Materials (Files: dellagiustaite.cif/.fcf and 12794B.cif/.fcf). 

The anisotropic displacement parameters refined for the M sites showed a particular behavior, 

depicted as a prolate thermal ellipsoid. Therefore, several tests were undertaken to explore a 

possible decrease of symmetry but none reported a better fit for solving this feature. The prolate 

character of ellipsoid was reduced (although not removed) in the V-rich spinel and therefore it could 

be related to the V content. 

Table 6. Crystal and experimental details for dellagiustaite and V-rich spinel from Sierra de 

Comechingones. 

Crystal Data 

 dellagiustaite V-rich spinel 

Crystal size (mm3) 0.149 × 0.137 × 0.095 0.120 × 0.100 × 0.060 

Cell setting, space group Cubic, Fd3�m Cubic, Fd3�m 

a (Å) 8.1950(1) 8.1754(2) 

V (Å3) 550.36(1) 546.42(2) 

Z 8 8 

Data Collection and Refinement 

Radiation, wavelength (Å) Mo Kα, λ = 0.71073 Mo Kα, λ = 0.71073 

Temperature (K) 293 293 

2θmax (°) 72.1 72.2 

Measured reflections 3605 3579 

Unique reflections 85 85 

Reflections with Fo > 4σ (Fo) 81 77 

Rint 0.0194 0.0337 

Rσ 0.0055 0.0092 

Range of h, k, l 
−13 ≤ h ≤ 13,  

−10 ≤ k ≤ 10,  

−13 ≤ h ≤ 13,  

−10 ≤ k ≤ 10,  
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−12 ≤ l ≤ 12 −13 ≤ l ≤ 13 

R (Fo > 4σ (Fo)) 0.0140 0.0166 

R (all data) 0.0151 0.0215 

wR (on F2) 0.0339 0.0343 

GooF 1.245 1.402 

Number of least-square 

parameters 
11 11 

Maximum and minimum 

residuals (e/Å3) 

0.29 (at 0.74 from M),  

−0.56 (at 0.68 from M) 

0.30 (at 0.83 from M),  

−0.27 (at 1.66 from O) 

Table 7. Atom, site occupancies (site occ.), refined atom coordinates and equivalent isotropic 

displacement parameters for dellagiustaite and V-rich spinel. 

Site Site Occ. x/a y/b z/c Ueq 

Dellagiustaite 

T 
Al3+ 0.96(2)  

V3+ 0.04(2) 
1/8 1/8 1/8 0.0099(4) 

M 
Al3+ 0.04(3)  

V3+ 0.96(3) 
1/2 1/2 1/2 0.0154(2) 

O 
O0 0.90(17)  

O= 0.10(17) 
0.25054(11) 0.25054(11) 0.25054(11) 0.0108(5) 

V-rich spinel 

T 
Al3+ 0.97(2)  

V3+ 0.03(2) 
1/8 1/8 1/8 0.0101(3) 

M 
Al3+ 0.44(2)  

V3+ 0.56(2) 
1/2 1/2 1/2 0.0111(2) 

O 
O0 0.82(13)  

O= 0.18(13) 
0.25612(10) 0.25612(10) 0.25612(10) 0.0129(5) 

Table 8. Selected interatomic distances (Å) in dellagiustaite and V-rich spinel. 

 Dellagiustaite V-Rich Spinel 

T–O  4 1.782(2) 1.8567(14) 

M–O  6 2.0445(9) 1.9951(7) 

5. Results and Discussion 

5.1. Description of the Crystal Structure 

Site populations for dellagiustaite and V-rich spinel have been derived from the unit formula 

(for V-rich spinel we used the analysis #7 from Table 2) and are reported in Table 9. The refined  

<M–O> distance of 2.045 Å is somewhat longer than the expected 2.038 Å, possibly due to the 

presence of V2+ at the octahedral sites, as estimated by WDS-EMPA; in fact, the values for V2+-O in 

octahedral coordination were taken from the VO structure [22], whereas the other bond distances are 

taken from [23] except for Ti3+-O, which was taken from the Ti2O3 structure [24]. The V2+-O value of 

2.129(4) Å, obtained statistically in [25], is certainly too high and leads to a higher disagreement 

(calculated M–O mean bond length using such value would be 2.069 Å). Sutton et al. [8] found an 

almost zero intensity for the pre-edge peak in V2+ glasses by XANES and concluded that it is likely 

that V2+ occurs in a highly symmetrical octahedral site in these glasses. Therefore, we have kept both 

V3+ and V2+ in octahedral coordination when calculating the distribution of cations among the sites. 

Overall, the agreement in terms of site scattering (in electrons per site, eps) with the chemical 

analyses is within 3% and, for mean bond lengths, the difference is about 0.006 Å. While the V-rich 

spinel shows an intermediate degree of inversion (i = 0.53), dellagiustaite is fully inverted. 
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Table 9. Site occupancies (site scattering (s.s.) and electrons per site (eps)) and mean bond-lengths 

(m.b.l., Å) for dellagiustaite and V-rich spinel. 

Site Site Occupancies (apfu) 
s.s. (eps) m.b.l. (Å)  

RefinedCalculatedRefinedCalculated 

Dellagiustaite     

T 1 Al3+  13.4(2) 13 1.782(2) 1.774 

M 
0.88 V3+ + 0.91 V2+ + 0.09 Al3+ + 0.08 Mg + 0.03 Ti3+ + 0.01 

Mn2+ 
22.51(3) 21.78 2.045(5) 2.038 

V-Rich Spinel     

T 0.53 Al3+ + 0.47 Mg 13.3(2) 12.53 1.857(2) 1.864 

M 0.80 Al3+ + 0.64 V3+ +0.43 V2+ + 0.08 Mg + 0.03 Ti3+ + 0.02 Ca 18.6(2) 18.19 1.995(1) 1.989 

Dellagiustaite is therefore an inverse spinel. Besides being V3+-rich, it cannot be classified as a 

“vanadium coulsonite” because that would require Al < V3+. In addition, coulsonite is a normal spinel. 

We are looking carefully through our samples in search for spinel grains with higher V-contents, 

which would require disordering of V3+ over T- and M-sites and would represent a new spinel 

species with a new root-name.  

The behavior of prolate thermal ellipsoids of the M site would seem to show that the spinel 

structure has some difficulty in hosting V cations with two valences, when V is a dominant 

component. In fact, Bosi et al. [26] found a limited accommodation of V4+ in the MgAl2O4-Mg2V4+O4 

series and concluded that the distribution of V valences in spinels does not exclusively reflect 

oxygen fugacity, but also depends on the activity and solubility of all chemical components in the 

crystallization environment. Bosi et al. [26] also concluded that the inverse cation distribution can 

influence the incorporation of V4+, being favored in inverse spinels. Apparently, this is also observed 

for V2+ in our samples.  

On the other hand, Sutton et al. [8] observed a slight compositional dependence of the oxidation 

state of V with the composition of glasses, with more highly reduced V in low-Ca glasses. The 

zoning observed in spinel (Table 2) seems to support this hypothesis as zoning encompasses an 

oxidation of V as well as the crystallization of more Ca-rich phases due to the fractional 

crystallization of more Al-rich phases like hibonite. 

It is worth noting that TAlM(V2+V3+)O4 is a synthetic compound that has been reported to show a 

charge ordering (CO) phase transition with rhombohedral distortion along [111] of the cubic cell (α 

decreases from 60° to ca. 59° below 427 °C) [27]. The CO structure is converted at P > 23 GPa to the 

cubic structure, which does not revert back to the rhombohedral form on decompression [28]. In the 

rhombohedral phase, three distinct type of sites are observed for vanadium: V1, V2 and V3. 

Molecular groups made of six V3-sites and one V2-sites form heptamers with short V-V distances 

(V2-V3 = 2.8238(2) Å and V3-V3 = 2.6740(1) Å) and antibonding distances (V3-V3 = 3.0850(1)Å), while 

V1–V3 are also in a non-bonding configuration of 3.0001(2) Å [28]. Recently, this model has been 

discussed proposing alternatively the presence of trimers (V�
��) and tetramers (V�

��) rather than V�
��� 

heptamers, by allowing the shift of V2 atoms along [111] in a polar R3m model obtained by PDF 

using X-ray diffraction powder data [29]. The trimers were also considered by Talanov et al. [30] in 

their density functional theory study of the crystal chemical analysis of V–O bond lengths of 
TAlM(V2+V3+)O4. 

In dellagiustaite, we observed a cubic structure at room T, with no evidence of superlattice 

reflections at ½ [111]. In the cubic model the V-V distances are indeed all equivalent (2.89738(5) Å in 

this work; 2.92 Å in [27]). However, the elongated thermal ellipsoids along [111] in the mixed 

tetrahedra-octahedra layers, and along (100) in the octahedra layers (Figure 6c–e) are an indication of 

static disorder at the M-sites, possibly indicating a sort of frustrated charge ordering. Our  

single-crystal data allowed an accurate determination of the atomic displacement parameters (adp); 

this is not possible with the previous experimental data, all of which are from powdered synthetic 

run products. 



Minerals 2019, 9, 4 13 of 16 

 

In dellagiustaite, charge ordering possibly could be frustrated at room T due to the presence of 

minor amounts of Al at the M sites. In fact, it has been described that doping of AlV2O4 by Cr3+ 

frustrates the CO with the generation of microdomains (as small as 10–20 nm) observed by electron 

diffraction [31]. It could be worthwhile studying dellagiustaite by electron diffraction to test for the 

presence of CO domains. 

 
  

(a) (b) (c) 

 

 
(d) (e) 

Figure 6. The structure of AlV2O4 (redrawn from [28] (a,b) compared with dellagiustaite in this work 

(c–e)): (a) the rhombohedral phase projected onto (0–10); (b) the cubic frustrated phase projected 

onto (0–11); (c) dellagiustaite projected onto (0–11); (d) dellagiustaite showing local coordination 

details and static disorder of V atom positions that alternate along [111]; and (e) the structure of 

dellagiustaite projected onto (111) showing the disorder of V atoms within the plane, related to 

statistical configurations of three V-bonded and three anti-bonded groups. Thermal ellipsoids 

plotted at 95% probability with Vesta 3.0 [32]. Al in four-fold coordination (blue navy) and vanadium 

(2+ and 3+) in six-fold coordination (red). Green = O. There are three symmetrically different V sites 

in the rhombohedral phase but only one in the cubic. The single crystal data on dellagiustaite shows 

the adp values of V atoms compatible with static disorder (domains?) or dynamic disorder, in the 

cubic phase. The disorder resembles the low-T configuration. 

5.2. Conditions of Formation 

The genesis of dellagiustaite at Sierra de Comechingones is difficult to decipher, mainly because 

of the missing information about the exact location of the outcrop and the related rocks. 

Furthermore, the paragenesis is rather uncommon: the rock is mostly composed of Al2O3 and CaO, 

with minor other components (mostly V2O3 and even lesser amounts of TiO2, Na2O and F). The 

almost complete absence of SiO2 also makes the paragenesis rather unusual. The dominant mineral 

phases are hibonite and grossite. Hibonite is a constituent of some refractory Calcium-Aluminum 

Inclusions (CAIs) in carbonaceous meteorites, commonly accompanied by grossite and spinel, 

crystallized early in the evolution of the solar nebula. Grossite has been found in very few localities 
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but is also a relatively frequent mineral phase in CAIs. However, other aspects are even more 

puzzling. In particular, the presence of almost pure vanadium alloys with requires extremely 

reducing conditions (Δ IW, −9, where IW = iron-wustite buffer).  

The fact that very similar rocks have been recently described from Mt Carmel (northern Israel) 

makes its origin even more interesting. The rocks in Israel contain super-reduced mineral 

assemblages, which crystallized from high-T melts trapped in corundum aggregates 

(micro-xenoliths) ejected from Cretaceous volcanoes of picritic tholeiite composition [9,10]. In these 

rocks, highly reduced minerals have been described, such as moissanite (up to 4 mm long; larger 

than those reported in [33]), tistarite, khamrabaevite, and gupeiite along with native vanadium, and 

have been interpreted as the result of interaction between deep-seated magmas and CH4 ± H2 fluids 

in volcanic plumbing systems, producing local ultra-reducing conditions [9–12]. The Argentinian 

rocks containing dellagiustaite are very similar to type-DF pockets in Mt Carmel, although, in the 

dellagiustaite-bearing rocks, the vanadium alloy is included in both hibonite and grossite and has 

tubular-cylindrical shapes. In addition, corroded laths of corundum included in hibonite have been 

observed in some Mt Carmel material, but not in the Argentinian samples; the rock containing 

dellagiustaite may represent a more calcic composition.  

Hibonite and grossite are rather rare minerals in terrestrial occurrences. Hibonite originally was 

described in the Esiva alluvial deposits (Madagascar [34]), probably derived from nearby deposits of 

thorianite bearing skarns in granulite belts of Madagascar and Tanzania [35]. In the Madagascar 

occurrences, hibonite replaces corundum and spinel in corundum + spinel + scapolite assemblages. 

Another occurrence of hibonite has been reported in Ca-Mg-Al granulitic xenoliths in basanites of 

the Kwa Nthuku volcano in the northwestern part of the Chyulu Hills, a volcanic field at the eastern 

flank of the Kenya rift some 150–200 km east of the rift axis, about 50 km NE of Mt. Kilimanjaro. In 

the Ca–Al granulites, hibonite (±spinel) are the earliest, possibly igneous, minerals in the 

crystallization sequence [36]. Hibonite has been also reported as tabular crystals up to 3 cm across in 

calcitic marbles from the Tashelga-Malzaskaya region in Siberia [37]. In such localities, metamorphic 

hibonites are notably high in Fe3+, and coexist with V-rich minerals (goldmanite, tashelgite, and 

mukhinite). Hibonite has also been found in the alluvia of Myanmar, Mandalay Region, which has 

been used as a gemstone [38]. Grossite has been found on Earth only in the type locality, the 

Hatrurim Formation; the rest of the observed occurrences are in meteorites. Krotite previously has 

been observed only in Calcium-Aluminum Inclusions in meteorites [39]. 

If the origin of the type material is similar to the Mt Carmel rocks, a highly plausible locality is 

in one of the outcrops of the Neogene Volcanic Belt of San Luis (SLNVB) in the Pampean flat-slab 

segment, in particular in Sierra del Morro (33° 10′ S, 66° 24′ W), in the Conlara Valley, which is closer 

to Sierra de Comechingones than to Sierras de San Luis. These volcanic materials are pyroclastic 

trachyandesites-trachydacites with shoshonitic to high K calc-alkaline character consistent with a 

subduction-related continental margin setting [40]. 

Supplementary Materials: The following are available online at www.mdpi.com/link, CIF: dellagiustaite, 

V-rich spinel. 
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