Stronalsite, SrNa₂Al₄Si₄O₁₆, a new mineral from Rendai, Kochi City, Japan

Hidemichi HORI*, Izumi NAKAI**, Kozo NAGASHIMA**¹, Satoshi MATSUBARA*** and Akira KATO***

*Hori Mineralogy Ltd., 4-13 Toyotamanaka, Nerima, Tokyo 176

Department of Chemistry, The University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305 *Department of Geology, National Science Museum, 3-23-1 Hyakunin-cho, Shinjuku, Tokyo 160

Abstract

A new mineral stronalsite, $SrNa_2Al_4Si_4O_{16}$, is the strontium analogue of banalsite and named after the chemical composition. It is orthorhombic, Ibam or Iba2, a=8.415(4), b=9.901(4), c=16.729(9)Å, Z=4. Average of five microprobe analyses is SiO₂ 39.13, Al₂O₃ 32.70, CaO 0.17, SrO 15.72, BaO 2.29, Na₂O 9.99, total 99.91%, corresponding to $(Sr_{0.94}Ba_{0.09}Ca_{0.02})_{\sum_{1.05}}Na_{1.99}Al_{3.95}Si_{4.01}O_{16}$ on the basis of O=16. It is white in colour with a vitreous luster and white streak. H. (Mohs)=6½. No cleavage. Density (g/cm^3) : 2.95(meas.), 2.95(calc.). It is optically biaxial and positive, 2V=32° (meas.), dispersion indiscernible. Refractive indices: $\alpha=1.563(2)$, $\beta=1.564(calc.)$, $\gamma=1.574(2)$. Optic orientation: a=Y, b=Z, c=X. Colourless in thin section. Non-fluorescent under short and long wave ultraviolet lights.

It occurs as veinlets cutting meta basic tuff xenolith enclosed in serpentinite quarried at Rendai, Kochi City, Japan, in association with slawsonite and pectolite. The formation was favoured by a silica-poor condition and concentration of strontium coming from a disintegration of basic plagioclase into such a strontium-excluding calc-silicate as grossular-hydrogrossular. A strontium-sodium-aluminum silicate from Mt. Ohsa, Okayama Prefecture (Kobayashi et al., 1984) has been proved to be the second stronalsite, in which strontium is partially replaced by barium and minor calcium.

Introduction

The occurrence of strontium and barium silicates have been reported in veinlets cutting various kinds of xenoliths in serpentinite exposed in the north- to northwestwards of Kochi City (Matsubara, 1985; Kato and Matsubara, 1986). In a quarry at Rendai to Engyoji, Kochi City, stronalsite was found in one of the veinlets in association with pectolite and slawsonite and only one specimen of fragment has been collected to date without any subsequent find. However, a strontium-sodium-aluminum silicate form Mt. Ohsa, Okayama Prefecture (Kobayashi et al., 1984) turned out to be the second stronalsite after the X-ray powder and microprobe studies, and the results

¹ Deceased on January 6, 1985.

Stronalsite, SrNa2 Al4 Si4 O16

are incorporated herein.

The name comes from the chemical composition as in the case of banalsite, which is the isomorphic barium analogue. The mineral and the name have been approved by the Commission on New Minerals and Mineral Names, I.M.A. Type material has been preserved at Department of Geology, National Science Museum, Tokyo.

Occurrence

The locality is a large quarry for ultrabasic rock operated by Tanaka Olivine Mining Company Ltd. The ultrabasic rock is principally occupied by serpentinite, which involves various kinds of xenoliths, and some of them includes the assemblage of high pressure minerals such as jadeite and glaucophane-crossite (Maruyama, 1981).

The xenoliths are intersected by various kinds of white veinlets. Vein-forming minerals include pectolite, albite, calcite, aragonite, natrolite, thomsonite, prehnite, datolite, slawsonite, rosenhahnite (Kato and Matsubara, 1984), and vuagnatite in the order of decreasing frequency of occurrence. Besides them, tacharanite and tobermorite are found (Minakawa and Noto, 1985).

The studied material is a fine- to medium-grained greenish grey meta basic tuff xenolith composed of clinopyroxene, grossular and chlorite. It is intersected by a white veinlet of a few millimeter wide. According to the macroscopic observation, the

FIG. 1. Photomicrograph of stronalsite (coarse grain) and slawsonite (minute prism). Crossed polars. Field view, approximately 0.8 x 0.6 mm.

veinlet consists of pectolite, slawsonite and stronalsite. Pectolite forms fiber developed along the wall and slawsonite occupies the principal part of it. Stronalsite occurs as a seam-like unit along pectolite-slawsonite boundary composed of white blocky aggregate of short prisms of 0.5 mm across in maximum. Although the visual distinction between stronalsite and slawsonite is difficult, the former is very slightly whiter than the latter.

Under the microscope, stronalsite forms mosaic aggregate composed of blocky grains without any specific feature and slawsonite forms fine-grained aggregate composed of simple short prisms less than 0.1 mm long (Fig. 1).

Physical properties

The mineral is white in colour with a vitreous luster and white streak. Cleavage is lacking but in the marginal part of thin section is observed a rectangular parting along which the extinction is parallel. H. (Mohs)=6½. Measured density is 2.95 g/cm³, which is well coincident with the calculated value, 2.95 g/cm³, using the normalized empirical formula. It is optically biaxial and positive, $2V=32^{\circ}$ (meas.) and dispersion is indiscernible. Refractive indices measured by the immersion method in the white light are: $\alpha=1.563(2)$, $\beta=1.564$ (calc.), $\gamma=1.574(2)$. Optic orientation is: a=Y, b=Z, c=X. Non-fluorescent under short and long wave ultraviolet lights.

Chemical composition

The chemical composition was determined by using Link Systems energy-dispersive X-ray spectrometer, together with that of the associated slawsonite (Table 1). Both of them are slightly barium-bearing as reasonably explained by the existence of their isomorphic barium analogues, banalsite and paracelsian, respectively. The BaO contents in stronalsite fluctuate between about 2 and 3 weight percent. They are high in the center of stronalsite grains (Fig. 2) and gradually decrease towards the boundary of slawsonite, which has lower Ba/(Sr+Ba) ratio than stronalsite.

Crystallography

The precession photographs and automatic four-circle diffractometer studies indicated the mineral to be orthorhombic with possible space group Ibam or Iba2, a=8.415(4), b=9.901(4), c=16.729(9)Å refined after reference to the indexing of X-ray powder diffraction pattern. The unit cell contains four molecules of SrNa₂Al₄Si₄O₁₆. As compared with banalsite, orthorhombic, Ibam, a=8.496(2), b=9.983(2), c=16.755(3)Å, Z=4 (Haga, 1973), the above cell dimensions are reasonably

370

a)

Stronalsite

TABLE 1. Chemical analyses of a) stronalsite and the associated b) slawsonite

	1a	1b	2	3
SiO ₂	39, 09	38, 48 - 39, 25	4 01	
Al ₃ O ₃	32.70	32, 56 - 32, 83	3.95	4
CaO	0.17	0.00~ 0.33	0.02	
SrO	15.71	15.11-16.17	0.94	1
BaO	2.29	1.98- 3.04	0.09	-
Na _u O	9, 98	9.76-10.28	1.99	2
total	99.91	99.55-100.01		

la. Average of five analyses. Weight percent.

1b. Range of five analyses.

2. Molecule number on the basis of O=16.

3. Ideal molecule number.

b) Slawsonite

	la	1b	2	3
SiO _a	37.01	36.92- 37.56	2.02	2
Al_2O_3	30.52	30.38- 30.56	1.96	2
SrO	30.68	30.20 - 30.72	0.98	
BaO	1.63	1.50- 1.74	0, 03	
total	99.84	99.65-100.01		

1a. Average of three analyses.

1b. Range of three analyses.

2. Molecule number on the basis of O=8.

3. Ideal molecule number.

smaller to reflect the accommodation of strontium as the dominant cation in place of barium.

X-ray powder diffraction pattern of stronalsite is given in Table 2, where that of the second locality stronalsite is also tabulated. Both of them are apparently similar to that of banalsite (Matsubara, 1985).

Consideration of genesis and the second occurrence

The formula of ideal stronalsite is derived by a simple addition of one molecule of slawsonite $(SrAl_2Si_2O_8)$ and two of potassium-free nepheline $(NaAlSiO_4)$, suggesting that the formation of stronalsite was favoured under a silica-poor condition as discussed by one of the authors (Matsubara, 1985). A silica-richer condition will invite

FIG. 2. Back-scattered electron image of analysed stronalsite (gray) and slawsonite (white). A white bar indicates $100 \mu m$.

the formation of assemblage of slawsonite + albite, although slawsonite and albite in the locality occur separately, the latter being involved in veinlets cutting slaty rocks with or without quartz in the veinlets.

Stronalsite is one of the fissure-filling minerals in xenoliths enclosed within serpentinite. Among the xenoliths of this mode of occurrence at or around the locality is found such a high pressure mineral as jadeite (Maruyama, 1981). In relation to this evidence, it is worth mentioning that Kobayashi et al. (1984) report a stron-tium-sodium-aluminum silicate in association with a jadeite rock in serpentinite at Mt. Ohsa, Okayama Prefecture. Through their kind guidance to the locality, S. M. and A. K. could collect the material, which was identified as stronalsite after X-ray powder (Table 2) and microprobe studies (Table 3). The occurrence of Mt. Ohsa stronalsite will be reported separately by them. At the locality, stronalsite occurs as veinlets and discrete grains in jadeite aggregates, seven representative microprobe analyses in Table 3 demonstrate the compositional variation. The mole ratio of strontium fraction in the larger cationic site varies from 0.93 to 0.47, whereas barium does 0.03 to 0.37, reciprocally to strontium. Calcium contents vary from 0.01 to 0.16 without any apparent relation to those of strontium and barium.

The possible isomorphism of stronalsite to banalsite, having less dense structure (Haga, 1973), suggests that the formation of stronalsite will not always require any high pressure condition if all the constituents are fully available at the site of forma-

TABLE 2. X-ray powder diffraction pattern of stronalsites from Rendai, Kochi City and Mt. Ohsa, Okayama Prefecture.

		1.			2.				1,			2.	
hkl	Ι	doos.	deal.	I	d	deal.	hkl	I	doba.	d _{cal} .	I	d	d _{cal} .
002	10b	8.370	8.362	12	8.402	8.362	336	10	1.697	1, 696			
110	20	6.411	6.415	10	6,439	6.439	246			1.694			
112	25	5,092	5,090	22	5.110	5.103	406	5	1.679	1.679			
020	8	4, 951	4.945				347	1	1.650	1.654			
200	38	4, 179	4, 207	30	4.203	4.222	318			1.653			
004						4.185	060			1,650			
121	10	4.137	4.134	15	4.145	4, 145	345	10	1,623	1.623	20	1,625	1.625
211	40	3.765	3.772	45	3.773	3.777	062					21-0-0	1,623
202						3,769	440	3	1,603	1,603			2,020
114	80	3.502	3.503	75	3.506	3.509	156	4	1. 586	1.586			
123	3	3. 387	3.386				521	-		1, 586			
220	100	3.204	3.206	100	3.204	3.216	0.2.10			1.585			
024	50	3. 183	3. 193			3.199	2.0.10	5	1,555	1, 555	1	1.555	1, 556
213			3.180	100	3, 197	3, 190	163	•		1, 555	-		11040
130	40	3.069	3.073	50	3.076	3.076	514	2	1.544	1, 542	1	1.548	1, 547
222	40	2,992	2,992	30	2.996	3.002	260	10	1, 535	1.536	-	2	
204	12	2.966	2.966	20	2,968	2,972	064			1,535			
132	70	2.881	2.884	50	2.891	2,891	262	2	1 509	1.551			
310	8	2.699	2,699		21.007	2,001	230	"	1.000	1.511			
125	35	2.632	2.632	30	2,636	2, 637	354			1.509			
312	25b	2, 569	2.563	5	2.576	0 677	200	1	1 405	1 405			
231			2.566		2.010	2.011	530 540	1	1.450	1.450	10**	1 497	1,496
116			2.500	15	0 550	2.013	490		1 404	1,490	10	1 484	1 484
224	25	2 545	2.007 2.545	10	2,000	2.000	400	4	1.404	1,400	14	1. 701	1, 101
194	20	0 476	2.040				408	•		1,400	0	1 460	1 469
040	*	2, 4/0	2.470				1. 3, 10	ð	1.400	1,409	0	1.105	1 469
040		0 400	2.475		0 490	0 400	347	•	1 440	1,400			1. 300
026	20	2,428	2,428		2.430	2,432	264	3	1.440	1,444	n	1 442	1 443
042	3	2.370	2.374				525	•	1 100	1.439	2	1.443	1.440
141	10	2.348	2.351				451	3	1,430	1,430			
206	3	2,313	2, 324				158	12	1.410	1.417			
314	3	2,269	2.267				361			1.417			
136			2.263				2. 1. 11			1.415			
323	2	2.237	2.235				170	10b	1.394	1.395	-		
143	5	2.184	2, 185				0.0.12			1.394	3	1,395	1.395
330	5	2.135	2.137				446	10	1.392	1.390			
240			2.133				419	4b	1.377	1.379			
044	20	2.130	2,129	18	2.134	2.135	363	4	1.374	1.376			
400	5	2.104	2,104				172			1.276			
226			2.104				622	2	1,331	1.333			
352			2, 101				604			1.330			
008	10	2.041	2.091	7b	2.091	2.092	3. 3. 10	4	1,317	1.317			
127			2.085			2.087	2.4.10			1,316			
332	50	2.067	2,071	45	2.071	2,073	349	1	1,314	1.313			
242			2.067			2.073	2.3.11			1.312			
136			2.066			2.068	3.2.11	1	1,292	1.291			
217	7	2,034	2.034	12	2.037	2.037	439	3Ь	1.283	1,283			
118	12	1,988	1.988	10	1.990	1,990	462			1,283			
325	1	1.973	1.972				615			1.283			
316	25	1,937	1,938	•	1.940	1.943	550		1 050	1.282			
145			1.937			1.941	448	3	1.270	1.272			
420			1.936			1.943	1.3.12	1		1. 269			
413			1,931			1.937	1, 5, 10	1	1.263	1.263			
244	3	1.900	1,900				370			1.263			
404	Зb	1.882	1,879				464	4	1.239	1.240			
152		· .	1, 878				3, 1, 12			1.239			
208	3	1.875	1.873				268			1.238	· · · .		

		1.			1.				1.			2.	
ħkl	I	dobs.	d _{cal} .	I	dobs.	d _{cai} .	hkl	I	d _{obs} .	d _{cal} .	Ι	doos.	d _{cai} .
424	2	1,761	1,763				2. 1. 13	4	1.220	1.221			
343	-		1.261				169			1.221			
228	12	1 750	1 751				640			1.220			
154		11100	1.751				538			1.219			
253	2	1 704	1 706				626	1	1.215	1.215			
129	-		1 704				0.4.12			1.215			
***			1				374	3	1.208	1.209			
							642	-		1.208			

TABLE 2. (Continued)

1. Stronalsite. Rendai, Kochi City. Ni filtered Cu K α radiation (λ =1.5405Å). Diffractometer method. a=8.415(4), b=9.901(4), c=16.729(9)Å.

 Stronalsite. Mt. Ohsa, Okayama Prefecture. Ni filtered Cu Kα radiation (λ=1.5405Å). Diffractometer method. a=8.444(4), b=9.929(4), c=16.739(9)Å.
(*intensity immesurable due to overlapped diffraction of analcime)

(**intensity may be enhanced due to the same reason as above)

TABLE 3. Chemical analyses of stronalsite from Mt. Ohsa, Okayama Prefecture. (Nos. 1-3, vein-formed; 4-7, discrete grains)

No.	SiO_2	Al_2O_3	CaO	SrO	BaO	Na₂O	total
1	38.57	32. 82	0.40	17.68	1.23	9.90	100.60%
2	38.68	32.92	0.42	17.44	0.64	10.08	99.61
3	38.87	32. 30	0.41	17.11	0.80	10.12	99.61
4	39.12	32.45	0.25	13.56	4.33	9.98	99.69
5	39.49	32.88	0.57	12.09	5.22	10.10	100.35
6	38.26	31.73	0.13	9.85	9.56	9.92	99.45
7	38.71	31.88	1.43	7.70	9.27	10.07	99.06

Empirical formulae (basis O=16):

1. $(Sr_{1.06}Ba_{0.05}Ca_{0.04}) \sum_{1.15} Na_{1.97}Al_{3.97}Si_{3.96}O_{16}$

2. $(Sr_{1,05}Ca_{0,05}Ba_{0,03}) \Sigma_{1,13}Na_{2,00}Al_{3,97}Si_{3,96}O_{16}$

3. $(Sr_{1.03}Ca_{0.05}Ba_{0.03}) \Sigma_{1.11}Na_{2.02}Al_{3.92}Si_{4.00}O_{16}$

4. $(Sr_{0.81}Ba_{0.17}Ca_{0.02}) \sum_{1.01} Na_{2.00}Al_{3.95}Si_{4.04}O_{16}$

5. $(Sr_{0.72}Ba_{0.21}Ca_{0.06}) \ge 0.99}Na_{2.00}Al_{3.96}Si_{4.04}O_{16}$

6. $(Sr_{0.60}Ba_{0.39}Ca_{0.01}) \Sigma_{1.00}Na_{2.03}Al_{3.94}Si_{4.03}O_{16}$

7. $(Sr_{0.47}Ba_{0.07}Ca_{0.16})_{\Sigma_{1.00}}Na_{2.02}Al_{4.00}Si_{4.00}O_{10}$

tion under a silica-poor condition as stated above. The occurrence of banalsite from the Shiromaru mine, Tokyo (Matsubara, 1985) substantiates this interpretation, where the pressure of regional metamorphism was lower than those at the two stronalsite localities.

Higher concentration of strontium would have been favoured by the formation of any strontium-excluding rock-forming silicate like grossular-hydrogrossular after the disintegration of any parental phase capable of being potential strontium source, which would be a calcic plagioclase. The examined material does not allow any comparable studies on vein-free rocks in the locality with those veined by the assemblage including stronalsite due to the scarcity of material. This impedes the find of any proof to know whether the strontium silicates were the products in situ or not, although their hydrothermal formation seems probable.

Acknowledgements—The authors thank for Professor Hiroshi Miyake and Dr. Shoichi Kobayashi, Faculty of Science, Okayama University of Science, for their kind guidance to the second locality of stronalsite, Mt. Ohsa, Okayama Prefecture.

References

- HAGA, N. (1973) Miner. Jour., 7, 262-281.
- KATO, A. & MATSUBARA, S. (1984) Bull. Natn. Sci. Museum, Ser. C, 10, 1-8.
- KATO, A. & MATSUBARA, S. (1986) Proc. 13th General Meeting of I.M.A. Pt. 3. Crystal Chemistry of Minerals, 595-605.
- KOBAYASHI, K., MIYAKE, H. & SHOJI, T. (1984) Abstr. Autumn Meeting of Soc. Mining Geologists in Japan, Japanese Assoc. Miner. Petrol. and Econ. Geol., and Miner. Soc. Japan, Matsuyama. 86 (in Japanese).
- MARUYAMA, S. (1981) Jour. Geol. Soc. Japan, 87, 569-583.
- MATSUBARA, S. (1985) Bull. Natn. Sci. Museum, Ser. C, 11, 37-95.
- MINAKAWA, T. & NOTO, S. (1985) Abstr. Annual Meeting of Miner. Soc. of Japan. Nagoya. 90 (in Japanese).

Received November 4, 1986; revised January 26, 1987.