The crystal chemistry of the uranyl carbonate mineral grimselite, $(K,Na)_3Na[(UO_2)(CO_3)_3](H_2O)$, from Jáchymov, Czech Republic

J. Plášil^{1,2,*}, K. Fejfarová¹, R. Skála³, R. Škoda², N. Meisser⁴, J. Hloušek⁵, I. Císařová⁶, M. Dušek¹, F. Veselovský⁷, J. Čejka⁸, J. Sejkora⁸ and P. Ondruš⁹

¹ Institute of Physics ASCR, v.v.i., Na Slovance 2, Praha 8, 182 21, Czech Republic

² Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic

³ Institute of Geology ASCR, v.v.i., Rozvojová 269, Praha 6, 16500, Czech Republic

⁴ Musée cantonal de géologie and Laboratoire des Rayons-X, Institut de Minéralogie et de Géochimie, Université de Lausanne, Anthropole, Lausanne-Dorigny, CH-1015, Switzerland

- ⁵ U Roháčových kasáren 24, 100 00, Praha 10, Czech Republic
- ⁶ Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 6, Praha 2, 128 43, Czech Republic
- ⁷ Czech Geological Survey, Klárov 3, 118 21, Praha 1, Czech Republic
- ⁸ Department of Mineralogy and Petrology, National Museum, Václavské náměstí 68, Praha 1, 115 79, Czech Republic
- ⁹ Biskupský dvůr 2, Praha 1, 11000, Czech Republic

[Received 20 November 2011; Accepted 20 February 2012; Associate Editor: Stuart Mills]

ABSTRACT

Two crystals of the uranyl carbonate mineral grimselite, ideally $K_3Na[(UO_2)(CO_3)_3](H_2O)$, from Jáchymov in the Czech Republic were studied by single-crystal X-ray diffraction and electron-probe microanalysis. One crystal has considerably more Na than the ideal chemical composition due to substitution of Na into KO₈ polyhedra; the composition of the other crystal is nearer to ideal, and similar to synthetic grimselite. The presence of Na atoms in KO₈ polyhedra, which are located in channels in the crystal structure, reduces their volume, and as a result the unit-cell volume also decreases. Structure refinement shows that the formula for the sample with the anomalously high Na content is ($K_{2.43}Na_{0.57}$) $_{\Sigma_3.00}Na[(UO_2)(CO_3)_3](H_2O)$. The unit-cell parameters, refined in space group $P\bar{6}2c$, are a = 9.2507(1), c = 8.1788(1) Å, V = 606.14(3) Å³ and Z = 2. The crystal structure was refined to $R_1 = 0.0082$ and $wR_1 = 0.0185$ with a GOF = 1.33, based on 626 observed diffraction peaks [I_{obs} > $3\sigma(I)$].

Keywords: uranyl carbonate, grimselite, crystal structure, chemical composition, Jáchymov.

Introduction

THE dissolution of uraninite $(UO_{2+x} \text{ with } x = 0-0.67)$ in oxidizing conditions can produce high concentrations of uranium-bearing ions. Aqueous

* E-mail: plasil@fzu.cz DOI: 10.1180/minmag.2012.076.3.01 uranyl carbonate complexes are important species in circumneutral to alkaline conditions in the presence of dissolved CO_2 (Langmuir, 1978). The $[(UO_2)(CO_3)_3]^{4-}$ complex, which is stable in the pH range 6.5–11.5, is the primary cause of the mobility of uranium in these solutions (Finch and Murakami, 1999). Uranyl carbonate minerals precipitate from natural solutions where evaporation is significant or where the fugacity of CO_2 is greater than atmospheric (Garrels and Christ, 1959; Finch and Ewing, 1992; Finch, 1997). These conditions are encountered in old mines where hydrothermal veins containing uraninite in a carbonate gangue were exploited. The stability of uranyl carbonate minerals influences the mobility of uranium in natural groundwater and therefore, a detailed knowledge of their crystal chemistry and the conditions in which they are found is of importance.

Here we present two refinements of the crystal structure of the uranyl carbonate mineral grimselite. Single-crystal X-ray diffraction data are supported by quantitative chemical analyses to show an interesting substitution of Na into $\rm KO_8$ polyhedra.

Previous studies

Grimselite was described as a new mineral from a cable tunnel between Gerstenegg and Sommerloch in the Aar massif, Grimsel area, Bern, Switzerland (Walenta, 1972). It was found as yellowish efflorescences on partially episyenitized aplitic granite with schröckingerite, monohydrocalcite, calcite, gypsum and baylissite (Walenta, 1976). It has subsequently been reported from Krunkelbachtal, Germany (Walenta, 1995) and Jáchymov in the Czech Republic (Pauliš et al., 2007: Tvrdý and Plášil, 2010). Structural investigations of the synthetic analogue of grimselite were carried out by Mazzi and Rinaldi (1960, 1961). They obtained a partial structural solution using the Weissenberg film method and suggested that the composition was $K_3Na[(UO_2)(CO_3)_3]$. The structure was refined to an R index of 0.061 in space group $P\bar{6}2c$ with unit-cell parameters of a = 9.29 and c = 8.26 Å, but estimated standard deviations for the atom positions were not reported, and no molecular H₂O was located in the structure. In his description of material from the type locality Walenta (1972) noted that grimselite was very similar to the material studied by Mazzi and Rinaldi (1960, 1961), and he concluded that it had the same space group and unit-cell parameters. However, analyses of synthetic and natural material (in Walenta, 1972) suggested that grimselite contained molecular H₂O, although it had not been reported by Mazzi and Rinaldi (1960, 1961). A single-crystal study of synthetic grimselite was undertaken by Li and Burns (2001) using a charge coupled device (CCD) area detector. This located an oxygen atom belonging to molecular H₂O in a channel in the structure, and the formula was rewritten

 $K_3Na[(UO_2)(CO_3)_3](H_2O)$. The crystal structure of the Rb-bearing analogue of grimselite was subsequently determined by Kubatko and Burns (2004); it has a formula $Rb_6Na_2[(UO_2)$ ($CO_3)_3]_2(H_2O)$. Thermodynamic data from solubility measurements of uranyl minerals including grimselite were reviewed by Gorman-Lewis *et al.* (2008).

Occurrence and sample description

The grimselite specimens used in this study were found in old galleries at the 90 m level at the Rovnost shaft, Jáchymov ore district, Krušné Hory Mountains, Western Bohemia, Czech Republic ($50^{\circ}22'18.421''$ N, $12^{\circ}53'32.83''$ E). Two specimens were studied; each is about $10 \times 5 \times 3.5$ cm, and made up of gangue minerals covered by Fe and Mn oxyhydroxides, which are X-ray amorphous. Rich aggregates of translucent light to grass green grimselite crystals to ~1 mm are present on the surfaces (Fig. 1) and prismatic čejkaite (confirmed by XRD) is also present.

Experimental

X-ray crystallography and crystal structure determination

Two samples were selected for analysis by singlecrystal X-ray diffraction. Sample A is a $0.21 \times$ 0.14×0.08 mm fragment of a prismatic single crystal of grimselite, which was analysed using monochromatic MoK α radiation, $\lambda = 0.71073$ Å on an Oxford Diffraction Gemini single-crystal diffractometer equipped with an Atlas CCD area detector. The least squares unit cell refinement used 10,062 reflections and produced a hexagonal unit cell with a = 9.2507(1), c = 8.1788(1) Å and V = 606.14(3) Å³. Out of a total of 12,561 measured reflections, 664 were unique and 626 classified as observed $[I_{obs} > 3\sigma(I)]$. Data were corrected for background, Lorentz and polarization effects, and an analytical correction for absorption was applied (Clark and Reid, 1995), leading to a value of R_{int} for the merged data of 0.024. The structure of the synthetic analogue of grimselite determined by Li and Burns (2001) was used as a starting model, and the data refined using Jana2006 (Petříček et al., 2006) which produced values of $R_{obs} = 0.0082$ and $wR_{obs} =$ 0.0185 with a GOF of 1.33. Despite the low Rvalues the hydrogen atoms were not located in the structure. The absolute structure of this grimselite crystal was determined following the procedure of

FIG. 1. Grimselite crystals (thick prismatic, greenish) in association with čejkaite (fine crystalline acicular aggregates) on gangue. Field of view 4 mm; photo P. Škácha.

Flack (1983). Details of data collection and structure refinement are listed in Table 1. Final atom coordinates and displacement parameters are listed in Table 2. Selected interatomic distances and a bond valence analysis for sample A are provided in Tables 4 and 5, respectively.

Sample B is a $0.25 \times 0.20 \times 0.10$ mm fragment of a prismatic single crystal of grimselite. It was mounted in a Lindemann capillary and structural determinations made using monochromatic MoKa radiation ($\lambda = 0.71073$ Å) at room temperature on a Nonius KappaCCD diffractometer. The unit cell was refined on the basis of 9710 reflections, giving a hexagonal cell with a = 9.3001(1), c =8.8294(2) Å and V = 621.24(2) Å³. A total of 12,084 reflections were measured up to θ_{max} = 27.5°; 514 were unique ($R_{int} = 0.065$) and 492 classified as observed $[I_{obs} > 3\sigma(I)]$. The structure was refined as above and converged to $R_{obs} =$ 0.0220 and $wR_{obs} = 0.0623$ with a GOF of 2.67 (see Table 1). Final atom coordinates and displacement parameters are listed in Table 3. Selected interatomic distances and a bond valence analysis for sample B are provided in Tables 6 and 7, respectively.

Electron-probe microanalysis

The chemical composition of grimselite samples from Jáchymov was studied using a Cameca SX100 electron microprobe operating in wavelength-dispersive mode. An accelerating voltage of 15 kV, a beam current of 5 nA and a beam diameter of 20 µm were used to minimize the damage to the specimen. The following X-ray lines and standards were selected to minimize overlaps; Ka lines: K (sanidine), Na (albite), Al (sanidine), Fe (andradite), Zn (ZnS), Si (sanidine) and P (fluorapatite); Ma lines: U (rutherfordine). The elements Ca, Mg and Pb were sought, but their concentrations were below detection limits (0.02–0.10 wt.%). Counting times on the peaks were 10-20 s; the background counting times were half of the peak counting times. The measured intensities were converted to element concentrations using the PAP correction routine (Pouchou and Pichoir, 1985).

Results

Chemical composition

The chemical composition of sample A using the mean of 10 point analyses and calculated on the basis of (U + K + Na + Zn) = 5 a.p.f.u. is expressed by the empirical formula: $(K_{2.37}Na_{0.63})_{\Sigma 3.00}(Na_{0.91}Zn_{0.01})_{\Sigma 0.92}[(UO_2)_{1.082}$ $(CO_3)_{3.01}](SiO_4)_{0.01}(PO_4)_{0.01}(H_2O)_{1.00}$. This sample is characterized by Na₂O contents of up to 7.80 wt.% (with a mean of 7.31 wt.%), and these are significantly larger than the 5.17 wt.%

	Some A	Sound B
Structural formula	$(K_{2,43}Na_{0,57})_{\Sigma_3,00}Na[(UO_2)(CO_3)_3](H_2O)$	K _{3.00} Na[(UO ₂)(CO ₃) ₃](H ₂ O)
Crystal data Unit-cell parameters (range, software)	(based on 10,062 reflections,	(based on 9710 reflections,
a (Å)	$5.55^{\circ} < \theta < 30.42^{\circ}$, CrysAlis Pro) 9.2507(1) 0.1700(1)	$1.00^{\circ} < \theta < 21.50^{\circ}$, Collect) 9.3000(1) • 0.3040(2)
	606.14(3)	0.2740(2) 621.24(2)
z Space group	$\overset{2}{P6}2c$	$^{2}_{P62c}$
Data collection		
Temperature	293 K	293 K
Confection mode Limiting θ angles	0 10141101141 SCAIIS 10 1111 EWARD SPIRETE 3.53-30.55°	w and w rotautonal scans to fill Ewald spirete 3.53-27.5°
Limiting Miller indices	-12 < h < 12, -13 < k < 13, -11 < l < 11	-12 < h < 12, -11 < k < 12, -10 < l < 10
No. of unique reflections	12,201 664	514
No. of observed reflections (criterion)	626 [l _{obs} >3 σ(l)] 0.0243 - 00 52%	492 [/ _{obs} >3σ(<i>J</i>)] 0.0650_09.0%
A must coverage Absorption correction (mm^{-1}) , method, $\frac{1}{2} \sum_{j=1}^{n} \frac{1}{j}$	14.52, 2012, 2012, 2014,	14.105, 2010, 2010, 1970), 10705, 201855, 20185, 2018555, 2018555, 2018555, 2018555, 2018555, 2018555, 2018555, 2018555, 2
I_{000} F_{000}	539	549
Refinement details	2 17	2 2
r at attricted statistical, constraints R_1 , wR_1	-1, J 0.0082, 0.0185	$\frac{13}{0.0220}, 0.0623$
R_2, wR_2 GOF	0.0094, 0.0189 1.33	0.0230, 0.0627 2.67
Extinction type; coefficient		Gaussian; 0.022(7)
Appino parts, track parameter $\Delta p_{\rm min}$, $\Delta p_{\rm max}$, $\Delta p_$	2.74; $-0.01(1)-0.30$, $0.36-0.5.0 \pm 0.0001 P^2$	212, 0.00(2) -1.16, 2.19 $-1.16, 2.10 + 0.0001/^{2}$
weignung scheme, uetaus	0, W = 1/(0, (1) + 0.00011)	0, W = 1/(0, (1) + 0.00041)

TABLE 1. Summary of data collection and refinement parameters for grimselite.

J. PLÁŠIL *ET AL.*

Ŕ
e
lqn
san
ē
elii
ns(
ij
500
fo
7 ²
3
ers
net
ran
pa
nt
me
S
pla
disj
i S S
iqc
otro
lise
ar
pu
sa
ter
me
ıraı
рâ
ent
ŭ
ace
pl
dis
nt
ale
τi.
Ę
s,
cie
ano
dn
20
e
sit
ЛS,
101
sit
ЪС
шc
Atc
5.
щ
₹BI
Ê

U_{23}) 0 0.0095(4) 0.0095(4) 0 0 0 0 0 0 0
U_{13}	$\begin{array}{c} 0.00685(4)\\ 0.0047(2)\\ 0.0047(2)\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
U_{12}	$\begin{array}{c} 0\\ 0.0168(4)\\ 0.0168(4)\\ 0.0173(5)\\ 0.0173(5)\\ 0.0138(7)\\ 0.0138(7)\\ 0.0226(4)\\ 0.0045(8)\\ 0.0046(5)\\ 0.010(1)\end{array}$
U_{33}	$\begin{array}{c} 0.01350(6)\\ 0.0282(4)\\ 0.0282(4)\\ 0.0154(6)\\ 0.0154(6)\\ 0.0499(9)\\ 0.050(1)\\ 0.0155(4)\\ 0.051(1)\\ 0.084(5)\\ 0.032(1)\end{array}$
U_{22}	$\begin{array}{c} 0.01371(4)\\ 0.0335(4)\\ 0.0335(4)\\ 0.0347(5)\\ 0.021(1)\\ 0.025(1)\\ 0.0451(8)\\ 0.022(1)\\ 0.093(3)\\ 0.021(1)\end{array}$
U_{11}	$\begin{array}{c} 0.01371(4)\\ 0.0420(4)\\ 0.0420(4)\\ 0.0347(5)\\ 0.01547(5)\\ 0.01547(7)\\ 0.022(1)\\ 0.0451(8)\\ 0.0208(9)\\ 0.093(3)\\ 0.019(1)\end{array}$
U_{eq}	$\begin{array}{c} 0.01364(3)\\ 0.0355(3)\\ 0.0355(3)\\ 0.0283(3)\\ 0.0282(9)\\ 0.0282(9)\\ 0.0314(9)\\ 0.0314(9)\\ 0.0341(8)\\ 0.0341(8)\\ 0.024(1)\\ 0.024(1)\end{array}$
z/c	$\begin{array}{c} \overset{3}{} & \overset{3}{} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & &$
y/b	$\begin{array}{c}y_3\\y_5\\0\\0\\(0.4800(5)\\0.6324(2)\\y_5\\0.7588(3)\\0.6296(4)\end{array}$
x/a	23 0.2897(1) 0.2897(1) 13 0.9697(2) 0.8497(2) 23 0.1293(3) 0.9887(4)
Occupancy	0.821(5) 0.179(5) 0.5
Site	22 68 69 64 64 64 64 64 64
	U KK1 Na1 001 003 004 005 C C

 T_{ABLE} 3. Atom positions, site occupancies, equivalent displacement parameters and anisotropic displacement parameters (\mathring{A}^2) for grimselite sample B.

$0 \qquad 0.0368(9) 0.0420(1) 0.036(1) 0.031(1) 0.0178$	$\begin{array}{c} U_{23} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0.0043(5) 0 0 0 0 0 0 0 0	0.0075(11) 0.0178(7) 0.0143(8) 0.017(3) 0.017(3) 0.017(3) 0.015(4) 0.008(3) 0.008(3)	0.0197(3) 0.031(1) 0.022(3) 0.0248(3) 0.035(4) 0.035(4) 0.036(5) 0.03(1) 0.05(1)	U_{22} 0.0149(2) 0.036(1) 0.029(2) 0.020(4) 0.036(3) 0.036(3) 0.033(2) 0.033(2) 0.033(9) 0.033(9)	U_{11} 0.0149(2) 0.0420(1) 0.029(2) 0.010(2) 0.018(4) 0.033(3) 0.033(9) 0.033(9)	$U_{\rm eq}^{\rm eq}$ 0.0165(2) 0.0368(9) 0.026(3) 0.026(3) 0.022(3) 0.021(7) 0.021(7)	$\begin{array}{c} z/c \\ & \overset{3}{}_{2} \\ & 0.965(1) \\ & 0.130(2) \end{array}$		y/b y_{3} $y_{$	$\begin{array}{cccc} x/a & y/b \\ & & & y_3 \\ & & & y_5 \\ & & y_5 \\ & & & y_5 \\ & & & y_5 \\ & & & & y_5 \\ & & & & & & & y_5 \\ & & & & & & & y_5 \\ & & & & & & & y_5 \\ & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & y_5 \\ & & & & & & & & & y_5 \\ & & & & & & & & & y_5 \\ & & & & & & & & & y_5 \\ & & & & & & & & & & y_5 \\ & & & & & & & & & & y_5 \\ & & & & & & & & & & & y_5 \\ & & & & & & & & & & & y_5 \\ & & & & & & & & & & & & & y_5 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & & \\ &$	Occupancy x/a y/b $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ 0.2922(3) $0\frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{3}0.9677(5)$ $0.478(1)0.8475(8)$ $0.6299(9)\frac{2}{3} \frac{1}{3} \frac{1}{3}0.1281(9)$ $0.759(1)0.5$ 0 001) 0.759(1)	Site Occupancy x/a y/b $2c$ $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $2d$ $0.2922(3)$ 0 $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $2d$ $0.9677(5)$ $0.478(1)$ 0 $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $4f$ $0.8475(8)$ $0.6299(9)$ $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $\frac{\gamma_5}{\gamma_5}$ $4e$ 0.5 $0.1281(9)$ $0.759(1)$ $0.790(1)$
		000000	0.0143(8) 0.008(3) 0.017(3) 0.015(4) 0.008(3) 0.008(3)	$\begin{array}{c} 0.022(3)\\ 0.048(3)\\ 0.035(4)\\ 0.034(4)\\ 0.050(5)\\ 0.05(1) \end{array}$	$\begin{array}{c} 0.029(2)\\ 0.020(4)\\ 0.036(3)\\ 0.030(2)\\ 0.024(3)\\ 0.083(9) \end{array}$	$\begin{array}{c} 0.029(2)\\ 0.010(2)\\ 0.018(4)\\ 0.030(2)\\ 0.033(3)\\ 0.083(9) \end{array}$	$\begin{array}{c} 0.027(1)\\ 0.026(3)\\ 0.023(3)\\ 0.031(2)\\ 0.026(3)\\ 0.071(7) \end{array}$	3% 3% 3% 3% 3% 30(2)	0.96	$\begin{array}{c}\gamma_3\\0.478(1)\\0.6299(9)\\\gamma_3\\0.759(1)\\0.10\\0.10\\0\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	0		0.0075(11)	0.0197(3)	0.0149(2)	0.0149(2)	0.0165(2)	3/4		1/3	2/3 1/3	2/3 1/3	2 <i>c</i> 2/3 1/3
³ / ₄ 0.0165(2) 0.0149(2) 0.0149(2) 0.0197(3) 0.0075		V13	2 I 7	V33	U_{22}	U_{11}	$U^*_{ m eq}$	z/c		y/b	x/a y/b	Occupancy x/a y/b	Site Occupancy x/a y/b

CRYSTAL CHEMISTRY OF GRIMSELITE

J. PLÁŠIL ET AL.

U-O3 U-O2 U-O2 U-O4 <o3-u-o3> <u-o<sub>eq></u-o<sub></o3-u-o3>	$\begin{array}{c} 1.788(2) \ (2 \times) \\ 2.428(3) \ (2 \times) \\ 2.428(5) \\ 2.416(3) \ (3 \times) \\ 180 \\ 2.422 \end{array}$	C-O1 C-O2 C-O4 O1-C-O4 O2-C-O4 O1-C-O2 <o-c-o> <c-o> ECoN*</c-o></o-c-o>	$\begin{array}{c} 1.305(6) \\ 1.299(5) \\ 1.251(3) \\ 122.49(4) \\ 123.23(3) \\ 114.28(4) \\ 120 \\ 1.285 \\ 2.957 \end{array}$
U–C U–C	2.867(4) 2.867(5) (2×)		
K1/Na1-O1 K1/Na1-O2 K1/Na1-O4 K1/Na1-O5 <k1 na1-o=""> ECoN*</k1>	2.802(3) (2 ×) 2.700(2) (2 ×) 2.838(2) (2 ×) 2.860(3) (2 ×) 2.800 7.838	Na2-O1 Na2-O1 Na2-O3 Na2-O4 Na2-O4 <na2-o> ECoN*</na2-o>	$\begin{array}{c} 2.914(3) (2 \times) \\ 2.914(5) \\ 2.301(3) (2 \times) \\ 2.428(3) \\ 2.428(4)(2 \times) \\ 2.579 \\ 5.362 \end{array}$
01-02 01-02 01-03 01-04 01-04 02-03	2.199(5) 2.664(4) 3.015(3) (2 ×) 2.241(5) 3.143(5) 3.006(3) (2 ×)	$\begin{array}{c} 02-04 \\ 02-05 \\ 04-05 \\ 05-05 \\ 05-05 \end{array}$	2.244(4) 3.141(4) (2 ×) 3.190(4) (2 ×) 2.00(1) 2.09(1)

TABLE 4. Selected bond and interatomic distances (Å), and bond angles (°) for grimselite sample A.

* ECoN is the effective coordination number after Hoppe (1979).

 Na_2O that would be found in ideal $K_3Na[(UO_2)(CO_3)_3](H_2O)$. The composition of sample B was similar to synthetic (ideal stoichiometric) grimselite with an empirical

formula using the mean of 4 point analyses and calculated on the basis of (U + K + Na + Zn) = 5 a.p.f.u. of $K_{3.06}(Na_{0.90}Fe_{0.01}Al_{0.01})_{\Sigma 0.92}$ [$(UO_2)_{1.02}(CO_3)_{3.00}$](H₂O)_{1.00}.

TABLE 5. Bond valence analysis* for the crystal structure of grimselite sample A.

	01	02	O3	O4	O5	ΣBV
U C K1** Na2	$\begin{array}{c} 0.47 \times 3 \rightarrow \\ 1.26 \\ 0.15 \times 2 \downarrow \rightarrow \\ 0.05 \times 3 \rightarrow \end{array}$	$\begin{array}{c} 0.48 \times 3 \rightarrow \\ 1.28 \\ 0.19 \times 2 \downarrow \rightarrow \end{array}$	$1.65 \times 2 \rightarrow$ $0.26 \times 2 \rightarrow$	$\begin{array}{c} 1.46\\ 0.13 \times 2 \downarrow \rightarrow\\ 0.18 \times 3 \rightarrow \end{array}$	0.13 ×3↓	6.15 4.00 1.07 1.21
ΣBV	2.08	2.14	1.91	1.90	0.39	

* Values are expressed in valence units (vu). Σ BV, bond-valence sums; $\times 2 \downarrow \rightarrow$, multiplicity; U⁶⁺–O bond strengths ($r_0 = 2.042$, b = 0.506) from Burns *et al.* (1997); C⁴⁺–O, K–O and Na–O bond strengths are from Brown and Altermatt (1985).

** The site occupancy ratio K1/Na1 of 0.826/0.174 was used in calculations.

CRYSTAL CHEMISTRY OF GRIMSELITE

$\begin{array}{l} U-O3 \\ U-O2 \\ U-O2 \\ U-O4 \\ U-O4 \\ U-O4 \\ <\!O3-U-O3^{>} \\ <\!U-O_{eq}^{>} \end{array}$	$\begin{array}{c} 1.785(8) \ (2 \times) \\ 2.425(4) \ (2 \times) \\ 2.43(2) \\ 2.408(7) \\ 2.408(8) \\ 2.41(1) \\ 180 \\ 2.418 \end{array}$	C-O1 C-O2 C-O4 O1-C-O2 O1-C-O4 O2-C-O4 <o-c-o> <c-o> ECoN*</c-o></o-c-o>	1.35(2) 1.30(2) 1.25(1) 112.2(8) 122.7(13) 125.1(3) 120 1.298 2.875
U–C U–C	2.890(9) 2.89(2) (2 ×)		
K-O1 K-O2 K-O2 K-O4 K-O4 K-O5 <k-o5 ECoN*</k-o5 	2.809(9) (2 ×) 2.730(6) 2.730(7) 2.869(5) 2.869(7) 2.925(8) (2 ×) 2.826 7.785	Na-O1 Na-O1 Na-O3 Na-O4 <na-o> ECoN*</na-o>	$\begin{array}{c} 2.945(4) \ (2 \times) \\ 2.95(2) \\ 2.362(8) \ (2 \times) \\ 2.45(1) \ (3 \times) \\ 2.615 \\ 5.563 \end{array}$
$\begin{array}{c} 01 - 02 \\ 01 - 02 \\ 01 - 03 \\ 01 - 03 \\ 01 - 04 \\ 01 - 04 \\ 02 - 04 \\ 02 - 05 \end{array}$	$2.20(2) 2.27(1) 3.011(6) (2 \times) 3.01(1)2.27(1)3.17(1)2.26(1)3.156(9)$	$\begin{array}{c} 02-05\\ 02-03\\ 04-05\\ 05-05\\ 05-05\\ 05-05 \end{array}$	3.16(1) (2 ×) 2.80(1) 3.18(1) (2 ×) 1.98(3) 2.16(3)

TABLE 6. Selected interatomic distances (Å), and bond angles (°) for the crystal structure of grimselite sample B.

* ECoN is the effective coordination number after Hoppe (1979).

Description of the crystal structures

The crystal structure of natural grimselite is similar to the structure determined by Li and Burns (2001) for synthetic $K_3Na[(UO_2)$

 $(CO_3)_3](H_2O)$. However, in contrast to the synthetic analogue, the corresponding MO_8 polyhedra in sample A contain both Na and K (see below).

TABLE 7. Bond valence analysis* for the crystal structure of grimselite sample B.

	01	O2	O3	O4	O5	ΣBV
U	$0.47 \times 3 \rightarrow$	$0.49 \times 3 \rightarrow$	$1.66 \times 2 \rightarrow$			6.20
С	1.13	1.26		1.48		3.87
Κ	$0.16 \times 2 \downarrow \rightarrow$	$0.21 \times 2 \downarrow \rightarrow$		$0.14 \times 2 \downarrow \rightarrow$	0.12 ×3↓	1.14
Na	$0.05 \times 3 \rightarrow$		$0.22 \times 2 \rightarrow$	$0.17 \times 3 \rightarrow$		1.10
ΣBV	1.97	2.17	1.88	1.93	0.36	

* Values are expressed in valence units (vu). Σ BV, bond-valence sums; $\times 2 \downarrow \rightarrow$, multiplicity; U⁶⁺–O bond strengths ($r_0 = 2.042$, b = 0.506) from Burns *et al.* (1997); C⁴⁺–O, K–O and Na–O bond strengths are from Brown and Altermatt (1985).

FIG. 2. The heteropolyhedral framework of grimselite projected along [001]. Uranyl hexagonal bipyramids are blue; adjacent planar CO_3^{2-} groups are black (with a grey central C atom); NaO₈ hexagonal bipyramids are yellow and the K1 (or Na1) position is green; and oxygen atoms are red. The unit-cell edges are outlined using a solid black line.

FIG. 3. Details of coordination of the O5 atom within the channel voids in the structure of grimselite. Planar CO_3^{2-} groups are black (with a grey central C atom); the K1 (or Na1) position is green; and oxygen atoms are red. The unit-cell edges are outlined using a solid black line. Thermal ellipsoids are drawn at the 50% probability level.

FIG. 4. The coordination environment around K1/Na1 (light green) in the structure of grimselite. The short separation distance between O5 atoms of molecular H₂O is apparent. Thermal ellipsoids are drawn at the 50% probability level.

The crystal structure of grimselite is a heteropolyhedral framework that consists of uranyl tricarbonate clusters linked in layers parallel to (001) by sharing polyhedral elements with NaO₈ hexagonal bipyramids (Fig. 2). Each

NaO₈ hexagonal bipyramid shares three equatorial edges with three CO_3^{2-} planar groups, and three equatorial vertices with three UO₂O₆ hexagonal bipyramids. The sheets are linked by the sharing of apical vertices between the UOs and NaO₈ bipyramids. The voids in the heteropolyhedral framework contain dominant K⁺ cations and H₂O groups (Fig. 3). Site-occupancy refinement of the K position provided significantly reduced occupancy values. The other sites are fully occupied. Taking into account the results of the chemical analysis (Table 8), Na⁺ cations were introduced at the K-dominated site and their presence verified by subsequent refinement. The ratio of K:Na atoms, produced by the refinement, is 0.413(5):0.087(5), resulting in a formula which is written (K_{2.43}Na_{0.57})_{Σ3.00}. Potassium and sodium atoms are coordinated by 8 oxygen atoms, two of which are molecular H₂O (the O5 atoms), on the basis of bond valence analysis (Table 5). The O5-O5 site (4e) separation is quite low [2.09(1) and 2.00(1) Å] for the site with the full occupancy, and hence locally only one of the two sites can be occupied at one time in each (K,Na)O₈ polyhedron (Fig. 4).

Effect of cationic substitution

In addition to the synthetic analogue of grimselite *sensu stricto* (Li and Burns, 2001), Kubatko and Burns (2004) reported the Rb analogue of grimselite, with a formula $Rb_6Na_2[(UO_2)]$

	Ideal formula*	– (K,Na)) Grimselite (samp	ole A) –	— Grims	elite (sample B)	
Oxide		Mean (10 analyses)	Range	SD	Mean (4 analyses)	Range	SD
Na ₂ O	5.17	7.31	6.70-7.80	0.34	4.74	4.53-4.96	0.18
K_2O	23.57	17.14	16.26-18.11	0.55	24.56	24.31-24.74	0.21
FeO					0.09	0.00 - 0.29	0.14
Al_2O_3					0.03	0.00 - 0.09	0.04
ZnO		0.07	0.00 - 0.21	0.08			
CO ₂ **	22.03	20.30	19.51-20.91	0.45	22.47	22.19-22.71	0.22
P_2O_5		0.08	0.00 - 0.18	0.07			
SiO ₂		0.11	0.00 - 0.41	0.14			
UO ₃	47.72	47.45	46.16-49.47	0.98	49.62	48.48-50.45	1.16
H ₂ O	1.50	1.38	1.34 - 1.42	0.03	1.53	1.53 - 1.54	0.01
Total	99.99	93.84			103.05		

TABLE 8. Chemical compositions of the grimselite samples.

* Composition (wt.% oxide) of the ideal formula, K₃Na[(UO₂)(CO₃)₃](H₂O).

** The CO₂ content calculated to produce charge balance.

TABLE 9. Comparison of polyhedral volumes and distortion indices for *MO*₈ polyhedra in crystal structures of natural grimselite and synthetic samples.

Sample	(K,Na) grimselite ¹	Natural grimselite ²	Synthetic grimselite ³	Rb ₆ Na ₂ [(UO ₂)(CO ₃) ₃] ₂ (H ₂ O) ⁴
$V_{\rm p}$ (Å ³)	32.670	33.412	33.443	38.478
Δ	0.0173	0.0222	0.0227	0.0306

¹ Mixed (K,Na)O₈ polyhedron from Jáchymov, sample A, this paper.

² KO₈ polyhedron, Jáchymov, sample B, this paper.

³ KO₈ polyhedron, synthetic (Li and Burns, 2001).

⁴ RbO₈ polyhedron, synthetic Rb⁺ analogue of grimselite (Kubatko and Burns, 2004).

The symbol V_p is the polyhedral volume; Δ is the bond-length distortion after Brown and Shannon (1973).

 $(CO_3)_3]_2(H_2O)$. Therefore, at least three large univalent cations, Na, K and Rb, can occur at the MO_8 polyhedral site in materials with a grimselite structure. In view of the differences in effective ionic radii (Na is 1.18 Å, K is 1.51 Å and Rb is 1.61 Å; Shannon, 1976), a change in polyhedral volume should be expected. The polyhedral volumes of the relevant polyhedra are listed in Table 9, together with distortion indices. The distortion indices expressed as bond length distortions, defined on the basis of Brown and Shannon (1973), suggest that the mixed (K,Na)O₈ polyhedron is more regular, than the larger RbO₈ polyhedron.

Acknowledgements

We are indebted to Biljana Lazic and Thomas Armbruster (University of Bern) for their kind help with data processing and for comments on the manuscript. We appreciate the photographs provided by Pavel Škácha (Charles University, Prague) as well as his remarks on the mineral description. The helpful comments of Fernando Cámara and two anonymous reviewers, as well as the handling editor Stuart Mills, are greatly appreciated. The Institutional research plans No. AV010100521 of the Institute of Physics ASCR, v.v.i., AV0Z30130516 of the Institute of Geology ASCR, v.v.i., and project P204/11/0809 of the Grant Agency of the Czech Republic to KF, JP and MD, and the long term Research Plan of the Ministry of Education of the Czech Republic MSM0021622412 (INCHEMBIOL) to RS and JP are also acknowledged. This research was further funded by a Culture of the Czech Republic project grant (MK00002327201) to JS and by the Ministry of Education of the Czech Republic project grant (MSM0021620857) to IC.

References

- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Crystallographica*, **B41**, 244–248.
- Brown, I.D. and Shannon, R.D. (1973) Empirical bondstrength bond-length curves for oxides. Acta Crystallographica, A29, 266–282.
- Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. *The Canadian Mineralogist*, **35**, 1551–1570.
- Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. *Acta Crystallographica*, A51, 887–897.
- Coppens, P. (1970) The evaluation of absorption and extinction in single crystal structure analysis. Pp. 255–270 in: Crystallographic Computing (F.R. Ahmed, S.R. Hall, and C.P. Huber, editors). Munksgaard, Copenhagen.
- Finch, R.J. (1997) Thermodynamic stabilities of U(VI) minerals: estimated and observed relationships. *Material Research Society Symposium Proceedings*, 465, 1185–1192.
- Finch, R.J. and Ewing, R.C. (1992) The corrosion of uraninite under oxidizing conditions. *Journal of Nuclear Materials*, **190**, 133–156.
- Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91–179 in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.

- Flack, H.D. (1983) On enantiomorph-polarity estimation. Acta Crystallographica, A39, 876–881.
- Garrels, R.M. and Christ, C.L. (1959) Behavior of Uranium Minerals During Oxidation. Pp. 81–89 in: Geochemistry and Mineralogy of the Colorado Plateau Uranium Ores (R.M. Garrels and E.S. Larsen, editors). US Geological Survey Professional Paper, 320. US Geological Survey, Reston, Virginia, USA, 236 pp.
- Gorman-Lewis, D., Burns, P.C. and Fein, J.B. (2008) Review of uranyl mineral solubility measurements. *Journal of Chemical Thermodynamics*, 40, 335–352.
- Hoppe, R. (1979) Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR). *Zeitschrift für Kristallographie*, **150**, 23–52.
- Kubatko, K.-A.H. and Burns, P.C. (2004) The Rb analogue of grimselite, Rb₆Na₂[(UO₂)(CO₃)₃]₂ (H₂O). *Acta Crystallographica*, **C60**, i25–i26.
- Langmuir, D. (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore. *Geochimica et Cosmochimica Acta*, 42, 547–569.
- Li, Y. and Burns, P.C. (2001) The crystal structure of synthetic grimselite, K₃Na[(UO₂)(CO₃)₃](H₂O). *The Canadian Mineralogist*, **39**, 1147–1151.
- Mazzi, F. and Rinaldi, F. (1960) Structural studies on $Me_{0-4}^+Me_{2-0}^{++}UO_2(CO_3)_3$ ·nH₂O compounds. I. The crystal structure of K₃NaUO₂(CO₃)₃. Acta Crystallographica, **13**, 1139.
- Mazzi, F. and Rinaldi, F. (1961) La struttura cristallina del K₃Na(UO₂)(CO₃)₃. Periodico di Mineralogia,

30, 1–21.

- Pauliš, P., Kopecký, S. and Černý, P. (2007) Uranium Minerals of the Czech Republic and their Localities. Martin Bartos, Kuttna, Czech Repubic, 132 pp., [in Czech].
- Petříček, V., Dušek, M. and Palatinus, L. (2006) Jana2006. The crystallographic computing system. Institute of Physics, Praha, Czech Republic.
- Pouchou, J.L. and Pichoir, F. (1985) "PAP" (φ pZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: *Microbeam Analysis* (J.T. Armstrong, editor). San Francisco Press, San Francisco, USA.
- Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica*, A32, 751–767.
- Tvrdý, J. and Plášil, J. (2010) Jáchymov Reiche Erzlagerstätte und Radonbad im böhmischen Westerzgebirge. Aufschluss, 61, 277–292.
- Walenta, K. (1972) Grimselit, ein neues Kalium-Natrium-Uranylkarbonat aus dem Grimselgebiet (Oberhasli, Kt. Bern, Schweiz). Schweizerische Mineralogishe und Petrographische Mitteilungen, 52, 93-108.
- Walenta, K. (1976) Baylissit, ein neues Karbonatmineral aus den Schweizer Alpen. Schweizerische Mineralogische und Petrographische Mitteilungen, 56, 187–194.
- Walenta, K. (1995) Grimselit von Menzenschwand. Erzgräber, 9, 89–91.