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The crystal structure of tedhadleyite, Hg**Hg\$O4lo(Cl,Br),,
from the Clear Creek Claim, San Benito County, California
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The crystal structure of tedhadleyite, ideally Hg”> Hg{o04l5(CLBr),, triclinic, 41, a 7.0147(5),
b 11.8508(7), ¢ 12.5985(8) A, o 115.583(5), B 82.575(2), v 100.619(2)°, V 927.0(2) Az =2, was
solved by direct methods and refined to an R; index of 4.5% for 2677 umque reflections. There are six
symmetrically distinct Hg sites in tedhadleylte Hg(1) is occupied by Hg”" and Hg(2—6) are occupied
by Hg" that forms three [Hg—Hg]*" dimers with Hg—Hg separations between 2.527 and 2.556 A.
These [Hg—Hg]*" dimers have strong covalent bonds to O atoms, forming pseudo-linear
O—Hg—Hg—O arrangements, and weak bonds to halogen and O atoms at high angles to the dimer
axis. The [O—Hg—Hg-O] groups share anions to form four-membered square rings of composition
[HggO4] that link along [100] vie [O—Hg—Hg-O] groups and along [001] via [O—Hg—O] groups,
forming rectangular rings of composition [Hg;4Og]. The rings form a corrugated layer that interweaves
with a symmetrically related layer whereby the [O—-Hg(6)-Hg(6)—O] linking groups of one layer pass
through the centres of the square [HggO4] rings of the other layer to form [Hg;;04] complex slabs
parallel to (010) that link through Hg-I and Hg-Br,Cl bonds.

Keyworbs: tedhadleyite, crystal structure, mercury mineral, San Benito County, California.

Introduction
2002, 2003a,b, 2005; Cooper and Hawthorne,

2003), we report here the crystal-structure
determination of tedhadleyite.

TEDHADLEYITE, ideally Hg® "Hg|o041,(C1,Br),, is a
recently described supergene mineral from a
small prospect pit near the long-abandoned
Clear Creek mercury mine, New Idria district,

San Benito County, California (Roberts et al., X-ray data collection and structure refinement

2002). It is associated with native mercury,
calomel and traces of cinnabar, eglestonite and
montroydite in a host rock composed mainly of
quartz and magnesite. Tedhadleyite occurs as a
spheroidal mass that is partly hollow, suggesting
that it formed as an in situ replacement of native
mercury during a period of high activity of I (with
lower Cl and Br) in the fluid or vapour phase
(Roberts et al., 2002). As part of our general
interest in the crystal chemistry of mercury
minerals (Hawthorne et al., 1994; Roberts et al.,

A thin fragment of tedhadleyite was cut from the
~200 pm round grain used for the precession
study done as part of the new-mineral description
(Roberts et al., 2002) and mounted on a Bruker
four-circle diffractometer equipped with a 1K
CCD detector at a crystal-to-detector distance of
4 cm. In excess of a sphere of intensity data was
collected to 60°260 using a frame width of 0.2° and
an exposure time per frame of 90 s. The data were
then integrated using a triclinic primitive cell and
Lorentz, polarization and background corrections
were applied. The structure was solved and
refined using the SHELXTL system of programs
(Bruker, 1997), and then the cell was reoriented to

an A-centred setting so that the main structural
features coincided with the crystallographic axes.
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TaBLE 1. Miscellaneous information for tedhadleyite.

a (A) 7.0147(5) Crystal size (mm) 0.02 x 0.08 x0.09
b 11.8508(7) Radiation/Mono Mo-Ko/Graphite
c 12.5985(8) No. of reflections 7918
o (°) 115.583(5) No. in Ewald sphere 4784
82.575(2) No. unique reflections 2677
Yo 100.619(2) Rinerge %0 35
V(A% 927.0(2) Ry % 45
Space group Al wRy % 12.6
Z 2 Goodness of Fit (GoF) 1.064
i (mm~h 95.9
Degie. (glem?) 9.43

The final unit-cell parameters (Table 1) are based
on least-squares refinement of 4367 reflections
(I > 10c/). An empirical absorption correction
was applied using the SADABS program, and
7918 reflections were averaged to give 4784
reflections within the Ewald sphere. In the space
group A1, there are 2677 unique data with
merging in Laue group 1 of 3.5%. The structure
was solved by direct methods in PI, transformed
to A1 (100/011/011) and refined by least-squares
against F* to R, = 4.5% with anisotropic-
displacement parameters for all atoms. Atom
positions and displacement parameters are listed

in Table 2, and selected interatomic distances and
angles are given in Table 3.

Description of the structure

There are six symmetrically distinct Hg sites in
tedhadleyite (Table 2). The Hg(1) site lies on a
centre of symmetry and is coordinated by two O
atoms at a distance of 2.046 A, two I atoms at
3.255 10\, and two X anions (where the X site is
occupied by both Cl and Br) at a distance of
3479 A, in a geometry that is characteristic of
divalent Hg. There are five Hg sites, Hg(2—0), at

TaBLE 3. Selected bond distances (A) and angles Hg—Hg—¢ (°) (¢ = O, I, X) in tedhadleyite.

Hg(1)

Hg(1)-0(1),a
Hg(1)—X(1)b,c
Hg(1)-I(1)d,e

Hg(2)—Hg(3)

—Hg(2)-0(2)
—Hg(3)—-O(1)f
—Hg(2)—=X(1)
—Hg(2)-1(1)
—Hg(3)-0(1)c
—Hg(3)=X(1)d
—Hg(3)-1(1)c
—Hg(3)-1(D)f

2.046(12)
3.479(3)
3.2548(11)

2.5308(9)

2.131(10)
2.134(10)
2.979(3)
3.2555(13)
2.641(12)
3.379(4)
3.4914(13)
3.6676(14)

X2
X2
X2

172.8(3)
174.0(3)
99.92(6)
97.62(3)
93.42)
104.03(6)
109.62(3)
107.58(3)

Hg(4)—Hg(5) 2.5271(9)
—Hg(4)—0(2) 2.173(10) 164.5(3)
—Hg(5)—0(1)h 2.175(11) 164.9(3)
—Hg(4)—0(2)g 2.538(11) 106.5(2)
—Heg(4)—X(1)g 3.257(3) 119.00(7)
—Hg(4)—X(1) 3.500(3) 110.69(7)
—Hg(5)—X(1)i 3.265(3) 90.95(8)
—Hg(5)-1(1)g 3.3766(14) 94.51(4)
—Hg(5)—1(Dh 3.3771(16) 106.44(3)
—Hg(5)-1(1)j 3.4281(15) 107.90(4)
Hg(6)—Hg(6) 2.5564(14)

—Hg(6)—0(2) 2.133(11) 167.1(3)
—Hg(6)—X(1)g 3.095(3) 116.42(7)
—Hg(6)—X(1)] 3.471(4) 91.95(6)

a:r X, y+1, z; br x—1, y—=Y4, z—Vs; c: X+, j+¥5, 2% d: x, y—Y%, z—Y5; e: X, i+, 2tV £ T+1, v, z; g T+, s, 2155
h: &1, j+1, z+1; 10 X2, 34, T+%; j: x, y—"%, z+%; ki %, j+1, z+1; I x—1, y, z.
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TABLE 2. Final atomic coordinates and displacement parameters (10\2) for tedhadleyite.
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* refined occupancy: 0.405(9) Br + 0.595 CI.

which the constituent Hg forms three [Hg—Hg]*"
dimers: Hg(2)—Hg(3), Hg(4)—Hg(5) and
Hg(6)—Hg(6) (Fig. 1), with Hg—Hg separations
of between 2.527 and 2.556 A. These values are
similar to those observed in other [Hg—Hg]*'-
bearing minerals: e.g. 2.543 A in shakhovite
(Tillmanns et al., 1982); 2.53 A in magnolite
(Grice, 1989); 2.522 and 2.524 A in edgarbai-
leyite (Angel et al., 1990); 2.526 A in wattersite
(Groat et al., 1995); 2.536 and 2.544 A in
hanawaltite (Grice, 1999); 2.502—2.565 A in
poyarkovite (Vasil’ev et al., 1999);
2.533-2.592 A in vasilyevite (Cooper and
Hawthorne, 2003). These [Hg—Hg]*" dimers
have strong covalent bonds to O atoms at each
end of the dimer, with Hg—O distances in the
range 2.131-2.175 A, and form pseudo-linear
O—Hg—Hg—O arrangements with Hg—Hg—O
angles in the range 164—174°. Moreover, these
terminal Hg—O bonds are the same lengths in
each [Hg—Hg]*" dimer: 2.131 and 2.134 A for
Hg(2)—Hg(3), 2.173 and 2.175 A for
Hg(4)—Hg(5), 2.133 and 2.133 A for
Hg(6)—Hg(6). These pseudo-linear
O—Hg—Hg—O groups are typical of structures
with Hg" cations that bond directly to form
[Hg,1*" dimers. The Hg(2)-Hg(3) and
Hg(4)—Hg(5) dimers each link to one other O
atom at a longer distance (2.641 and 2.538 .\wv
respectively) and at a high angle (93.4 and 106.5°)
to the dimer axis, whereas the Hg(6)—Hg(6)
dimer does not link to such an O atom. The
Hg(2)—Hg(3) and Hg(4)—Hg(5) dimers each link
to three I atoms at distances in the range
3.256-3.668 A, and all at high angles
(94.5-109.6°) to the dimer axis, whereas the
Hg(6)—Hg(6) dimer does not link to I atoms. All
three dimers link to anions of the mixed-anion site
X(1) that is occupied by Br and Cl. These
distances fall in the range 2.979—3.500 A, and
all at high angles (91.0—119.0°) to the dimer axis.
The crystal chemistry of these minerals and
similar synthetics has been reviewed by
Pervukhina et al. (1999a,b) and Borisov et al.
(1999).

Connectivity
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In the tedhadleyite crystal structure, strongly
bonded [O—Hg—Hg—O] groups join at their
anion vertices to form a four-membered square
ring of composition [HggO4] (Fig. 2). These
[HggO4] rings link together along [100] via
[O—Hg—Hg-0O] groups and along [001] via
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o) o(1) 0(2) 9) o(1)

Hg(1) Hg(3)

[Ha(1)] [Hg(2) - Hg(3)]

0(2)  Hg(6)

0(2)

Hg(6) 0(2)

[Hg(4) - Hg(5)] [Hg(6) — Hg(6)]

@ mercury
@ oxygen

. chlorine / bromine
. iodine

FiG. 1. The coordination of the six Hg-sites in tedhadleyite; thick lines — strong axial bonds; thin lines — weak
meridional bonds.

TABLE 4. Mixed Hg'/Hg?" minerals.

Formula Hg>* Ref.
H g2-*— +Hg+

Deanesmithite HgzHg3 'Cr® 058, 0.60 [1]
Terlinguaite Hg Hg*"0Cl 0.50 [2]
Aurivilliusite Hg Hg>"OI 0.50 [3]
CCUK-15 HgjoHg3 Ogl, (CLBr), 0.23 [4]
Wattersite HgyHg> Cr® O¢ 0.20 [5]
Hanawaltite HggHg? 05Cl, 0.14 [6]
Tedhadleyite HgoHg* 041,(Cl,Br), 0.09 [7]

References: [1] Roberts et al. (1993); [2] Palache et al. (1951); [3] Roberts et al. (2004); [4] Dunning et al. (2005);
[5] Roberts et al. (1991); [6] Roberts et al. (1996); [7] Roberts et al. (2002).
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CRYSTAL STRUCTURE OF TEDHADLEYITE

Fi1G. 2. The crystal structure of tedhadleyite projected down a direction 15° from [010]. Legend as in Fig. 1, with

strong bonding between [O-Hg-Hg—-O] and [O-Hg-O] groups shown as thick black lines indicating bonds

belonging to one net; thick orange lines indicate bonds belonging to a symmetrically equivalent net. Hg atoms are
labelled.

Other Hg*/Hg** compounds

[O—Hg—O] groups and, in the process, generate
larger distorted rectangular rings of composition
[Hg140g]. The interconnected rings form a
corrugated layer that interweaves with a symme-
trically related layer whereby the
[O—Hg(6)—Hg(6)—0] linking groups of one
layer pass through the centres of the square
[HggO4] rings of the other layer to form an
interwoven [Hg;;04] complex slab parallel to
(010). Inter-slab connectivity is provided by
bonds to the halogen sites which are midway
between adjacent slabs (Fig. 3).

All known Hg minerals that contain both Hg" and
Hg®" are listed in Table 4. Tedhadleyite contains
the smallest fraction of Hg®" relative to total Hg
content of all these minerals. All the minerals listed
in Table 4 occur at the Clear Creek locality in
extremely small amounts and their occurrences
suggest diverse micro-environments that can be
separated by as little as a few millimetres (Dunning
et al., 2005). A review of the mixed Hg'/Hg*"
compounds on the ICSD showed that the lowest
Hg*'/(Hg*+Hg") ratio for a synthetic inorganic

F1G. 3. The crystal structure of tedhadleyite projected down [100]. Legend as in Fig. 1; weak meridional bonds not
shown.
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compound is 0.20, which occurs in the two
polymorphs of Hg* (Hgb0),(Re”"0y), (Picard et
al., 1982; Schriewer-Poettgen and Jeitschko,
1995). Both of these structures are based on
layered [-Hg—O—] ring complexes, similar to
the structural connectivity in tedhadleyite.

Related structures

Several other structures involve anion sharing of
[O—Hg—0] and [O—Hg—Hg-0] groups to form

_,,--'/. b . »

discrete layers of various [-Hg—O-—] ring
topologies. In wattersite (HgiHg> Cr®Oy), rings
of composition [Hg;oOg] are formed by linkage of
four [O—Hg—Hg—0O] groups and two
[O—Hg—O0O] groups (Groat et al., 1995)
(Fig. 4a). The same ring topology occurs in one
of the polymorphs of Hg? (Hg0)»(Re’” 04),
(Picard et al., 1982). Three inorganic compounds
[Hg'Hg*'Ol (aurivilliusite), Stalhandske et al.
(1985); Hg*Hg2+O(NO3), Kamenar et al. (1986);
Hg 'Hg? O(Re’"0,4), Schriewer-Poettgen and
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FiG. 4. The strongly bonded connectivity of [O—Hg—Hg—0] and [O—Hg—0] groups in: (a) wattersite projected onto
(001) (Groat et al., 1995); (b) Hg+l:lg2+01 projected onto (001) (Stalhandske ef al., 1985); (c) Hg2+(Hg§O)2(Re7+O4)2
projected onto (102) (Schriewer-Poettgen and Jeitschko, 1995). Legend as in Fig. 1.
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FiG. 5. Strong Hg(2)—0(3) and intermediate strength

Hg(2)—O(1) bonds associated with the [Hg(1)—Hg(2)]

dimer in Hg2+(Hg§O)z(Re7+O4)z (Schriewer-Poettgen
and Jeritschko, 1995).

Jeitschko (1994)] contain topologically identical
rings of composition [HggOg,] formed by linkage
of two [O—Hg—Hg—O] groups and four
[O—Hg—O] groups (Fig. 4b). The other poly-
morph of Hg*'(Hg>0)»(Re’"0,4), (Schriewer-
Poettgen and Jeitschko, 1995) contains rings of
composition [Hg;405] (Fig. 4¢) (resembling those
in tedhadleyite), formed by linkage of six
[O—Hg—Hg—O0] groups and two [O—Hg—O]
groups. Additionally, there are smaller rings of
composition [HgsO4] formed by linkage of two
[O—Hg—Hg—O0] and two [O—Hg—O] groups. It
should be noted that the designation of
Hg*' (HgsO)x(Re’"0y4), as a layer structure is
somewhat arbitrary; if one considers the
[O(1)—Hg(1)--Hg(2)-O(2)] group to be splayed
and includes the O(1) and O(3) anions at the
Hg(2) end of the [Hg-Hg] dimer, then strong
—Hg—O— bonding occurs over a three-dimen-
sional network (Fig. 5).
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