lanbruceite, ideally $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure

M. A. Cooper ${ }^{1}$, Y. A. Abdu ${ }^{1}$, N. A. Ball ${ }^{1}$, F. C. Hawthorne ${ }^{1, *}$, M. E. Back 2, K. T. Tait ${ }^{2}$, J. Schlüter ${ }^{3}$, T. Malcherek ${ }^{3}$, D. Pohl 3 and G. Gebhard ${ }^{4}$
${ }^{1}$ Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
${ }^{2}$ Department of Natural History (Mineralogy), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario M5S 2C6, Canada
${ }^{3}$ Mineralogical-Petrological Institute, University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany
${ }^{4}$ Großenseifen, 51545 Waldbröl, Germany

[Received 20 February 2012; Accepted 2 July 2012; Associate Editor: Sergey Krivovichev]

ABSTRACT

Ianbruceite, ideally $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as thin platy crystals up to $80 \mu \mathrm{~m}$ long and a few $\mu \mathrm{m}$ thick, which form flattened aggregates up to 0.10 mm across, and ellipsoidal aggregates up to 0.5 mm across. It is associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite. Ianbruceite is sky blue to very pale blue with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. It has perfect cleavage parallel to (100), is flexible, and deforms plastically. The Mohs hardness is 1 and the calculated density is $3.197 \mathrm{~g} \mathrm{~cm}^{-3}$. The refractive indices are $\alpha=1.601, \beta=$ $1.660, \gamma=1.662$, all $\pm 0.002 ; 2 \mathrm{~V}_{\text {obs }}=18(2)^{\circ}, 2 \mathrm{~V}_{\text {calc }}=20^{\circ}$, and the dispersion is $r<v$, weak. Ianbruceite is monoclinic, space group $P 2_{1} / c, a=11.793(2), b=9.1138(14), c=6.8265(10) \AA, \beta=103.859(9)^{\circ}, V$ $=712.3(3) \AA^{3}, Z=4, a: b: c=1.2940: 1: 0.7490$. The seven strongest lines in the X-ray powder diffraction pattern $[d(\AA), I,(h k l)]$ are as follows: $11.29,100,(100) ; 2.922,17,(130) ; 3.143,15,(\overline{2} 02)$; $3.744,11,(300) ; 2.655,9,(230) ; 1.598,8,(\overline{1} 52) ; 2.252,7,(222)$. Chemical analysis by electron microprobe gave $\mathrm{As}_{2} \mathrm{O}_{5} 36.27, \mathrm{As}_{2} \mathrm{O}_{3} 1.26, \mathrm{Al}_{2} \mathrm{O}_{3} 0.37, \mathrm{ZnO} 49.72$, MnO 0.32 , $\mathrm{FeO} 0.71, \mathrm{~K}_{2} \mathrm{O} 0.25$, $\mathrm{H}_{2} \mathrm{O}_{\text {calc }} 19.89$, sum $108.79 \mathrm{wt} . \%$; the very high oxide sum is due to the fact that the calculated $\mathrm{H}_{2} \mathrm{O}$ content is determined from crystal-structure analysis, but $\mathrm{H}_{2} \mathrm{O}$ is lost under vacuum in the electron microprobe.

The crystal structure of ianbruceite was solved by direct methods and refined to an R_{1} index of 8.6%. The As is tetrahedrally coordinated by four O anions with a mean As-O distance of $1.687 \AA$. Zigzag $\left[{ }^{[5]} \mathrm{Zn}^{[6]} \mathrm{Zn} \varphi_{7}\right]$ chains extend in the \mathbf{c} direction and are linked in the \mathbf{b} direction by sharing corners with $\left(\mathrm{AsO}_{4}\right)$ tetrahedra to form slabs with a composition $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$. The space between these slabs is filled with disordered $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups and minor lone-pair stereoactive As^{3+}. The ideal formula derived from chemical analysis and crystal-structure solution and refinement is $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$.

Keywords: ianbruceite, new mineral species, arsenate, Tsumeb mine, Otjikoto (Oshikoto) region, Namibia, crystal structure, electron microprobe analysis, optical properties.

Introduction

[^0]The Tsumeb mine in the Otjikoto (Oshikoto) region of Namibia is famous for the diversity and
spectacular appearance of its minerals (Pinch and Wilson, 1977), and was a major source of $\mathrm{Cu}-\mathrm{Pb}-$ Zn ores for most of the twentieth century. A pipelike structure of 'pseudoaplite' (Weber and Wilson, 1977) intrudes a sequence of arkoses, greywackes and dolomitic limestones; pods, lenses and veins of sulfide occur at the periphery of the pipe in a matrix of disseminated ore. Extensive oxidation zones were encountered between the surface and 300 m and from $\sim 800-1450 \mathrm{~m}$ where a fracture zone intersects the orebody (Weber and Wilson, 1977). A wide variety of secondary minerals (Pinch and Wilson, 1977) and exotic parageneses (Keller, 1977) have been described and new species continue to be discovered.
Ianbruceite was characterized independently by researchers at the University of Manitoba and the Royal Ontario Museum, Canada, and the University of Hamburg, Germany. Data from both groups were combined at a late stage and are presented here. In 1994, one of the authors (GG) received a specimen of leiteite, overgrown by dark blue crystals of köttigite and pale blue crystals of an unknown phase, from the 'Zinc Pocket' on the 44 level of Tsumeb mine. It was described as a probable new species, using the code GS17, and figured in Gebhard (1999: p. 296). Investigations of a specimen of GS17 in the mineral collection of the Royal Ontario Museum independently identified a new hydroxy-hydrated zinc arsenate. It is named ianbruceite for Ian Bruce (born 01/04/1969 at Okehampton, Devon, England), a prime mover in the recent reopening the Tsumeb mine for mineral collecting, who has made significant contributions to the mineral collections of many of the world's major museums through his professional activities. The new mineral and mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2011-49). The holotype specimen of ianbruceite is registered in the mineral collection of the Department of Natural History, Royal Ontario Museum (catalogue number M53150) and holotype crystals are deposited in the collection of the Mineralogical Museum of the University of Hamburg, Grindelallee 48, D-20146 Hamburg, Germany (catalogue number TS 119B).

Physical properties

Ianbruceite occurs as aggregates of thin flakes and tapered platy crystals up to $80 \mu \mathrm{~m}$ long and a
few $\mu \mathrm{m}$ thick, and as rounded ellipsoidal aggregates up to 0.5 mm across. It is associated with coarse white leiteite, dark blue köttigite, minor legrandite and adamite (Fig. 1). The crystal forms are as follows: $\{100\}$ dominant, $\{011\}$ and $\{0 \overline{5} 1\}$ prominent. It is sky blue to very pale blue with a white streak and a vitreous lustre, and does not fluoresce under ultraviolet light. The platy crystals have perfect cleavage parallel to (100); no parting or twinning was observed. The Mohs hardness is 1 . Ianbruceite is flexible and does not fracture but deforms plastically. The calculated density is $3.197 \mathrm{~g} \mathrm{~cm}^{-3}$. Optical properties were measured using a Bloss spindle stage at a wavelength of 590 nm (using a gel filter). The indices of refraction are $\alpha=1.601, \beta=1.660, \gamma=1.662$, all $\pm 0.002 ; 2 \mathrm{~V}_{\text {obs }}=18(2)^{\circ}, 2 \mathrm{~V}_{\text {calc }}=20^{\circ}$, and the dispersion is $r<v$, weak. No pleochroism was observed in the (100) plane, and the orientation is as follows: $X^{\wedge} a=12.0^{\circ}$ (in β obtuse), $Y \| b$, $Z^{\wedge} c=4.7^{\circ}$ (in β obtuse).

Raman spectroscopy

Spectra were collected in back-scattered mode on a HORIBA Jobin Yvon-LabRAM ARAMIS integrated confocal micro-Raman system equipped with a 460 mm focal length spectrograph and a multichannel air-cooled $\left(-70^{\circ} \mathrm{C}\right)$

Fig. 1. Sky blue to blue crystal aggregates of platy, tapered ianbruceite crystals with blue to deep blue copper-bearing aggregates of köttigite on white leiteite from the Tsumeb mine, Tsumeb, Namibia. Width of the image is 1.3 mm . Photo: K.-C. Lyncker, Hamburg.

FIG. 2. (a, b) The Raman spectrum of ianbruceite; (c, d) the infrared spectrum of ianbruceite.

Table 1. Chemical composition of ianbruceite.

Constituent	Mean $(\mathrm{wt.} \%)^{1}$	Range 1	Mean (wt.\%)	Range 2
$\mathrm{As}_{2} \mathrm{O}_{5}$	$36.27(1.07)$	$35.71-39.54$	36.48	$30.78-42.20$
$\mathrm{As}_{2} \mathrm{O}_{3}$	1.26			-
$\mathrm{Al}_{2} \mathrm{O}_{3}$	$0.37(19)$	$0.17-0.90$	-	-
ZnO	$49.72(92)$	$48.28-51.52$	49.15	-
MnO	$0.32(15)$	$0.16-0.57$	-	-
FeO	$0.71(18)$	$0.53-1.05$	-	
CaO	-	-	0.06	$0.02-0.11$
$\mathrm{~K}_{2} \mathrm{O}$	$0.25(4)$	$0.19-0.30$	-	-
$\mathrm{H}_{2} \mathrm{O}_{\text {calc }}$	19.89^{3}		14.31^{4}	-
Total	108.79		100.00	

Elements that were sought but not detected: $\mathrm{Cu}, \mathrm{Na}, \mathrm{Ca}, \mathrm{Si}, \mathrm{P}, \mathrm{S}, \mathrm{Mg}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{F}, \mathrm{Cl}$.
${ }^{1}$ Data gathered on a Cameca SX100 instrument at $15 \mathrm{kV}, 10 \mathrm{nA}$, with a $5 \mu \mathrm{~m}$ beam diameter, mean of 10 determinations.
${ }_{3}^{2}$ Data gathered on a Cameca SX100 instrument at $15 \mathrm{kV}, 20 \mathrm{nA}$, with an $\sim 1 \mu \mathrm{~m}$ beam diameter.
${ }^{3}$ The $\mathrm{H}_{2} \mathrm{O}$ value calculated from structure refinement.
${ }^{4}$ The $\mathrm{H}_{2} \mathrm{O}$ value calculated by difference.

CCD detector. A magnification of $100 \times$ was used with an estimated spot size of $1 \mu \mathrm{~m}$, a 1800 lines mm^{-1} grating, an excitation radiation of 532 nm , and a laser power between 5 and 12.5 mW . The spectrometer was calibrated using the $520.7 \mathrm{~cm}^{-1}$ line of silicon. The Raman spectrum is shown in Fig. $2 a, b$. In the $100-1200 \mathrm{~cm}^{-1}$ region, there is a prominent peak at $840 \mathrm{~cm}^{-1}$ that is assigned to $\mathrm{As}^{5+}-\mathrm{O}$ stretching vibrations. Peaks at 534,448 and $420 \mathrm{~cm}^{-1}$ are assigned to $\mathrm{Zn}-\mathrm{O}$ stretching and bending vibrations of the (AsO_{4}) groups; the $192 \mathrm{~cm}^{-1}$ peak is a lattice mode. In the $2500-4000 \mathrm{~cm}^{-1}$ region, there is a broad envelope centred on $3224 \mathrm{~cm}^{-1}$ and weak shoulders at 3441 and $3224 \mathrm{~cm}^{-1}$ that are produced by $\mathrm{H}_{2} \mathrm{O}$ stretching vibrations. The sharp peak at $3600 \mathrm{~cm}^{-1}$ is an $\mathrm{O}-\mathrm{H}$ stretch.

The first Raman spectrum of ianbruceite that was collected had peaks due to $\mathrm{C}-\mathrm{H}$ stretching; the specimen had been immersed in alcohol and contamination was suspected. This proved to be the case as the Raman spectra of grains of ianbruceite that had not been immersed in alcohol did not have $\mathrm{C}-\mathrm{H}$ stretches (Fig. 2). This suggests that the interstitial space in the structure that is occupied by disordered $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups can absorb alcohol.

Infrared spectroscopy

The Fourier transform infrared (FTIR) spectra were collected using a Bruker Hyperion 2000 IR microscope equipped with a liquid-nitrogencooled mercury-cadmium-telluride detector. Spectra in the range $4000-650 \mathrm{~cm}^{-1}$ were obtained by averaging 100 scans with a resolution of $4 \mathrm{~cm}^{-1}$. A very broad envelope centred at $\sim 3000 \mathrm{~cm}^{-1}$ and sharp peaks at ~ 1600 and $\sim 1670 \mathrm{~cm}^{-1}$ (Fig. 2c), are indicative of $\mathrm{H}_{2} \mathrm{O}$ stretches and $\mathrm{H}-\mathrm{O}-\mathrm{H}$ bends, and indicate the presence of considerable $\mathrm{H}_{2} \mathrm{O}$ in ianbruceite. Fine structure in the broad envelope, particularly in the region around $3500 \mathrm{~cm}^{-1}$, is indicative of the presence of (OH), which is in accord with the crystal structure refinement. The strong peaks at 853, 838, 774 and $750 \mathrm{~cm}^{-1}$ (Fig. 2d) are assigned to $\mathrm{As}^{5+}-\mathrm{O}$ stretching vibrations, the weak shoulder at $\sim 690 \mathrm{~cm}^{-1}$ is assigned to an $\mathrm{As}^{3+}-\mathrm{O}$ stretching vibration, and the weak shoulder at $\sim 930 \mathrm{~cm}^{-1}$ to an $\mathrm{As}^{3+}-\mathrm{O}-\mathrm{H}$ bending vibration. The low intensity of the peaks involving As^{3+} are in accord with the very low occupancy (~ 0.04) of the sites containing As^{3+}.

Chemical composition

Crystals were analysed on two Cameca SX-100 electron microprobes operating in wavelengthdispersive mode in the conditions listed in Table 1. The data were reduced and corrected by the PAP method of Pouchou and Pichoir (1985) and the ZAF method. Raman spectra (Fig. 2) show a broad intense band in the region $2500-4000 \mathrm{~cm}^{-1}$, which is indicative of $\left(\mathrm{H}_{2} \mathrm{O}\right)$, and a sharp peak at $3600 \mathrm{~cm}^{-1}$ indicative of (OH). The quantity of (OH) and $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups in

Table 2. X-ray powder diffraction data for ianbruceite.

$I_{\text {obs }}$	$I_{\text {calc }}$ *	$d_{\text {obs }}(\AA)$	$d_{\text {calc }} *(\AA)$	h	k	l
100	100	11.29	11.290	1	0	0
2	1	4.549	4.571	0	2	0
11	9	3.744	3.764	3	0	0
	<1		3.759	0	2	1
	<1		3.718	$\overline{1}$	2	1
15	25	3.143	3.194	$\overline{2}$	0	2
	<1		3.179	$\overline{1}$	1	2
	<1		3.106	0	1	2
	2		3.016	$\overline{2}$	1	2
	1		2.987	1	0	2
17	14	2.922	2.942	1	3	0
7	7	2.819	2.839	1	1	2
	<1		2.823	4	0	0
9	17	2.655	2.682	2	3	0
	<1		2.618	$\overline{2}$	2	2
1	4	2.480	2.501	1	2	2
5	9	2.381	2.407	$\overline{3}$	2	2
	<1		2.368	3	3	0
	<1		2.363	$\overline{4}$	1	2
7	6	2.252	2.259	2	2	2
	<1		2.258	5	0	0
	<1		2.240	1	4	0
	2		2.054	$\overline{5}$	1	2
2	3	1.890	1.895	$\overline{1}$	4	2
	<1		1.892	4	1	2
2	3	1.804	1.817	$\overline{1}$	3	3
	<1		1.815	1	4	2
	<1		1.814	5	3	0
4	4	1.692	1.698	$\overline{6}$	2	2
	<1		1.695	$\overline{2}$	0	4
	<1		1.691	$\overline{1}$	0	4
	1		1.649	0	0	4
8	9	1.598	1.609	$\overline{1}$	5	2
	<1		1.601	6	3	0
	<1		1.600	0	5	2
	<1		1.597	$\overline{4}$	0	4

[^1]Table 3. Miscellaneous information for ianbruceite structure solutions and refinements.

Parameter	Refinement 1 (Univ. of Manitoba)	Refinement 2 (Univ. of Hamburg)
$a(\AA)$	11.793(2)	11.612(7)
b	$9.1138(14)$	9.142(5)
c	6.8265(10)	6.793(3)
$\beta\left({ }^{\circ}\right.$)	103.859(9)	103.52(4)
$V\left(\mathrm{~A}^{3}\right)$	712.3(3)	701.1(7)
Space group	$P 2{ }_{1} / \mathrm{c}$	$P 2{ }_{1} / \mathrm{c}$
Z	4	4
Crystal size ($\mu \mathrm{m}$)	$40 \times 40 \times 4$	$60 \times 50 \times 8$
Radiation	Mo K α	$\mathrm{MoK} \alpha$
No. of reflections	10,229	6337
No. unique reflections	1352	1381
$R_{\text {merge }}$ (\%)	3.51	9.9
$R_{\text {obs }}$ (\%)	8.6	12.4

ianbruceite was determined by crystal-structure refinement and the resultant composition is listed in Table 1 (column 2).

In ianbruceite, there are well-ordered (OH) and $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups that are associated with the Zn sites of the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ structural unit. There are also two interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups with a large degree of positional disorder (i.e. large anisotropic-displacement parameters). Some additional (minor) electron density was identified in the difference-Fourier map $\sim 1.7 \AA$ from the (OH) group at $\mathrm{O}(4)$; we interpret this as belonging to As^{3+} as part of an $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ group, with $\mathrm{O}(4)$ as the O ligand. Where the $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ group is present, one of the neighbouring interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ sites must be vacant (as $\mathrm{As}^{3+} \cdots\left(\mathrm{H}_{2} \mathrm{O}\right)$ is $<2 \AA$).

If we initially disregard any contribution from $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ and normalize the chemical formula to 8 anions $\left[\mathrm{O}_{4}+(\mathrm{OH})+\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$, there is a slight excess in the number of As^{5+} cations. If we then include minor $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]_{x}$ in the calculation (with $x=0.04$), there is an improvement in stoichiometry. The net formula unit can be expressed in terms of the $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]_{x}$ and $\left[(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{(1-x)}$ contributions (where $x=0.04$ for the crystal analysed by electron microprobe). The resulting anion part of the formula unit contains $\mathrm{O}_{4.04}+(\mathrm{OH})_{1.04}+$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2.96}=8.04$ anions, and the chemical composition normalized accordingly gives the empirical formula $\mathrm{K}_{0.02}\left(\mathrm{Zn}_{1.93} \mathrm{Fe}_{0.03}^{2+} \mathrm{Al}_{0.02}\right.$ $\left.\mathrm{Mn}_{0.01}^{2+}\right)_{\Sigma=1.99}(\mathrm{OH})_{0.96}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{As}^{5+} \mathrm{O}_{4}\right)$ $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]_{0.04}\left(\mathrm{H}_{2} \mathrm{O}\right)_{1.96}$. The idealized formula is $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. The $\left(\mathrm{H}_{2} \mathrm{O}\right)$ at the end of the formula is interstitial;
this has significant implications from a structural viewpoint, which are discussed below.

The interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in ianbruceite is not held strongly in the structure. The crystal grains fracture extensively when exposed to the electron beam in vacuum in an electron microprobe. A comparison of the sum of the oxides and the calculated $\mathrm{H}_{2} \mathrm{O}$ content shows that considerable $\mathrm{H}_{2} \mathrm{O}$ is lost in this process. The loss of $\mathrm{H}_{2} \mathrm{O}$ results in anomalously high values for the remaining constituents, giving a high sum for the total oxides (Table 2). The weakly bonded nature of the interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is apparent from two further observations. The interstitial space between the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slabs can absorb alcohol, as indicated by the Raman spectra, and preparation of material for powder diffraction resulted in a loss of interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$, which is apparent if the a dimension derived from the single-crystal diffraction study $(11.793 \AA)$ and that derived from the powder diffraction study $(11.583 \AA)$ are compared.

X-ray powder diffraction

Powder-diffraction data are listed in Table 2. The measured data were collected by the Hamburg group on a Nonius kappa CCD four-circle diffractometer in a Gandolfi-type arrangement using $\operatorname{Mo} K \alpha$ radiation and the POWDERIZE program. The calculated data were determined using JANA2000 (Petříček and Dušek, 2000) from the single-crystal structure refinement.

Additional powder-diffraction data were collected by the Manitoba-Toronto group using
a 114.6 mm diameter Gandolfi camera. The film was digitized using an optical scanner that was calibrated for intensity and peak position using an external Si standard, and the following unit-cell parameters were obtained by least-squares refinement: $a=11.583(3), b=9.159(2), c=6.816(3) \AA$, $\beta=103.3(1)^{\circ}$ and $V=703.7(3) \AA^{3}$. Significant interstitial $\mathrm{H}_{2} \mathrm{O}$ was lost when this sample was prepared for analysis, and as a result these data are not listed.

Crystal-structure solution and refinement

All of the diffraction patterns showed extreme streaking along \mathbf{a}^{*}. Very small crystals were used to try to improve the data quality, and the crystal-to-detector distance was increased to 8 cm to help resolve the rather diffuse maxima within the streaks. A small crystal which produced a reasonably precise unit cell was eventually found. It was attached to a tapered glass fibre and mounted on a Bruker D8 three-circle diffractometer equipped with a rotating-anode generator ($\mathrm{Mo} K \alpha$ radiation), multilayer optics and an APEX-II detector. A total of 10,229 intensities (3233 within the Ewald sphere) were collected to $60^{\circ} 2 \theta$ using 40 s per 0.3° frame. Empirical absorption corrections (SADABS; Sheldrick, 2008) were applied and equivalent reflections were corrected for Lorentz, polarization and background effects, averaged and reduced to structure factors. The unit-cell dimensions were obtained by least-squares refinement of the positions of 4921 reflections with $I>10 \sigma I$ and are given in Table 3, together with other information pertaining to data collection and structure refinement.

All calculations were done with the SHELXTL $P C$ (Plus) system of programs; R indices are of the form given in Table 3 and are expressed as percentages. Systematic absences in the singlecrystal X-ray diffraction data are consistent with space group $P 2_{1} / c$, and the structure was solved with this symmetry by direct methods and refined to convergence by full-matrix least-squares techniques with anisotropic-displacement parameters on all atoms. At this stage, differenceFourier maps showed diffuse electron density in the space ($\sim 4.7 \AA$ wide) between adjacent layers in the structure. Close inspection showed two weak maxima $\sim 1.7 \AA$ from the $O(4)$ anion. The only constituent in the electron-microprobe analysis that could possibly occur this close to an O atom is As, and we included two additional

	x / a	y / b	z / c	Occupancy	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	$U_{\text {eq }}$
As(1)	0.36080(16)	$0.91756(16)$	0.0952(2)	1	$0.0380(13)$	0.0106(8)	0.0089(8)	$-0.0008(5)$	0.0073(7)	0.0004(6)	0.0189(7)
As(2)	0.806(3)	0.777(3)	0.492(4)	0.048(8)							0.004(11)
As(3)	0.778(4)	0.686(5)	0.484(6)	0.031(8)							0.011(17)
Zn (1)	0.6179(2)	0.0413(2)	0.4016(3)	1	0.0387(16)	0.0120(10)	0.0129(10)	-0.0005(6)	0.0083(9)	0.0015(8)	0.0208(8)
$\mathrm{Zn}(2)$	0.6059(2)	0.7591(2)	0.1490(3)	1	$0.0398(16)$	$0.0198(10)$	0.0124(9)	-0.0051(6)	0.0093(9)	$-0.0003(8)$	$0.0235(7)$
$\mathrm{O}(1)$	$0.4319(11)$	0.7571(11)	0.0969(16)	1	0.020(7)	0.015(5)	0.017(5)	0.001(4)	$0.006(5)$	0.004(4)	0.017(2)
$\mathrm{O}(2)=\left[\mathrm{H}_{2} \mathrm{O}\right]$	$0.7964(10)$	0.0882(14)	$0.5118(18)$	1	0.009(7)	0.045(8)	0.030(6)	0.027(5)	-0.003(5)	-0.002(5)	0.030(3)
$\mathrm{O}(3)$	$0.2201(11)$	0.8861(13)	0.081(2)	1	0.022(7)	0.020(6)	0.054(8)	-0.017(5)	$0.011(6)$	-0.002(5)	0.032 (3)
$\mathrm{O}(4)=(\mathrm{OH})$	0.6690(11)	0.8134(12)	$0.4307(15)$	1	0.048(8)	$0.011(5)$	0.016(5)	0.006(4)	0.011(5)	-0.002(5)	0.024(3)
$\mathrm{O}(5)$	$0.4267(11)$	0.0110(11)	$0.3102(15)$	1	0.048(8)	0.012(5)	0.010(5)	-0.002(4)	$0.007(5)$	-0.000(5)	0.023(3)
$\mathrm{O}(6)$	$0.3725(11)$	0.0130(12)	-0.1104(15)	1	0.038(8)	0.023(6)	0.007(4)	0.004(4)	0.006(5)	-0.002(5)	0.023(3)
$\mathrm{O}(7)=\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.056(3)	0.987(3)	-0.203(6)	0.96(8)	0.10(3)	0.11(3)	0.24(4)	-0.03(3)	-0.08(2)	0.035(18)	0.17(2)
$\mathrm{O}(8)=\left(\mathrm{H}_{2} \mathrm{O}\right)$	0.913(4)	0.769(4)	0.585(8)	0.91(9)	0.11(3)	0.13(4)	0.25(6)	-0.00(3)	-0.05(3)	-0.04(2)	0.17(3)

TabLE 5. Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in ianbruceite.

$A s(1)-\mathrm{O}(1)$	$1.685(10)$	Zn(1)-O(1)f	2.053(10)	$\mathrm{Zn}(2)-\mathrm{O}(1)$	1.997(12)
$\operatorname{As}(1)-\mathrm{O}(3)$	1.664(13)	$\mathrm{Zn}(1)-\mathrm{O}(2)$	2.103(12)	$\mathrm{Zn}(2)-\mathrm{O}(4)$	1.952(11)
$A s(1)-\mathrm{O}(5) \mathrm{a}$	1.714(10)	$\mathrm{Zn}(1)-\mathrm{O}(4) \mathrm{b}$	2.159(11)	Zn(2)-O(4) ${ }^{\text {e }}$	1.934(10)
$A s(1)-\mathrm{O}(6) \mathrm{a}$	1.684(10)	$\mathrm{Zn}(1)-\mathrm{O}(5)$	2.209(13)	$\mathrm{Zn}(2)-\mathrm{O}(5) \mathrm{f}$	2.322(10)
$<A s(1)-\mathrm{O}>$	1.687	$\mathrm{Zn}(1)-\mathrm{O}(5) \mathrm{c}$	2.207(10)	$\mathrm{Zn}(2)-\mathrm{O}(6) \mathrm{g}$	2.117(11)
		$\mathrm{Zn}(1)-\mathrm{O}(6) \mathrm{d}$	$\underline{2.078(10)}$	$<\mathrm{Zn}(2)-\mathrm{O}>$	2.064
		$<\operatorname{Zn}(1)-\mathrm{O}>$	2.135		
Partially occupied As sites				Hydroxyl H-bond	
$A s(2)-A s(3)$	0.89(5)			$\mathrm{O}(4) \cdots \mathrm{O}(8)$	2.84(4)
$A s(2)-\mathrm{O}(4)$	1.60(3)				
$\operatorname{As}(3)-\mathrm{O}(4)$	1.71(5)				
Structural ($\mathrm{H}_{2} \mathrm{O}$)		Interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$		Interstitial ($\mathrm{H}_{2} \mathrm{O}$)	
$\mathrm{O}(2) \cdots \mathrm{O}(3) \mathrm{h}$	2.784(17)	$\mathrm{O}(7) \cdots \mathrm{O}(3)$	2.56(3)	$\mathrm{O}(8) \cdots \mathrm{O}(7) \mathrm{h}$	2.69(5)
$\mathrm{O}(2) \cdots \mathrm{O}(3) \mathrm{i}$	2.845 (18)	$\mathrm{O}(7) \cdots \mathrm{O}(8) \mathrm{f}$	2.69(5)	$\mathrm{O}(8) \cdots \mathrm{O}(7) \mathrm{j}$	2.78(5)
$\mathrm{O}(3) \mathrm{h}-\mathrm{O}(2)-\mathrm{O}(3) \mathrm{i}$	97.1(5)	or		$\mathrm{O}(7) \mathrm{h}-\mathrm{O}(8)-\mathrm{O}(7) \mathrm{j}$	120.2(1.5)
		$\mathrm{O}(7) \cdots \mathrm{O}(8) \mathrm{k}$	2.78(5)		
		$\mathrm{O}(3)-\mathrm{O}(7)-\mathrm{O}(8) \mathrm{f}$	95.3(1.3)		
		$\mathrm{O}(3)-\mathrm{O}(7)-\mathrm{O}(8) \mathrm{k}$	113.1(1.5)		

Equivalent positions are as follows: a: $x, y+1, z$; b: $x, y-1, z$; c: $\bar{x}+1, \bar{y}, \bar{z}+1 ; \mathrm{d}: \bar{x}+1, \bar{y}, \bar{z} ;$ e: $x, \bar{y}+3 / 2, z-1 / 2$; f: $\bar{x}+1$, $y+1 / 2, \bar{z}+1 / 2 ; \mathrm{g}: \bar{x}+1, \bar{y}+1, \bar{z} ; \mathrm{h}: \bar{x}+1, y-1 / 2, \bar{z}+1 / 2 ;$ i: $\bar{x}+1, \bar{y}+1, \bar{z}+1 ;$ j: $x+1, y, z+1 ;$ k: $x-1, y, z-1$.

As sites with variable occupancy in the refinement: $A s(2)$ and $A s(3)$, which were partly occupied [1.6(3) and $1.0(3) \mathrm{e}$, respectively]. Two diffuse maxima within the interlayer were identified as disordered $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups, and assignment of the O scattering factor to the $\mathrm{O}(7)$ and $\mathrm{O}(8)$ sites gave refined occupancies of $0.96(8)$ and
$0.91(9)$, respectively. We consider the $\mathrm{O}(7)$ site to be fully occupied by an $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group. The $\mathrm{O}(8)$ site is located near $(<2 \AA)$ the $A s(2)$ and $A s(3)$ sites, and mutual occupancy of either $A s(2)$ or $A s(3)$ by As^{3+} and the $\mathrm{O}(8)$ site by $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is unlikely. The combined occupancy of As^{3+} at $A s(2)$ and $A s(3)$ is $0.079(16)$, and the refined $\mathrm{O}(8)$

Table 6. Bond-valence table (vu) for ianbruceite.

	$A s(1)$	$\operatorname{Zn}(1)$	$\operatorname{Zn}(2)$	Σ	H(1)	H(2)	H(3)	H(4)	H(5)	H(6)	H(7)	Σ
$\mathrm{O}(1)$	1.25	0.39	0.45	2.09								2.09
$\mathrm{O}(2)$		0.34		0.34		0.8	0.8					1.94
$\mathrm{O}(3)$	1.32			1.32		0.2	0.2	0.2				1.92
$\mathrm{O}(4)$		0.29	0.51	1.34	0.8							2.14
			0.54									
$\mathrm{O}(5)$	1.15	0.26	0.19	1.86								1.86
		0.26										
$\mathrm{O}(6)$	1.25	0.36	0.33	1.94								1.94
$\mathrm{O}(7)$								0.8	0.8	0.2	0.2	2.00
$\mathrm{O}(8)$					0.2				0.2	0.8	0.8	2.00
Σ	4.97	1.90	2.02		1.0	1.0	1.0	1.0	1.0	1.0	1.0	

Bond-valence parameters in valence units (vu) from Brown and Altermatt (1985).
site occupancy is $0.91(9)$, this is in accord with a formula containing As_{x}^{3+} and $\left(\mathrm{H}_{2} \mathrm{O}\right)_{1-x}$, in which x ~ 0.08. The structure refinement converged to a final R_{1} index of 8.6%. The high R_{1} value is due to the extreme stacking disorder along the a axis. Refined atom coordinates and anisotropic-displacement parameters are listed in Table 4, selected interatomic distances are given in Table 5, and bond valences, calculated using the parameters of Brown and Altermatt (1985), are given in Table 6.

A second dataset was collected on a Nonius kappa CCD 4-circle diffractometer with $\mathrm{Mo} \mathrm{K} \alpha$ radiation; experimental details are given in Table 3. A structural model was obtained using Sir92 in space group $P 2_{1} / c$. The structure refinement converged to a residual of 12.4% for the observed reflections, with isotropic-displacement parameters for all oxygen atoms. The refined atom coordinates and interatomic distances are similar to those listed in Tables 4 and 5.

Crystal structure

Coordination of cations

In the structure of ianbruceite, $A s(1)$ is tetrahedrally coordinated with $\langle\mathrm{As}-\mathrm{O}\rangle=1.687 \AA$, which is typical of As^{5+} in tetrahedral coordination [e.g. adamite: $1.681 \AA$ (Hawthorne, 1976a); scorodite: $1.680 \AA$ (Hawthorne, 1976b)]. Zinc is present in two coordinations (Fig. 3), [6]-coordinated [octahedral: $Z n(1)$] and [5]-coordinated [triangular bipyramidal: $\mathrm{Zn}(2)$], with $<^{[6]} \mathrm{Zn}-\mathrm{O}>$
$=2.135$ and ${ }^{[5]} \mathrm{Zn}-\mathrm{O}>=2.064 \AA$, respectively. The $\mathrm{Zn}(1)$ site is coordinated by $\mathrm{O}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)$ and the $\mathrm{Zn}(2)$ site by $\mathrm{O}_{3}(\mathrm{OH})_{2}$.

Structure topology

The $\left(\mathrm{Zn} \varphi_{5}\right)\left(\varphi=\mathrm{O}, \mathrm{OH}, \mathrm{H}_{2} \mathrm{O}\right)$ polyhedra share (OH) vertices to form $\left[\mathrm{Zn} \varphi_{4}\right]$ chains that extend in the \mathbf{c} direction (Fig. 4, green). These $\left[\mathrm{Zn} \varphi_{4}\right]$ chains are decorated by $\left(\mathrm{Zn}_{6}\right)$ octahedra (Fig. 4, blue), each of which shares edges with adjacent $\left(\mathrm{Zn} \varphi_{5}\right)$ triangular bipyramids to form zigzag $\left.{ }^{[5]} \mathrm{Zn}^{[6]} \mathrm{Zn} \varphi_{7}\right]$ chains that extend in the c direction. These zigzag chains are linked in the b direction by sharing corners with $\left(\mathrm{AsO}_{4}\right)$ tetrahedra (Fig. 4, orange) to form sheets one polyhedron thick in the a direction. Note that the presence of tetrahedra and triangular bipyramids imparts a polarity to this single-layer sheet. Two of these sheets with opposite polarity link in the a direction by sharing edges between $\left(\mathrm{Zn} \varphi_{6}\right)$ octahedra and vertices between both Zn polyhedra and As tetrahedra to form a structural unit of composition $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$. This slab is shown face-on in Fig. 4 and edge-on in Fig. 5.

These $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slabs stack along the a direction as shown in Fig. 5. The separation of adjacent slabs is $\sim 4.7 \AA$ and two positionally disordered $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups [$\mathrm{O}(7)$ and $\mathrm{O}(8)$] occupy the interstitial space. The $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group associated with the $\left(\mathrm{Zn}_{6}\right)$ octahedron, the $\mathrm{O}(3)$ vertex of the $\left(\mathrm{AsO}_{4}\right)$ tetrahedron, and the (OH) group, are all situated at the margins of the

Fig. 3. The Zn polyhedra in ianbruceite; (a) the $\left(\mathrm{Zn}(1) \mathrm{O}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$) octahedron (blue); (b) the $\left(\mathrm{Zn}(2) \mathrm{O}_{3}(\mathrm{OH})_{2}\right)$ trigonal bipyramid (green). The (OH) groups are shown as black circles and the $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups as red circles.

Fig. 4. The crystal structure of ianbruceite projected onto (100), showing the connectivity of the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slab. The $\left(\mathrm{Zn}(1) \mathrm{O}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$ octahedra are blue; $\left(\mathrm{Zn}^{2}(2) \mathrm{O}_{3}(\mathrm{OH})_{2}\right)$ trigonal bipyramids are green; $\left(\mathrm{AsO}_{4}\right)$ groups are orange; (OH) groups are black circles; and $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are red circles.

Fig. 5. The crystal structure of ianbruceite projected onto (010), showing the stacking of the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slabs in the a direction. The $\left(\mathrm{Zn}(1) \mathrm{O}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$) octahedra are blue; $\left(\mathrm{Zn}(2) \mathrm{O}_{3}(\mathrm{OH})_{2}\right)$ trigonal bipyramids are green; $\left(\mathrm{AsO}_{4}\right)$ groups are orange; (OH) groups are black circles; bonded $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are small red circles; and interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are large red circles.
$\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slab and are involved in mutual hydrogen bonding with the interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups. The weakness of the inter-slab bonding accounts for the extreme disorder in the stacking of the slabs (and the strong streaking along \mathbf{a}^{*} observed in the diffraction pattern), and is consistent with the perfect $\{100\}$ cleavage and the flexible but non-elastic behaviour of thin flakes of the mineral.

Anion identities and hydrogen bonding

There are eight crystallographically distinct anions, $O(1)-O(8)$ (Table 4). Inspection of the bond-valence table (Table 6) shows that the bond valence incident at $\mathrm{O}(2)$ is 0.34 vu and hence $\mathrm{O}(2)$ is an $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group. The bond valence incident at $\mathrm{O}(3)$ from As^{5+} alone is 1.32 vu and the $\mathrm{O}(3)$ anion receives bond valence from three additional hydrogen bonds: two from neighbouring $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups at $\mathrm{O}(2)$ along the surface of the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slab (Fig. 6) and one from the interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group at $\mathrm{O}(7)$ (Fig. 7). The $\mathrm{O}(4)$ anion bonds to three Zn atoms and is an (OH) group; it directs a hydrogen bond toward the interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group at $\mathrm{O}(8)$. Additional mutual hydrogen bonding occurs between the two interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups at $O(7)$ and $O(8)$ (Table 6; Fig. 7).
We identified two partly occupied As sites, $A s(2)$ and $A s(3)$ that are close together (Table 5) and cannot be occupied simultaneously. Thus either of them will contribute bond valence to the adjacent $\mathrm{O}(4)$ anion. The sum of the bond valence incident at $\mathrm{O}(4)$ from the cations of the structural unit is 1.34 vu (Table 6), indicating that a further bond valence of $\sim 0.66 \mathrm{vu}$ is needed to satisfy the valence-sum rule. This value is too low for ${ }^{[4]} \mathrm{As}^{5+}$ but is typical for the short bonds of lone-pair stereoactive As^{3+}, and hence we assign As^{3+} to the $A s(2)$ and $A s(3)$ sites. Where As^{3+} is locally bonded to $\mathrm{O}(4)$, the latter is O^{2-} in accord with the local version of the valence-sum rule (Hawthorne, 1997). Electroneutrality requires additional anions to neutralize the charge and coordinate the interstitial As^{3+}, these are two additional (OH) groups forming an $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ triangular pyramid with As^{3+} showing stereoactive lone-pair behaviour. The adjacent interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group at $\mathrm{O}(8)$ is situated $<2 \AA$ from $A s(2)$ and $A s(3)$, and this $\left(\mathrm{H}_{2} \mathrm{O}\right)$ group is locally absent if the $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ group is present. Thus, if As^{3+} is absent, $\mathrm{O}(4)=(\mathrm{OH})$ and $\mathrm{O}(8)=$ $\left(\mathrm{H}_{2} \mathrm{O}\right)$; if As^{3+} is present, it is part of an

FIG. 6. The crystal structure of ianbruceite projected onto (100), showing hydrogen bonding along the surface of the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slab. The $\left(\mathrm{Zn}(1) \mathrm{O}_{4}(\mathrm{OH})\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$ octahedra are blue; $\left(\mathrm{Zn}(2) \mathrm{O}_{3}(\mathrm{OH})_{2}\right)$ trigonal bipyramids are green; $\left(\mathrm{AsO}_{4}\right)$ groups are orange; (OH) groups are black circles and $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are red circles; and hydrogen bonds are shown as dashed lines with arrows to the acceptor anions.
$\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]$ group in which $\mathrm{O}(4)=\mathrm{O}$, two additional (OH) groups are present, and $\mathrm{O}(8)=$ \square. The net substitution is $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2}^{\mathrm{O}(4)} \mathrm{O}\right]^{-}+$ ${ }^{\mathrm{O}(8)} \square \leftrightarrow{ }^{\mathrm{O}(4)}(\mathrm{OH})^{-}+{ }^{\mathrm{O}(8)}\left(\mathrm{H}_{2} \mathrm{O}\right)$. We calculated $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]_{0.04}$ for the crystal analysed by electron-microprobe and $\left[\mathrm{As}^{3+}(\mathrm{OH})_{2} \mathrm{O}\right]_{0.08}$ for the crystal analysed by structure refinement.

Fig. 7. The crystal structure of ianbruceite projected down [001], showing the hydrogen bonding between the $\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]$ slabs. The $\left(\mathrm{Zn}(1) \mathrm{O}_{4}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\right)$ octahedra are blue; $\left(\mathrm{Zn}(2) \mathrm{O}_{3}(\mathrm{OH})_{2}\right)$ trigonal bipyramids are green; $\left(\mathrm{AsO}_{4}\right)$ groups are orange; (OH) groups are black circles; $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are small red circles; interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups are large red circles; and hydrogen bonds are shown as dashed lines with arrows to the acceptor anions.

Related minerals

Ianbruceite is not isostructural with any other mineral. There are six other hydrated Zn -arsenate minerals: koritnigite (Keller et al., 1980); köttigite (Hill, 1979); arsenohopeite (Neuhold, et al., 2012); davidlloydite (Hawthorne et al., 2012); warikahnite (Riffel et al., 1980); and legrandite (McLean et al., 1971; Pushcharovskii et al., 1971), all of which occur at Tsumeb. Selected properties of these minerals are listed in Table 7. Koritnigite and köttigite have layer structures but the layers are held together by hydrogen bonding with no interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups. The only difference between the formulae of legrandite and ianbruceite is the two additional $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups in ianbruceite. If the chemical formula of euchroite, $\mathrm{Cu}_{2}^{2+}\left(\mathrm{AsO}_{4}\right)(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$, is compared with the formula of ianbruceite, it is easy to see how ianbruceite could be mistakenly described as
a Zn analogue of euchroite. Both legrandite and euchroite lack interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups and have framework structures that are very different from the layer structure of ianbruceite. The different roles of $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in mineral structures are easily indicated in formulae by separating the different kinds of $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups, [i.e. those that bond to the structural unit, and those that are interstitial (Hawthorne 1985, 1990, 1992)]. It is logical to place $\left(\mathrm{H}_{2} \mathrm{O}\right)$ belonging to the structural unit in that part of the formula, following the cation(s) that bond(s) to these $\left(\mathrm{H}_{2} \mathrm{O}\right)$ groups (i.e. after Zn for the minerals listed in Table 7); interstitial $\left(\mathrm{H}_{2} \mathrm{O}\right)$ is placed outside the square brackets indicating the structural unit, at the end of the formula. In this way, the structural distinction between ianbruceite and the other hydrated Zn -arsenates in Table 7 (and euchroite) is conveyed by their chemical formulae.
Table 7. Comparative data for hydrated zinc arsenates.

	Ianbruceite	Koritnigite	Köttigite	Arsenohopeite	Davidlloydite	Warikahnite	Legrandite
Formula	$\left[\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)\right]\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$	$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{3} \mathrm{OH}\right)$	$\mathrm{Zn}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{AsO}_{4}\right)_{2}$	$\mathrm{Zn}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{2}$	$\mathrm{Zn}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{AsO}_{4}\right)_{2}$	$\mathrm{Zn}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}$	$\mathrm{Zn}_{2}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{AsO}_{4}\right)$
Zn :As ratio	2:1	1:1	3:2	3:2	3:2	3:2	2:1
Symmetry	Monoclinic	Triclinic	Monoclinic	Orthorhombic	Triclinic	Triclinic	Monoclinic
Space group	$P 2_{1} / \mathrm{c}$	$P \overline{1}$	C2/m	Pnma	$P \overline{1}$	$P \overline{1}$	$P 2{ }_{1} / \mathrm{c}$
$a(\mathrm{~A})$	11.793	7.948	10.241	10.804	5.976	6.710	12.805
b	9.114	15.829	13.405	19.003	7.600	8.989	7.933
c	6.827	6.668	4.757	5.112	5.447	14.533	10.215
$\alpha\left({ }^{\circ}\right)$	90	90.86	90	90	84.29	105.59	90
β	103.86	96.56	105.21	90	90.49	93.44	104.39
γ	90	90.05	90	90	88.00	108.68	90
$V\left(\AA^{3}\right)$	712.3	833.3	630.2	1049.5	246.0	789.5	1005.1
Z	4	8	2	4	1	4	8
$D\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	3.20	3.56	3.26	3.46	3.66	4.29	4.03
Structure type	Layer	Layer	Layer	Layer	Layer	Framework	Framework
Interlayer type	(open; free $\mathrm{H}_{2} \mathrm{O}$)	(open)	(open)	(octahedral bridge)	(octahedral bridge)	-	-
Interlayer gap* (A)	4.70	1.82	0.64	-	-	-	-

* The minimum orthogonal distance across the interlayer, measured from oxygen centres.

Acknowledgements

We thank Tony Steede of the Royal Ontario Museum for his help with SEM and XRD work on both ianbruceite and davidlloydite, the Louise Hawley Stone Charitable Trust for acquisition of the Charles Key mineral collection, and Tony Kampf and an anonymous reviewer for their comments on the manuscript. This work was supported by a Canada Research Chair in Crystallography and Mineralogy and by Natural Sciences and Engineering Research Council of Canada Discovery, Equipment and Major Installation grants of the Natural Sciences and Engineering Research Council of Canada, and by Innovation grants from the Canada Foundation for Innovation to FCH.

References

Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
Gebhard, G. (1999) Tsumeb - A Unique Mineral Locality. GG Publishing, Grossenseifen, Germany.
Hawthorne, F.C. (1976a) Refinement of the crystal structure of adamite. The Canadian Mineralogist, 14, 143-148.
Hawthorne, F.C. (1976b) The hydrogen positions in scorodite. Acta Crystallographica, B32, 2891-2892.
Hawthorne, F.C. (1985) Towards a structural classification of minerals: The ${ }^{\mathrm{VI}} \mathrm{M}^{1 \mathrm{~V}} \mathrm{~T}_{2} \varphi_{\mathrm{n}}$ minerals. American Mineralogist, 70, 455-473.
Hawthorne, F.C. (1990) Structural hierarchy in ${ }^{[6]} \mathrm{M}^{[4]} \mathrm{T} \varphi_{\mathrm{n}}$ minerals. Zeitschrift für Kristallographie, 192, 1-52.
Hawthorne, F.C. (1992) The role of OH and $\mathrm{H}_{2} \mathrm{O}$ in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183-206.
Hawthorne, F.C. (1997) Short-range order in amphiboles: a bond-valence approach. The Canadian Mineralogist, 35, 201-216.
Hawthorne, F.C., Cooper, M.A., Abdu, Y.A., Ball ,
N.A., Back, M.E. and Tait, K.T. (2012) Davidlloydite, ideally $\mathrm{Zn}_{3}\left(\mathrm{AsO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, a new arsenate mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia: description and crystal structure. Mineralogical Magazine, 77, 45-57.
Hill, R.J. (1979) The crystal structure of köttigite. American Mineralogist, 64, 376-382.
Keller, P. (1977) Tsumeb VI. Paragenesis. Mineralogical Record, 8(3), 38-47.
Keller, P., Hess, H. and Riffel, H. (1980) Die Kristallstruktur von Koritnigit $\mathrm{Zn}\left(\left(\mathrm{H}_{2} \mathrm{O}\right)\right.$ $\left.(\mathrm{OH})\left(\mathrm{AsO}_{3}\right)\right)$. Neues Jahrbuch für Mineralogie Abhandlungen, 138, 316-332.
McLean, W.J., Anthony, J.W., Finney, J.J. and Laughon, R.B. (1971) The crystal structure of legrandite. American Mineralogist, 56, 1147-1154.
Neuhold, F., Kolitsch, U., Bernhardt, H.-J. and Lengauer, C.L. (2011) Arsenohopeite, a new zinc arsenate mineral from the Tsumeb mine, Namibia. Mineralogical Magazine, 76, 603-612.
Petríček, V. and Dušek, M. (2000) Jana 98 The Crystallographic Computing System. Institute of Physics, Academy of Sciences of the Czech Republic, Praha.
Pinch. W.W. and Wilson, W.E. (1977) Tsumeb V. Minerals: a descriptive list. Mineralogical Record, 8(3), 17-37.
Pouchou, J.L. and Pichoir, F. (1985) 'PAP' $\varphi(\rho Z)$ procedure for improved quantitative microanalysis. Pp. 104-106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.
Pushcharovskii, D.Yu., Pobedimskaya, E.A. and Belov, N.V. (1971) The crystal structure of legrandite $\mathrm{Zn}_{2}\left(\mathrm{AsO}_{4}\right) \mathrm{OH}\left(\mathrm{H}_{2} \mathrm{O}\right)$. Doklady Akademii Nauk SSSR, 198, 1072-1075.
Riffel, H., Keller, P. and Hess, H. (1980) Die Kristallstruktur von Warikahnit, $\mathrm{Zn}_{3}\left(\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{AsO}_{4}\right)_{2}\right)$. Tschermaks Mineralogische und Petrographische Mitteilungen, 27, 187-199.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
Weber, D. and Wilson, W.E. (1977) Tsumeb IV. Geology. Mineralogical Record, 8(3), 14-16.

```
data_test2
_audit_creation_method SHELXL-97
_chemical_name_systematic
;
    ?
;
_chemical_name_common ?
_chemical_melting_point ?
_chemical_formula_moiety ?
_chemical_formula_sum
    ''H3 As O\overline{9 Zn2'}
    _chemical_formula_weight 352.68
loop_
    _atom_type_symbol
    _atom_type_description
    -_atom_type_scat_dispersion_real
    _atom_type_scat_dispersion_imag
    _atom_type_scat_source
    'O' 'O' -0.0106 0.0060
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'H' 'H' 0.0000 0.0000
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'Zn' 'Zn' 0.2839 1.4301
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    'As' 'As' 0.0499 2.0058
    'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4'
    _symmetry_cell_setting ?
    _symmetry_space_group_name_H-M ?
loop_
    _symmetry_equiv_pos_as_xyz
    ''x, y, z'
    '-x, y+1/2, -z+1/2'
    '-x, -y, -z'
    'x, -y-1/2, z-1/2'
_cell_length_a 11.793(2)
_cell_length_b 9.1138(14)
_cell_length_c 6.8265(10)
_cell_angle_alpha 90.00
_cell_angle_beta 103.859(9)
_cell_angle_gamma 90.00
_cell_volume 712.35(19)
_cell_formula_units_Z 4
__cell_measurement_temperature 293(2)
_cell_measurement_reflns_used ?
_cell_measurement_theta_min ?
_cell_measurement_theta_max ?
_exptl_crystal_description ?
_exptl_crystal_colour ?
_exptl_crystal_size_max ?
_exptl_crystal__size_mid ?
```

```
_exptl_crystal_size_min ?
_exptl_crystal_densìty_meas ?
_-exptl_crystal_density_diffrn 3.289
_exptl_crystal_density_method 'not measured'
_exptl_crystal_F_000 672
_exptl_absorpt_coefficient_mu 11.362
_exptl_absorpt_correction_type ?
_exptl_absorpt_correction_T_min ?
_exptl_absorpt_correction_T_max ?
_exptl_absorpt_process_details ?
_exptl_special_details
;
    ?
;
```

diffrn_ambient_temperature	293 (2)	
_diffrn_radiation_wavelength	0.71073	
diffrn_radiation_type	MoK ${ }^{\text {a }}$	
_diffrn_radiation_source	'fine-focus	sealed tube'
_diffrn_radiation_monochromator	graphite	
_diffrn_measurement_device_type	?	
_diffrn_measurement_method	?	
_diffrn_detector_area_resol_mean	?	
-diffrn_standards_number	?	
_diffrn_standards_interval_count	?	
_diffrn_standards_interval_time	?	
_diffrn_standards_decay_\%	?	
_diffrn_reflns_number	3233	
_diffrn_reflns_av_R_equivalents	0.0351	
diffrn_reflns_av_sigmaI/netI	0.0478	
_diffrn_reflns_limit_h_min	-14	
diffrn_reflns_limit_h_max	12	
_diffrn_reflns_limit_k_min	-11	
diffrn_reflns_limit_k_max	9	
_diffrn_reflns_limit_l_min	-8	
diffrn_reflns_limit_l_max	8	
_diffrn_reflns_theta_min	1.78	
_diffrn_reflns_theta_max	26.46	
_reflns_number_total	1352	
_reflns_number_gt	1106	
_reflns_threshold_expression	>2sigma(I)	
_computing_data_collection	?	
_computing_cell_refinement	?	
_computing_data_reduction	?	
_computing_structure_solution	'SHELXS-97	(Sheldrick, 1990)'
_computing_structure_refinement	'SHELXL-97	(Sheldrick, 1997)'
_computing_molecular_graphics	?	
_computing_publication_material	?	

_refine_special_details
;
Refinement of $\mathrm{F}^{\wedge} 2^{\wedge}$ against ALL reflections. The weighted $\mathrm{R}-\mathrm{factor} \mathrm{wR}$ and
goodness of fit S are based on $\mathrm{F}^{\wedge} 2^{\wedge}$, conventional R-factors R are based
on F, with F set to zero for negative $F^{\wedge} 2^{\wedge}$. The threshold expression of
$\mathrm{F}^{\wedge} 2^{\wedge}>2$ sigma $\left(\mathrm{F}^{\wedge} 2^{\wedge}\right)$ is used only for calculating R-factors(gt) etc. and is

```
    not relevant to the choice of reflections for refinement. R-factors based
    on F^2^ are statistically about twice as large as those based on F, and R-
    factors based on ALL data will be even larger.
;
_refine_ls_structure_factor_coef Fsqd
refine ls matrix type full
_refine_ls_weighting_scheme calc
_refine_ls_weighting_details
'calc w=1/[\s^^2^(F\mp@subsup{0}{}{\wedge}\mp@subsup{2}{}{\wedge})+(0.1108P)^2^+37.8672P] where P=(Fo^2^+2Fc^2^)/3'
_atom_sites_solution_primary direct
_atom_sites_solution_secondary difmap
_atom_sites_solution_hydrogens geom
refine_ls_hydrogen_treatment mixed
_refine_ls_extinction_method SHELXL
_refine_ls_extinction_coef 0.016(2)
_refine_ls_extinction_expression
    ' FC^^^\overline{= kF\overline{C}}[1+0.001xF\overline{C}^2^\1^3^/sin(2\q) ]^-1/4^'
_refine_ls_number_reflns 1352
_refine_ls_number_parameters 114
_refine_ls_number_restraints 0
_refine_ls_R_factor_all 0.1054
_refine_ls_R_factor_gt 0.0863
_refine_ls_wR_factor_ref 0.2344
_refine_ls_wR_factor_gt 0.2213
_refine_ls_goodness_of_fit_ref 1.106
_refine_ls_restrained_S_all 1.106
_refine_ls_shift/su_max 0.000
_refine_ls_shift/su_mean 0.000
loop_
    _atom_site_label
    _atom_site_type_symbol
    _atom_site_fract_x
    _atom_site_fract_y
    _atom_site_fract_z
    _atom_site_U_iso_or_equiv
    _atom_site_adp_type
    _atom_site_occupancy
    _atom_site_symmetry_multiplicity
    _atom_site_calc_flag
    _atom_site_refinement_flags
    _atom_site_disorder_assembly
    _atom_site_disorder_group
A\overline{s}As}\overline{0}.360\overline{8}0(16) 0.\overline{9}1756(16) 0.0952(2) 0.0189(6) Uani 1 1 d . . . .
Zn1 Zn 0.6179(2) 0.0413(2) 0.4016(3) 0.0208(8) Uani 0.958(10) 1 d P . .
Zn2 Zn 0.6059(2) 0.7591(2) 0.1490(3) 0.0235(7) Uani 1 1 d . . .
O1 0 0.4319(11) 0.7571(11) 0.0969(16) 0.017(2) Uani 1 1 d . . .
O2 0 0.7964(10) 0.0882(14) 0.5118(17) 0.030(3) Uani 1 1 d . . .
O3 O 0.2201(11) 0.8861(13) 0.081(2) 0.032(3) Uani 1 1 d . . .
O4 0 0.6690(11) 0.8134(12) 0.4307(15) 0.024(3) Uani 1 1 d . . .
05 0 0.4267(11) 0.0110(11) 0.3102(15) 0.023(3) Uani 1 1 d . . .
06 0 0.3725(11) 0.0130(12) -0.1104(15) 0.023(3) Uani 1 1 d . . .
As2 As 0.806(3) 0.777(3) 0.492(4) 0.004(11) Uiso 0.048(8) 1 d P . .
As3 As 0.778(4) 0.686(5) 0.484(6) 0.011(17) Uiso 0.031(8) 1 d P . .
O7 O 0.056(3) 0.987(3) -0.203(6) 0.17(2) Uani 0.96(8) 1 d P . .
O8 0 0.913(4) 0.769(4) 0.585(8) 0.18(3) Uani 0.91(9) 1 d P . .
```

```
loop
    _atom_site_aniso_label
    _atom_site_aniso_U_11
    _atom_site_aniso_U_22
    _atom_site_aniso_U_33
    _atom_site_aniso_U_23
    -atom_site_aniso_U_13
    _atom_site_aniso_U_12
As 0.0380(13) 0.0106(8) 0.0089(8) -0.0008(5) 0.0073(7) 0.0004(6)
Zn1 0.0387(16) 0.0120(10) 0.0129(10) -0.0005(6) 0.0083(9) 0.0015(8)
Zn2 0.0398(15) 0.0198(10) 0.0124(9) -0.0051(6) 0.0093(9) -0.0003(8)
O1 0.020(7) 0.015(5) 0.017(5) 0.001(4) 0.006(5) 0.004(4)
O2 0.009(7) 0.045(8) 0.030(6) 0.027(5) -0.003(5) -0.002(5)
O3 0.022(7) 0.020(6) 0.054(8) -0.017(5) 0.011(6) -0.002(5)
O4 0.048(8) 0.011(5) 0.016(5) 0.006(4) 0.011(5) -0.002(5)
O5 0.048(8) 0.012(5) 0.010(4) -0.002(4) 0.007(5) 0.000(5)
06 0.038(8) 0.023(6) 0.007(4) 0.004(4) 0.006(5) - 0.002(5)
07 0.10(3) 0.11(3) 0.24(4) -0.03(3) -0.08(2) 0.035(18)
O8 0.11(3) 0.13(4) 0.25(6) 0.00(3) -0.05(3) -0.04(2)
_geom_special_details
;
    All esds (except the esd in the dihedral angle between two l.s. planes)
    are estimated using the full covariance matrix. The cell esds are taken
    into account individually in the estimation of esds in distances, angles
    and torsion angles; correlations between esds in cell parameters are only
    used when they are defined by crystal symmetry. An approximate (isotropic)
    treatment of cell esds is used for estimating esds involving l.s. planes.
;
loop_
    _geom_bond_atom_site_label_1
    _geom_bond_atom_site_label_2
    _geom_bond_distānce
    _geom_bond_site_symmetry_2
    _geom_bond_publ_flag
As 03 1.664(13) . ?
As 06 1.684(10) 1 565 ?
As 01 1.684(10) .- ?
As 05 1.714(10) 1 565 ?
As As3 2.92(5) 2_655 ?
As O2 3.512(12) 2_655 ?
As 02 3.609(12) 3-666 ?
As 04 3.625(11) 2-655 ?
Zn1 01 2.053(10) 2_645 ?
Zn1 06 2.078(10) 3_655 ?
Zn1 02 2.103(12) . ?
Zn1 04 2.159(11) 1_545 ?
Zn1 05 2.207(10) 3-656 ?
Zn1 05 2.209(13) .-?
Zn1 Zn2 3.081(2) 1_545 ?
Zn2 O4 1.934(10) 4_575 ?
Zn2 O4 1.952(11) . ?
Zn2 O1 1.997(12) . ?
Zn2 06 2.117(11) 3 665 ?
Zn2 05 2.322(10) 2_655 ?
```

```
Zn2 As3 2.60(5) 4_575 ?
Zn2 As3 2.75(5) . ?
Zn2 As2 2.83(3) 4_575 ?
Zn2 As2 2.90(3) . ?
Zn2 Zn1 3.081(2) 1_565 ?
O1 Zn1 2.053(10) 2_655 ?
O1 02 3.035(17) 2 655 ?
02 03 2.784(17) 2_645 ?
O2 03 2.845(18) 3_666 ?
O2 As2 2.85(3) 1_545 ?
02 04 2.905(17) 1_545 ?
02 01 3.035(16) 2-645 ?
O2 07 3.12(5) 3 6\overline{6}5 ?
O2 06 3.117(16) 3_655 ?
O2 As 3.512(12) 2_645 ?
O2 As 3.609(12) 3_666 ?
O2 As3 3.68(5) 1 545 ?
03 02 2.784(17) 2_655 ?
03 02 2.845(18) 3_666 ?
O4 As2 1.60(3) . ?
O4 As3 1.71(5) . ?
O4 Zn2 1.934(10) 4_576 ?
O4 Zn1 2.159(11) 1_565 ?
0406 2.648(14) 3-\overline{6}65 ?
04 05 2.814(15) 3_666 ?
O4 O8 2.84(4) . ?
O4 02 2.905(17) 1_565 ?
0406 3.086(15) 2_655 ?
O4 As3 3.59(4) 4 \overline{5}75 ?
O4 O4 3.603(7) 4-575 ?
05 As 1.714(10) 1_545 ?
O5 Zn1 2.207(10) 3_656 ?
O5 Zn2 2.322(10) 2_645 ?
05 04 2.814(15) 3_666 ?
06 As 1.684(10) 1-545 ?
06 Zn1 2.078(10) 3_655 ?
O6 Zn2 2.117(11) 3_665 ?
06 04 2.648(14) 3_665 ?
06 04 3.086(15) 2_645 ?
06 02 3.117(16) 3-655 ?
As2 As3 0.89(5) . ?
As2 08 1.27(5) . ?
As2 Zn2 2.83(3) 4_576 ?
As2 02 2.85(3) 1_565 ?
As3 08 1.75(6) .-?
As3 Zn2 2.60(5) 4_576 ?
As3 As 2.92(5) 2_645 ?
As3 04 3.59(4) 4_576 ?
As3 02 3.68(5) 1_565 ?
As3 04 3.68(4) 4-575 ?
O7 02 3.12(5) 3_\overline{6}65 ?
loop_
    _geom_angle_atom_site_label_1
    _geom_angle_atom_site_label_2
    _geom_angle_atom_site_label_3
    __geom_angle
```

```
    _geom_angle_site_symmetry_1
    _geom_angle_site_symmetry_3
    _geom_angle_publ_flag
03 As 06 108.6(6) . 1_565 ?
03 As O1 109.8(6) . . ?
06 As 01 108.3(5) 1_565 . ?
03 As 05 112.2(6) . 1 565 ?
06 As 05 110.3(5) 1_565 1_565 ?
01 As 05 107.6(6) . 1_565 ?
03 As As3 68.0(10) . 2_655 ?
06 As As3 64.4(9) 1_565 2_655 ?
01 As As3 169.9(9) - 2_65\overline{5 ?}
05 As As3 82.0(10) 1_5\overline{6}5 2_655 ?
03 As 02 51.0(4) . 2_655 ?
06 As O2 114.4(4) 1_565 2_655 ?
O1 As O2 59.8(4) . 2_655 ?
05 As O2 135.3(4) 1_565 2_655 ?
As3 As O2 115.6(10) - 2_655-}\mp@subsup{}{2}{2_655 ?
03 As 02 50.1(5) . 3_\overline{6}66 ?
06 As O2 141.8(4) 1_565 3_666 ?
O1 As O2 109.0(4) . 3_666 ?
05 As O2 65.1(4) 1_565 3_666 ?
As3 As 02 77.5(9) \overline{2}_655 \overline{3}_666 ?
02 As 02 78.6(3) 2 - }555 3-\overline{6}66 ?
03 As 04 94.9(4) . 2_655 ?
06 As 04 58.1(4) 1_565 2_655 ?
O1 As O4 155.1(5) . 2_655 ?
05 As O4 64.3(4) 1 565 2 655 ?
As3 As 04 27.7(10) }2 655 - 2 655 ?
O2 As O4 143.2(3) 2_\overline{6}55 2_-\overline{6}55 ?
O2 As O4 89.4(3) 3_666 2_655 ?
O1 Zn1 06 108.3(4) 2_645 3_655 ?
O1 Zn1 O2 93.8(5) 2_\overline{645. ?}
06 Zn1 02 96.4(5) 3-655 . ?
O1 Zn1 04 174.3(4) \overline{2}645 1 545 ?
O6 Zn1 04 77.3(4) 3_655 1_545 ?
O2 Zn1 04 85.9(5) . 1_545 ?
O1 Zn1 05 94.2(4) 2_645 3_656 ?
06 Zn1 05 151.7(4) \overline{3}655 3
O2 Zn1 O5 99.0(5) . \overline{3}656 ?
O4 Zn1 05 80.3(4) 1_545 3_656 ?
O1 Zn1 05 81.2(4) 2_645 . ?
O6 Zn1 05 89.2(4) 3_655 . ?
O2 Zn1 05 173.5(5) . . ?
O4 Zn1 05 98.6(4) 1 545 . ?
O5 Zn1 05 77.3(4) 3-656 . ?
O1 Zn1 Zn2 145.8(3) 2_645 1_545 ?
06 Zn1 Zn2 43.2(3) 3_\overline{655 1_545 ?}
O2 Zn1 Zn2 106.1(4) . 1_545 ?
O4 Zn1 Zn2 39.0(3) 1 54\overline{5}1}545\mathrm{ ?
05 Zn1 Zn2 109.3(3) \overline{3 656 \overline{1}}545 ?
O5 Zn1 Zn2 80.2(3) . \overline{1}545 ?
O4 Zn2 O4 136.0(7) 4_575 . ?
O4 Zn2 O1 115.3(5) 4_575 . ?
O4 Zn2 O1 108.1(5) . . ?
O4 Zn2 06 99.2(4) 4 575 3 665 ?
O4 Zn2 06 81.1(4) . 3_665-
```

```
O1 Zn2 06 97.8(4) . 3_665 ?
O4 Zn2 O5 82.2(4) 4 5\overline{75 2 655 ?}
O4 Zn2 05 99.4(4) . 2 655 ?
O1 Zn2 05 79.6(4) . 2_655 ?
06 Zn2 05 177.4(5) 3_665 2_655 ?
O4 Zn2 As3 41.1(11) 4_575 4_575 ?
O4 Zn2 As3 103.1(11) . 4_575 ?
O1 Zn2 As3 143.2(11) . 4 575 ?
06 Zn2 As3 68.0(11) 3_665 4_575 ?
O5 Zn2 As3 114.2(11) 2_655 4_575 ?
O4 Zn2 As3 102.3(10) 4_575 . ?
O4 Zn2 As3 38.0(10) . . ?
O1 Zn2 As3 132.0(10) . . ?
06 Zn2 As3 104.8(11) 3_665 . ?
O5 Zn2 As3 76.9(11) 2_655 . ?
As3 Zn2 As3 84.8(15) 4_575 . ?
O4 Zn2 As2 33.0(7) 4_575 4_575 ?
O4 Zn2 As2 104.2(7) - 4 57\overline{5}\mathrm{ ?}
O1 Zn2 As2 147.6(6) . 4 575 ?
06 Zn2 As2 86.0(6) 3_665 4_575 ?
O5 Zn2 As2 96.3(6) 2_655 4_575 ?
As3 Zn2 As2 18.1(11) 4_575 4_575 ?
As3 Zn2 As2 76.7(11) . 4 575 ?
O4 Zn2 As2 104.6(6) 4_575}.\mp@code{?
O4 Zn2 As2 31.5(6) . . ?
O1 Zn2 As2 138.2(6) . . ?
06 Zn2 As2 87.0(6) 3_665 . ?
05 Zn2 As2 94.7(6) 2 655 . ?
As3 Zn2 As2 76.8(11) 4 575 . ?
As3 Zn2 As2 17.8(10) . . ?
As2 Zn2 As2 73.9(7) 4 575 . ?
O4 Zn2 Zn1 137.9(3) 4_575 1 565 ?
O4 Zn2 Zn1 44.1(3) . 1_565 ?
O1 Zn2 Zn1 90.9(3) . 1-565 ?
06 Zn2 Zn1 42.3(3) 3_6\overline{65 1_565 ?}
O5 Zn2 Zn1 137.1(3) \overline{2 655 \overline{1}}565 ?
As3 Zn2 Zn1 98.4(10) 4_575 1_565 ?
As3 Zn2 Zn1 79.2(10) . 1_565 ?
As2 Zn2 Zn1 112.1(5) 4 575 1 565 ?
As2 Zn2 Zn1 65.4(5) . \ 565 ?
As O1 Zn2 118.8(6) . . ?
As O1 Zn1 133.6(7) . 2_655 ?
Zn2 O1 Zn1 106.9(5) . 2_655 ?
As 01 02 91.6(5) . 2_655 ?
Zn2 O1 O2 149.5(5) . - 2 655 ?
Zn1 O1 O2 43.7(3) 2_655 2_655 ?
Zn1 O2 O3 96.2(5) . 2_645 ?
Zn1 O2 03 94.0(5) . 3_666 ?
O3 O2 03 97.1(5) 2_645 3_666 ?
Zn1 02 As2 80.1(7)-. 1 5\overline{4}5 ?
O3 O2 As2 164.5(8) 2 645 1 545 ?
O3 O2 As2 98.1(6) 3_\overline{6}66 1_5}545 
Zn1 O2 O4 47.8(4) . 1_545 ?
O3 02 O4 142.5(6) 2_645 1_545 ?
O3 O2 O4 96.0(4) 3_666 1_545 ?
As2 O2 O4 32.4(7) \overline{1}}545\overline{1}545 
Zn1 O2 O1 42.4(3) . 2_645-
```

```
03 O2 O1 56.0(4) 2 645 2 645 ?
03 02 01 86.1(5) 3-666 2-645 ?
As2 O2 O1 122.5(8) 1_545 - 2_645 ?
O4 O2 O1 90.1(4) 1_545 2_645 ?
Zn1 02 07 112.8(7) . 3_665 ?
03 02 07 94.7(7) 2_645 3_665 ?
O3 02 07 149.3(7) \overline{3}666 \overline{3}665 ?
As2 02 07 73.3(9) 1_545 3-665 ?
O4 02 07 91.6(7) 1_545 3_
O1 02 07 123.6(7) 2_645 3_665 ?
Zn1 O2 06 41.5(3) . 3_655 ?
O3 O2 06 95.4(5) 2_645 3_655 ?
O3 02 06 134.8(5) \overline{3}666 \overline{3}655 ?
As2 02 06 71.8(7) 1_545 3_655 ?
04 02 06 52.0(4) 1_545 3_655 ?
01 02 06 65.9(4) 2_645 3_655 ?
07 02 06 71.5(6) 3_665 3_655 ?
Zn1 O2 As 70.5(3) - 2 64\overline{5}?
O3 O2 As 27.7(3) 2_645 2_645 ?
O3 O2 As 88.7(4) 3_666 2_645 ?
As2 O2 As 150.2(8) 1_545 2_645 ?
O4 02 As 118.3(4) 1_545 2_-645 ?
O1 02 As 28.6(2) 2_\overline{6}45 2_\overline{6}45 ?
07 02 As 113.6(7) 3}665 \overline{2}_645 ?
06 02 As 82.9(3) 3_\overline{6}55 2_-645 ?
Zn1 O2 As 67.3(3) . 3_666 ?
O3 O2 As 99.3(5) 2_645 3_666 ?
O3 O2 As 26.7(3) 3_666 3_666 ?
As2 O2 As 93.1(6) \overline{1}545 \overline{3}666 ?
O4 O2 As 78.2(3) 1_5}545 3_-666 ?
O1 O2 As 66.8(3) 2_645 3_666 ?
07 02 As 165.9(7) \overline{3}_665 3}_666 ?
06 02 As 108.4(4) 3-655 3-666 ?
As 02 As 80.1(3) 2 \overline{6}45 3 \overline{6}66 ?
Zn1 O2 As3 74.8(9)-. 1_54}5 ?
O3 O2 As3 164.0(9) 2_645 1_545 ?
03 02 As3 96.7(7) 3_666 1_545 ?
As2 O2 As3 5.6(10) \overline{1}545 \overline{1}}545\mathrm{ ?
O4 02 As3 27.0(8) 1_545 1_545 ?
O1 O2 As3 117.1(9) \overline{2}-645 \overline{1}}545 
07 O2 As3 77.3(10) 3_665 1_545 ?
06 02 As3 69.0(8) 3 655 1_545 ?
As O2 As3 145.1(8) 2_ 645 \overline{1}}545\mathrm{ ?
As O2 As3 89.4(7) 3_\overline{6}66 1_5}45\mathrm{ ?
As 03 02 101.3(5) . - 2_655
As 03 02 103.2(6) . 3_666 ?
O2 O3 O2 106.5(5) 2_655 3_666 ?
As2 04 As3 30.9(18) . . ?
As2 O4 Zn2 106.0(10) . 4_576 ?
As3 O4 Zn2 90.8(15) . 4_576 ?
As2 O4 Zn2 109.1(10) . . ?
As3 O4 Zn2 97.2(15) . . ?
Zn2 O4 Zn2 123.1(6) 4_576 . ?
As2 O4 Zn1 117.8(11) . 1_565 ?
As3 04 Zn1 148.7(18) . 1_565 ?
Zn2 O4 Zn1 104.4(5) 4 57\overline{6}}
Zn2 O4 Zn1 97.0(4). 1_565 ?
```

```
As2 04 06 108.4(10) . 3_665 ?
As3 04 06 124.2(15) . 3-665 ?
Zn2 O4 O6 144.2(7) 4 57\overline{6}}
Zn2 04 06 52.2(3) . 3_665 ?
Zn1 04 06 50.0(3) 1_565 3_665 ?
As2 04 05 119.0(11)- 3_6\overline{6}6 ?
As3 04 05 130.5(15) . 3-666 ?
Zn2 O4 O5 54.8(3) 4_576-3_666 ?
Zn2 04 O5 130.4(6) . 3 66\overline{6}\mathrm{ ?}
Zn1 04 05 50.6(3) 1_565 3_666 ?
06 04 05 99.0(5) 3_/665 3_-666 ?
As2 04 08 7.2(14) . . ?
As3 04 08 35.0(19) . . ?
Zn2 O4 08 102.0(12) 4_576 . ?
Zn2 O4 O8 116.2(12) . . ?
Zn1 04 08 113.9(9) 1_565 . ?
06 04 08 111.1(11) 3-665 . ?
05 04 08 111.8(12) 3-666 . ?
As2 04 02 71.8(11) . 1 565 ?
As3 O4 02 102.6(18) . 1_565 ?
Zn2 O4 O2 115.1(5) 4_576 1_565 ?
Zn2 04 O2 117.6(5) . 1 565 ?
Zn1 O4 O2 46.2(3) 1_565 1_565 ?
06 04 02 68.1(4) 3_\overline{6}65 1_-5}65 ?
O5 O4 O2 69.9(4) 3_666 1_565 ?
O8 04 O2 67.7(8) . 1_565 ?
As2 04 06 87.5(10) . 2_655 ?
As3 04 06 59.7(16) . 2_655 ?
Zn2 04 06 42.6(3) 4 57\overline{6}}2.655 
Zn2 O4 06 96.2(4) . 2_655 ?
Zn1 04 06 145.4(5) 1_565 2_655 ?
06 04 06 147.4(6) 3_665 2_655 ?
05 04 06 97.4(4) 3_\overline{6}66 2_\overline{6}55 ?
08 04 06 88.3(9) . - 2_655 ?
O2 O4 06 144.4(5) 1 5
As2 04 As3 71.3(12) . 4_575 ?
As3 O4 As3 77.0(17) . 4_575 ?
Zn2 O4 As3 159.9(9) 4_576 4_575 ?
Zn2 O4 As3 44.9(8) . प
Zn1 O4 As3 93.9(9) 1 5\overline{6}5 4 575 ?
06 04 As3 47.8(8) 3_\overline{6}65 4_5
05 O4 As3 144.4(9) \overline{3_666 4}_575 ?
O8 O4 As3 77.1(14) . 4_575 ?
O2 04 As3 83.4(9) 1_565 4_575 ?
06 04 As3 117.6(9) \overline{2}_655 \overline{4}}575\mathrm{ ?
As2 O4 O4 87.3(9) . 4_575 ?
As3 O4 O4 79.1(15) . 4_575 ?
Zn2 O4 O4 135.0(6) 4_576 4_575 ?
Zn2 O4 O4 21.9(4). 4_575 ?
Zn1 O4 O4 106.5(4) 1 5
06 04 04 56.7(3) 3_6\overline{6}5 4_5\overline{7}5 ?
O5 O4O4 150.3(4) \overline{3}-666 \overline{4}}575\mathrm{ ? 
08 O4 04 94.3(11) . 4_575 ?
O2 O4 O4 109.8(4) 1_565 4_575 ?
O6 O4 04 97.4(5) 2 \overline{6}55 4 - 575 ?
As3 O4 04 27.5(8) \overline{4 575 \overline{4}}575 ?
As 05 Zn1 120.0(6) \overline{1}_545 \overline{3}_656 ?
```

```
As 05 Zn1 121.8(6) 1_545 . ?
Zn1 O5 Zn1 102.7(4) \overline{3 656 . ?}
As 05 Zn2 122.2(6) 1_545 2_645 ?
Zn1 O5 Zn2 91.3(4) 3_656 2_645 ?
Zn1 05 Zn2 91.8(4) . 2_645 ?
As 05 04 130.8(7) 1_545 3_666 ?
Zn1 05 04 49.1(3) 3-656 3-666 ?
Zn1 05 04 106.7(5) . 3 66\overline{6}\mathrm{ ?}
Zn2 05 04 42.9(3) 2_645 3_666 ?
As 06 Zn1 135.1(6) 1_545 3_655 ?
As 06 Zn2 130.3(6) 1_545 3_665 ?
Zn1 06 Zn2 94.5(4) 3-655 3-665 ?
As 06 04 163.9(7) 1-\overline{5}45 3-\overline{6}65 ?
Zn1 06 04 52.7(3) 3_655 3_665 ?
Zn2 06 04 46.7(3) 3_665 3_665 ?
As 06 04 94.3(5) 1_545 2_645 ?
Zn1 06 O4 129.9(5) 3_655 2_645 ?
Zn2 06 04 38.2(3) 3_\overline{6}65 2_\overline{645 ?}
O4 06 04 77.4(3) 3_- 665 2_-645 ?
As 06 O2 114.6(6) 1_545 3_655 ?
Zn1 06 02 42.1(3) 3_655 3_655 ?
Zn2 06 O2 104.6(4) 3_665 3_655 ?
O4 06 02 59.9(4) 3_6\overline{6}5 3_6\overline{5}5 ?
O4 06 02 118.9(5) 2
As3 As2 O8 107(4) . . ?
As3 As2 O4 81(4) . . ?
O8 As2 O4 164(3) . . ?
As3 As2 Zn2 66(3) . 4 576 ?
O8 As2 Zn2 129(3) . 4_576 ?
O4 As2 Zn2 41.0(7) . प 5 576 ?
As3 As2 O2 156(4) . 1_565 ?
O8 As2 O2 94(2) . 1_565 ?
O4 As2 O2 75.8(10) . 1_565 ?
Zn2 As2 O2 92.9(8) 4_576 1_565 ?
As3 As2 Zn2 71(3) . . ?
O8 As2 Zn2 156(3) . . ?
O4 As2 Zn2 39.4(7) . . ?
Zn2 As2 Zn2 73.1(7) 4_576 . ?
O2 As2 Zn2 93.4(8) 1_565 . ?
As2 As3 04 68(4) . . ?
As2 As3 08 44(3) . . ?
O4 As3 O8 111(3) . . ?
As2 As3 Zn2 96(4) . 4_576 ?
O4 As3 Zn2 48.1(12) . 4_576 ?
O8 As3 Zn2 118(3) . 4 5\overline{7}6 ?
As2 As3 Zn2 91(4) . . ?
O4 As3 Zn2 44.8(11) . . ?
O8 As3 Zn2 130(3) . . ?
Zn2 As3 Zn2 79.4(13) 4_576 . ?
As2 As3 As 167(4) . 2_645 ?
04 As3 As 100(2) . 2_\overline{6}45 ?
08 As3 As 149(3) . 2_645 ?
Zn2 As3 As 77.3(13) 4_576 2_645 ?
Zn2 As3 As 77.3(12) . 2_645 ?
As2 As3 O4 98(3) . 4_576 ?
O4 As3 O4 76.8(15) . 4 576 ?
O8 As3 O4 98(2) . 4_57\overline{6}\mathrm{ ?}
```

```
Zn2 As3 O4 32.0(5) 4_576 4_576 ?
Zn2 As3 O4 111.2(15)-. 4 5\overline{7}6 ?
As As3 04 81.9(11) 2_645-4_576 ?
As2 As3 O2 18(3) . 1_565 ?
O4 As3 O2 50.5(14) . 1_565 ?
O8 As3 O2 61(2) . 1_565 ?
Zn2 As3 02 80.0(12) 4_576 1_565 ?
Zn2 As3 O2 79.8(11) . 1_565 ?
As As3 O2 150.3(17) 2_645 1_565 ?
O4 As3 O2 89.0(10) 4_5}576 1_565 ?
As2 As3 04 96(3) . 4_575 ?
O4 As3 04 73.8(15) . 4 575 ?
O8 As3 04 118(3) . 4 5755 ?
Zn2 As3 O4 109.1(15) 4_576 4_575 ?
Zn2 As3 O4 30.9(5) . 4_575 ?
As As3 04 76.7(10) 2_645 4_575 ?
O4 As3 O4 139.8(15) 4_576 4_575 ?
O2 As3 04 93.1(11) 1_六65 4_5 575 ?
As2 08 As3 29(2) . . ?
As2 08 O4 9.2(18) . . ?
As3 O8 O4 34.1(18) . . ?
_diffrn_measured_fraction_theta_max 0.916
__diffrn_reflns_theta_full- - 26.46
__diffrn_measurēd_frac̄tion_theta_full 0.916
_refine_diff_dens̄ity_max - 4.0\overline{0}8
_refine_diff__density_min -1.706
_refine_diff_density_rms 0.491
```


[^0]: * E-mail: frank_hawthorne@umanitoba.ca

 DOI: 10.1180/minmag.2012.076.5.05

[^1]: * Calculated from the refined crystal structure.

