Aluminopyracmonite, $(NH_4)_3Al(SO_4)_3$, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy

F. DEMARTIN, C. CASTELLANO AND I. CAMPOSTRINI

Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, I-20133 Milan, Italy

[Received 31 January 2013; Accepted 16 April 2013; AE: A. Pring]

ABSTRACT

The new mineral aluminopyracmonite, ideally $(NH_4)_3Al(SO_4)_3$, was found in a medium-temperature (~250°C) intracrater active fumarole at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy. It occurs on a pyroclastic breccia as colourless to white prismatic crystals up to 0.2 mm long, in association with adranosite, mascagnite, alunite and salammoniac. The mineral is identical to the synthetic compound $(NH_4)_3Al(SO_4)_3$. It is trigonal, space group: $R\overline{3}$ (no. 148) with a = 15.0324(8), c = 8.8776(5) Å, V = 1737.3(2) Å³ and Z = 6. The six strongest reflections in the X-ray powder diffraction pattern are: $[d_{obs} \text{ in } Å(I)(hkl)]$ 3.336(100)(131), 7.469(62)(1 1 0), 3.288(60)(122), 4.289(45)($\overline{2}31$), 2.824(29)($\overline{3}51$), 4.187(27)(012). The empirical formula based on 12 anions is $[(NH_4)_{2.89}K_{0.10}]_{\Sigma 2.99}(Al_{1.18}Fe_{0.01})_{\Sigma 1.19}S_{2.91}O_{12}$, and the simplified formula (NH₄,K)₃Al(SO₄)₃. The measured density is 2.12(1) g/cm³, calculated density 2.143 g/cm³. The mineral is uniaxial(–) with $\omega = 1.545(3)$ and $\varepsilon = 1.532(3)$ ($\lambda = 589$ nm). Using single-crystal diffraction data, the structure was refined to a final R(F) = 0.0258 for 998 independent observed reflections [$I > 2\sigma(I)$]. In spite of having unitcell parameters comparable with those of pyracmonite, the two minerals are not isostructural; the difference is related to a disordered conformation of the sulfate anions about the two independent Al³⁺ ions in aluminopyracmonite.

Keywords: aluminopyracmonite, new mineral species, crystal structure, ammonium sulfates, aluminium sulfates, Vulcano island, Italy.

Introduction

THE medium-to-low-temperature intracrater fumaroles at La Fossa crater, Vulcano, Aeolian Islands, Sicily, Italy, are the source of a suite of new sulfates that were discovered during our systematic investigations of fumarole minerals (Campostrini *et al.*, 2011; Demartin *et al.*, 2010*a,b,c*; 2011, 2012). Aluminopyracmonite, (NH₄)₃Al(SO₄)₃ was found recently in the same locality and was approved as a new species by the IMA Commission on New Minerals, Nomenclature and Classification (No. 2012-075). The name was chosen on the basis of the chemical

* E-mail: francesco.demartin@unimi.it DOI: 10.1180/minmag.2013.077.4.04 analogy with pyracmonite $(NH_4)_3 Fe^{3+}(SO_4)_3$ and similarity of the unit-cell parameters of the two minerals. However the space group is different, being $R\bar{3}$ instead of R3c, and the two species are not isostructural. This paper deals with the description of the new mineral aluminopyracmonite, together with its crystal structure.

Occurrence, chemical data and physical properties

Aluminopyracmonite occurs in an active, medium-temperature (~250°C) intracrater fumarole developed on a pyroclastic breccia. It is associated with adranosite, mascagnite, alunite and salammoniac. About 20 specimens of this mineral were recovered. Aluminopyracmonite forms aggregates of colourless to white, elongate, hexagonal prismatic crystals up to 0.2 mm long (Fig. 1). No twinning is apparent. The *c:a* ratio calculated from the unit-cell parameters is: 1:0.591. The mineral is not hygroscopic and is stable in the open air. The streak is white and the lustre is vitreous. Cleavage and fracture were not observed. No fluorescence was observed under SW or LW ultraviolet radiation.

The density measured by flotation in a tribromomethane-trichloromethane mixture is 2.12(1) g/cm³, that calculated from the empirical formula and the X-ray data is 2.143 g/cm³. The mineral is uniaxial (–) with $\omega = 1.545(3)$ and $\varepsilon = 1.532(3)$ ($\lambda = 589$ nm) and non-pleochroic; the compatibility index [1 – (K_P/K_C)] is -0.010, which is superior according to Mandarino (1981).

Quantitative chemical analyses (12) were carried out in EDS mode using a JEOL JSM 5500 LV scanning electron microscope equipped with an IXRF EDS 2000 microprobe (20 kV excitation voltage, 10 pA beam current, 2 µm beam diameter). Element concentrations were measured using the $K\alpha$ lines for Al, Fe, K and S. The presence of ammonium was established from crystal-structure analysis and was also confirmed by the infrared spectrum that shows absorption peaks at 3208(vs), 3048(s) and $1421(vs) \text{ cm}^{-1}$. The mean analytical results are reported in Table 1. The empirical formula (based on 12 anions) is [(NH₄)_{2.89}K_{0.10}]_{Σ2.99}(Al_{1.18} $Fe_{0.01}$) $\Sigma_{1.19}S_{2.91}O_{12}$ corresponding to a simplified formula (NH₄,K)₃Al(SO₄)₃. The idealized formula is $(NH_4)_3Al(SO_4)_3$, which requires: (NH₄)₂O 21.15, Al₂O₃ 13.81, SO₃ 65.04, total 100.00 wt.%. Holotype material is deposited in the Reference Collection of the Dipartimento di Chimica, Università degli Studi di Milano, specimen number 2012-01.

FIG. 1. SEM-BSE image of crystals of aluminopyracmonite.

X-ray data

X-ray powder-diffraction data (Table 2) were obtained using a Philips PW1830 diffractometer, with CuKa radiation. The indexing of the powderdiffraction pattern was achieved by comparison with the pattern calculated after the structure determination. The following parameters a =15.009(1), c = 8.863(1) Å of the trigonal unit cell in the hexagonal setting were obtained from least-squares refinement from the above data using the program UNITCELL (Holland and Redfern, 1997). There is a significant difference between the values obtained in this way and those from single-crystal data (greater than 3σ), that may be due to small differences in the chemical composition of the bulk material used for recording the powder pattern with respect to the single crystal as well as to a possible underestimation of the estimated standard deviations obtained by refinement programs.

Constituent	Wt.%	Range	SD	Probe standard
(NH ₄) ₂ O*	20.15			
K ₂ O	1.26	1.12-1.45	0.05	KCl
Fe ₂ O ₃	0.30	0.22 - 0.40	0.06	Almandine garnet
Al ₂ O ₃	16.07	14.69-17.63	0.12	Almandine garnet
SO ₃	62.22	60.76-63.46	0.18	Synthetic anhydrite
Total	100.00			

TABLE 1. Chemical composition of aluminopyracmonite.

* by difference

h k l	$I_{\rm rel}$	d _{obs.} (Å)	$d_{\text{calc.}}$ (Å)*	<i>d</i> ₀₀₅ (Å)**	<i>I</i> _{rel} **
1 1 0	62	7.469	7.504	7.500	100
030	5	4.364	4.333		
2 31	45	4.289	4.297	4.300	50
0 1 2	27	4.187	4.194	4.190	20
1 3 1	100	3.336	3.339	3.320	83
1 2 2	60	3.288	3.291		
4 4 1	9	3.042	3.051	3.060	3
351	29	2.824	2.826	2.810	20
342	26	2.796	2.797		
1 1 3	21	2.748	2.749	2.740	13
033	11	2.441	2.441	2.460	5
223	6	2.321	2.321	2.310	3
ō 5 1	16	2.257	2.258	2.260	10
552	9	2.242	2.242		
270	6	2.080	2.081	2.070	4
1 4 3	5	2.046	2.046		
Ī71	8	1.934	1.934	1.930	5
180	9	1.722	1.722	1.720	5
582	5	1.713	1.713		
ō 5 4	7	1.608	1.607	1.600	5
4 83	9	1.585	1.584	1.590	1

TABLE 2. X-ray powder diffraction data for aluminopyracmonite.

TABLE 3. Single-crystal diffraction data and refinement parameters for aluminopyracmonite.

Crystal system	Trigonal
Space Group	R3(no. 148)
a (Å)	15.0324(8)
c (Å)	8.8776(5)
$V(Å^3)$	1737.3(2)
Z	6
Radiation	ΜοΚα
$\mu (mm^{-1})$	0.788
D_{calc} (g/cm ³)	2.143
Measured reflections	6156
Independent reflections	1229
Observed reflections [$I > 2\sigma(I)$]	998
Parameters refined	104
Final <i>R</i> [$I > 2\sigma(I)$] and w <i>R</i> 2 (all data)	0.0258,
	0.0754
S	1.082

* Calculated from the unit cell a = 15.009(1), c = 8.863(1) Å, obtained from least-squares refinement from the above data using the program *UNITCELL* (Holland and Redfern, 1997).

** Synthetic (NH₄)₃Al(SO₄)₃; non-indexed pattern from ICDD entry 00-003-0045.

The unit-cell parameters obtained from 3057 single-crystal reflections with $I > 5\sigma(I)$ are reported in Table 3, together with other details concerning the data collection and refinement. A total of 6156 intensities corresponding to a complete scan of the reciprocal lattice up to $2\theta =$ 63.26° was collected from a crystal $(0.08 \text{ mm} \times 0.03 \text{ mm} \times 0.02 \text{ mm})$ using a Bruker Apex II diffractometer equipped with a 2K CCD detector and MoK α radiation ($\lambda = 0.71073$ Å). A one-minute frame-time and a 0.5° frame width were used. The intensity data were reduced using the program SAINT (Bruker, 2001), and corrected for Lorentz, polarization and background. An absorption correction ($\mu = 0.788 \text{ mm}^{-1}$, T_{\min} 0.955) was applied using the SADABS program (Sheldrick, 2000). After averaging the symmetryrelated reflections ($R_{int} = 0.0202$), 1229 independent data were obtained. The structure was solved by direct methods and refined using the SHELXL97
$$\begin{split} R &= \Sigma ||Fo|-|Fc||/ \Sigma |Fo|; \\ wR2 &= \{\Sigma [w(Fo^2 - Fc^2)^2]/\Sigma [w(Fo^2)^2]\}^{1/2}; \\ w &= 1/[\sigma^2(Fo^2) + (0.0452q)^2 + 0.2800q] \\ where q &= [max(0, Fo^2) + 2Fc^2]/3; \\ S &= \{\Sigma [w(Fo^2 - Fc^2)]/(n-p)\}^{1/2} \text{ where n is the number of } \end{split}$$

reflections and p is the number of refined parameters.

program (Sheldrick, 2008) implemented in the WinGX suite (Farrugia, 1999). During the structure solution it was evident that two possible conformations of the sulfate anions about the Al³⁺ cations were present. A refinement of the occupancies of the three disordered oxygen atoms gave values of about 0.67 and 0.33 for the two conformations, respectively. The location of the H atoms from the NH_4^+ ion were identified in the difference-fourier map and were included in the final refinement, with isotropic atomic displacement parameters, whereas anisotropic displacement parameters were used for all other atoms. The final R is 0.0258 for 998 observed reflections $[I > 2\sigma(I)]$. The final coordinates and displacement parameters of the atoms are reported in Table 4; selected interatomic distances and angles are listed in Table 5. Observed and calculated structure-factors tables have been deposited with the Editor and are available for download at: http://www.minersoc. org/pages/e journals/dep mat mm.html

Description of the structure

Projections along [001] of the crystal structures of aluminopyracmonite and pyracmonite are shown in Figs 2a and 2b. It is evident that the two minerals

F. DEMARTIN ET AL.

Atom	Wyckoff notation	Occupancy	x/a	y/b	z/c	$U_{ m eq}$
Al1	3 <i>a</i>	1	2/3	1/3	1/3	0.01316(6)
A12	3b	1	2/3	1/3	1/6	0.01003(6)
S	18 <i>f</i>	1	0.52228(1)	0.17358(1)	0.08077(1)	0.01605(3)
01	18f	1	0.54994(2)	0.24610(2)	0.04809(3)	0.01907(8)
O2a	18 <i>f</i>	0.673	0.41032(3)	0.11292(4)	0.08097(6)	0.0263(2)
O2b	18 <i>f</i>	0.327	0.41553(8)	0.13008(9)	0.12312(13)	0.0351(4)
O3a	18f	0.673	0.55285(3)	0.24001(3)	0.21654(5)	0.0229(1)
O3b	18 <i>f</i>	0.327	0.59127(8)	0.21516(7)	0.21467(10)	0.0250(3)
O4a	18f	0.673	0.57239(3)	0.11529(3)	0.07087(6)	0.0286(1)
O4b	18f	0.327	0.54211(8)	0.08949(7)	0.02667(13)	0.0301(3)
Ν	18 <i>f</i>	1	0.26073(3)	0.09755(3)	0.05993(5)	0.0259(1)
H1	18 <i>f</i>	1	0.2330(5)	0.0949(6)	0.0210(11)	0.083(3)
H2	18f	1	0.3052(5)	0.0405(5)	0.0609(9)	0.057(2)
H3	18 <i>f</i>	1	0.2812(6)	0.1340(6)	0.0593(11)	0.080(3)
H4	18f	1	0.2247(5)	0.1034(5)	0.1300(9)	0.065(2)
Atom	U_{11}	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Δ11	0.01596(8)	0.01596(8)	0.0076(1)	0	0	0.00798(4)
A12	0.01000(0)	0.01000(7)	0.0070(1)	0	0	0.00790(4)
S	0.01500(7)	0.01000(7) 0.01439(3)	0.0101(1) 0.01444(4)	0.00109(3)	0.00068(3)	0.00300(3) 0.00453(2)
01	0.01312(3) 0.0173(1)	0.0198(1)	0.0205(1)	0.00109(3)	0.00000(3)	0.00193(2) 0.00907(7)
02a	0.0175(1) 0.0186(2)	0.0213(2)	0.0203(1) 0.0297(2)	0.0001(1) 0.0025(2)	0.0031(1) 0.0048(2)	0.0029(1)
02h	0.0155(4)	0.0219(2) 0.0419(5)	0.0254(6)	0.0023(2) 0.0153(5)	0.0010(2) 0.0095(4)	0.0029(1) 0.0048(4)
03a	0.0250(2)	0.0289(2)	0.0331(0) 0.0146(2)	-0.0054(2)	-0.0046(2)	0.00134(1)
O3h	0.0230(2) 0.0313(4)	0.0205(2)	0.0146(4)	-0.0033(3)	-0.0048(4)	0.0151(1)
04a	0.0313(1)	0.0224(2)	0.0377(3)	0.0055(3)	0.0010(1)	0.0182(1)
O4h	0.0320(2) 0.0465(5)	0.0221(2) 0.0180(3)	0.0284(5)	-0.0030(2)	-0.0088(4)	0.0182(1)
N	0.0249(1)	0.0230(1)	0.0297(2)	-0.0029(1)	0.0049(1)	0.0119(1)

TABLE 4. Atomic coordinates and displacement parameters $[U_{eq}/U_{ii})$, Å² for aluminopyracmonite.

The anisotropic displacement factor exponent takes the form: $-2\pi^2(U_{11}h^2(a^*)^2+...+2U_{12}hka^*b^*+...);$ $U_{eq} = 1/3(U_{11}+U_{22}+U_{33})$

display similar features but are not isostructural, the difference being related to the conformation of the sulfate anions. The structure contains two independent Al^{3+} ions located on different $\bar{3}$ symmetry elements, octahedrally coordinated by sulfate anions. The latter are arranged with two possible conformations about Al1, with occupancy 0.67 (conformation **a**) and 0.33 (conformation **b**), whereas the coordination of O1 about Al2 is fixed. These different conformations can be appreciated in Fig. 3, where two projections of the infinite $[Al(SO_4)_3]_{\infty}$ chains made by the AlO₆ octahedra which share all their corners with sulfate tetrahedra are shown.

The prevailing conformation \mathbf{a} , where all the Al-centred octahedra are eclipsed looking down

the [001] direction, is different from that observed in pyracmonite and in other sulfates containing topologically similar $[Fe(SO_4)_3]_{\infty}$ arrangements, like ferrinatrite, Na₃Fe(SO₄)₃·3H₂O (Scordari, 1977; Scordari and Ventruti, 2009) and aluminocoquimbite AlFe(SO₄)₃·9H₂O (Demartin *et al.*, 2010*d,e*), where the octahedra are staggered instead, due to a twisting about the [001] direction, as for conformation **b** in the present structure.

The voids located between these parallel chains extending along [001] host the ammonium ions that are hydrogen-bonded with the neighbouring oxygen atoms of the sulfate ions not involved in the coordination with Al (Fig. 4).

The average S–O distance, calculated considering both conformations of the sulfate anions is

$All-O3a \times 6$	1.8895(4)	Al2-O1 ×6	1.8989(3)
$AII = 0.50 \times 0$	1.8800(9)		
<ai-o></ai-o>	1.891		
S-01	1.4889(3)		
S-O2a	1.4592(4)	S-O2b	1.447(1)
S-O3a	1.4840(4)	S-O3b	1.4937(9)
S-O4a	1.4153(6)	S-O4b	1.515(1)
<s-o></s-o>	1.474		
N-H1	0.841(9)		
N-H2	0.780(6)		
N-H3	0.750(11)		
N-H4	0.800(8)		
Hydrogen bonds			
N····O2a	2.826(1)	N-H2····O2a	172.7(7)
N····O2b	3.078(1)	N-H2···O2b	164.5(7)
$N \cdots O1^a$	2.999(1)	N-H301	147.9(8)
N…O2a ^b	3.078(1)	N-H1···O2a ^b	157.9(8)
$N \cdots O2b^b$	2.775(1)	$N-H1\cdots O2b^{b}$	163.2(9)
$N \cdots O4a^{c}$	2.752(1)	$N-H4\cdots O4a^{c}$	162.8(8)
$N \cdots O4b^{c}$	2.936(1)	N-H4····O4b ^c	175.9(8)

TABLE 5. Selected interatomic distances (Å) and angles (°) in aluminopyracmonite.

Symmetry codes: a = y, -x+y, -z; b = -y+1/3, x-y-1/3, z-1/3; c = x - y - 1/3, x - 2/3, -z+1/3

1.474 Å, and can be compared with those found in most hydrated sulfates, which fall in the range 1.47-1.48 Å (Hawthorne et al., 2000) but is slightly larger than that found in pyracmonite (1.448 Å), which is in line with the values usually found in anhydrous sulfates. This lengthening, therefore, seems unusual and can probably be attributed to the presence of disorder in the sulfates. However, considering the prevailing conformation a, i.e. that determined with greater accuracy, an average value of 1.461 Å is obtained, which is closer to the typical values observed in anhydrous sulfates. Also the Al1-O and Al2-O distances are slightly, but significantly, different, probably for the same reason; however, their overall average is in line with that found in $Al_2(SO_4)_3$, where bridging sulfates are also present (Dahmen and Gruehn, 1993).

We have checked whether the disorder of the sulfate anions is real or is the effect of a structure determination carried out in an incorrect space group. This possibility was suggested by the existence of a trigonal-to-monoclinic ferroelastic transition in some $M_3^1 M^{\text{III}}(\text{XO}_4)_3$ compounds ($M^1 = \text{NH}_4^+$, TI⁺; $M^{\text{III}} = \text{In}^{3+}$) (Jolibois *et al.*, 1981), which can be accomplished by a slight tilting of

the SO₄ tetrahedra in adjacent chains with symmetry reduction. The same authors state, on the basis of micro DTA and X-ray measurements, that such a transition occurs in two steps as they have observed an intermediate phase of point symmetry $\overline{3}$. Our X-ray diffraction data led us to rule out a monoclinic pseudorhombohedral phase for aluminopyracmonite and to suggest that we are dealing with an analogous intermediate disordered rhombohedral phase as hypothesized by Jolibois *et al.* (1981). In addition we have also tried a structure refinement in the non-centrosymmetric space group *R*3, however the disorder remains and the *R* index is worse.

A systematic investigation on ammoniumcontaining structures by Khan and Baur (1972) showed that the number of contacts of the N atoms with their surroundings ranges from four to nine. When the coordination number (CN) of NH_4^+ is four, then four hydrogen bonds are usually formed with a roughly tetrahedral arrangement and almost linear donor-H-acceptor interactions. For larger CN values, either the ammonium ion is disordered, or polyfurcated hydrogen bonds may be present. The same authors suggest that the ionic radius for the ammonium ion is

FIG. 2. A comparison of the crystal structures of pyracmonite (*a*) and aluminopyracmonite (*b*) seen along [001]. The prevalent conformation of the sulfate anions for aluminopyracmonite is shown (see above). SO_4^{2-} tetrahedra are represented in yellow and N atoms of the NH_4^+ ions in blue. Unit cell outlined.

~1.65–1.66 Å and as the radius of O^{2-} is 1.37 Å, distances of ~3.1 Å are to be expected for N···O hydrogen-bond interactions and O···H–N angles near 180°. Considering the prevailing conformation for the sulfate ions, in aluminopyracmonite the ammonium ion is surrounded by four oxygens at distances in the range 2.752(1)–3.078(1) Å

corresponding to 'regular' hydrogen bonds (Fig. 4).

Anhydrous natural or synthetic ammonium aluminium sulfates are very rare. Among them the only known mineral was godovikovite $NH_4(Al,Fe^{3+})(SO_4)_2$, where Al is partly replaced by minor Fe, that was found for the first time as a

FIG. 3. Comparison of the two conformations (a) and (b) of the sulfate anions in the chains consisting of the AlO_6 distorted octahedra.

product of anthropogenic activity in the burning coal dumps at Kopeisk, Chelyabinsk Oblast, southern Urals, Russia (Shcherbakova *et al.*, 1988), and for the first time in a geological context at Vulcano (Campostrini *et al.*, 2011). The structure solution of the corresponding synthetic "anhydrous alum" NH₄Al(SO₄)₂, obtained on heating hydrous alum at 400°C, was performed by Rietveld refinement from the powder-diffraction pattern and reported (Boujelben *et al.*, 2008).

FIG. 4. The pattern of hydrogen-bonds in aluminopyracmonite. Only conformation (a) of the sulfate anions is shown.

Aluminopyracmonite is therefore the second known anhydrous ammonium aluminium sulfate mineral. It is interesting to note that the synthetic compound $(NH_4)_3Al(SO_4)_3$ corresponding to aluminopyracmonite was prepared by the Dow Chemical Co., Midland, Michigan, USA (private communication to the ICDD PDF-2 database, Entry #00-003-0045) by dissolving and evaporating a $(NH_4)_2SO_4 \cdot Al_2(SO_4)_3 + 2(NH_4)_2SO_4$ mixture and heating at 250°C to obtain the anhydrous phase; these temperature conditions correspond to those detected at the fumarole where aluminopyracmonite was collected.

Aluminopyracmonite and pyracmonite represent additional examples of sulfate minerals having analogous chemical formulae and similar unit-cell parameters but are not isostructural, other examples being aluminocoquimbite and coquimbite (Demartin *et al.*, 2010*d,e*) and the copiapite group minerals (Majzlan and Michallik, 2007).

Acknowledgements

The authors are indebted to Prof. Silvia Bruni for the FTIR measurements and to the two anonymous referees for useful suggestions.

References

- Boujelben, M., Toumi, M. and Mhiri T. (2008) X-ray structure determination of NH₄Al(SO₄)₂. Annales de Chimie – Science de Materiaux, 33, 379–386.
- Bruker (2001) *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano. Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, Italy, 344 pp, ISBN 978-88-905541-0-0.
- Dahmen, T. and Gruehn, R. (1993) Beitraege zum thermischen verhalten von Sulfaten. IX. Einkristallstrukturverfeinerung der Metall(III)-sulfate Cr₂(SO₄)₃ und Al₂(SO₄)₃. Zeitschrift für Kristallographie, **204**, 57–65.
- Demartin, F., Gramaccioli, C.M., Campostrini, I. and Pilati T. (2010a) Aiolosite, Na₂(Na₂Bi)(SO₄)₃Cl, a new sulfate isotypic to apatite from La Fossa Crater, Vulcano, Aeolian Islands, Italy. *American Mineralogist*, **95**, 382–385.
- Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010b) Pyracmonite, (NH₄)₃Fe(SO₄)₃, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. *The Canadian Mineralogist*, **48**, 307–313.
- Demartin, F., Gramaccioli, C.M. and Campostrini, I.

(2010c) Adranosite, $(NH_4)_4NaAl_2(SO_4)_4Cl(OH)_2$, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. *The Canadian Mineralogist*, **48**, 315–321.

- Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010d) Aluminum/iron substitution, hydrogen bonding and a novel structural type in coquimbite-like minerals. *The Canadian Mineralogist*, **48**, 323–333.
- Demartin, F., Castellano, C., Gramaccioli, C.M. and Campostrini, I. (2010e) Aluminocoquimbite, AlFe(SO₄)₃·9H₂O, a new aluminum iron sulfate from Grotta dell'Allume, Vulcano, Aeolian Islands, Italy. *The Canadian Mineralogist*, **48**, 1465–1468.
- Demartin, F., Gramaccioli, C.M., Campostrini, I. and Castellano, C. (2011) Cossaite, (Mg_{0.5},□)Al₆(SO₄)₆ (HSO₄)F₆·36H₂O, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy. *Mineralogical Magazine*, **75**, 2847–2855.
- Demartin, F., Campostrini, I., Castellano, C., Gramaccioli, C.M. and Russo, M. (2012) D'ansite-(Mn), Na₂₁Mn²⁺(SO₄)₁₀Cl₃ and d'ansite-(Fe), Na₂₁Fe²⁺(SO₄)₁₀Cl₃, two new minerals from volcanic fumaroles. *Mineralogical Magazine*, **76**, 2773–2783.
- Farrugia, L.J. (1999) WinGX suite for small-molecule single-crystal crystallography. Journal of Applied Crystallography, 32, 837–838.
- Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1–112 in Sulfate Minerals-Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and B.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America & Geochemical Society, Washington, D.C.
- Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. *Mineralogical Magazine*, 61, 65–77.
- Jolibois, B., Laplace, G., Abraham, F. and Nowogrocki, G. (1981) Monoclinic-trigonal transition in some M₃¹M^{1II}(XO₄)₃ compounds: the high temperature form of (NH₄)₃In(SO₄)₃. Journal of Solid State Chemistry, **40**, 69–74.
- Khan, A.A. and Baur, W.H. (1972) Salt hydrates. VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium bis(hydrogen orthophosphate) tetrahydrate and a discussion of the ammonium ion. *Acta Crystallographica*, **B28**, 683–693.
- Majzlan, J. and Michallik, R. (2007) The crystal structures, solid solutions and infrared spectra of copiapite-group minerals. *Mineralogical Magazine*, 71, 557–573.
- Mandarino, J.A. (1981) The Gladstone-Dale relation-

ship. IV. The compatibility index and its application. *The Canadian Mineralogist*, **19**, 441–450.

- Scordari, F. (1977) The crystal structure of ferrinatrite, Na₃(H₂O)₃[Fe(SO₄)₃] and its relationship to Maus's salt, $(H_3O)_2K_2\{K_{0.5}(H_2O)_{0.5}\}_6$ [Fe₃O(H₂O)₃ (SO₄)₆](OH)₂. *Mineralogical Magazine*, **41**, 375–383.
- Scordari, F. and Ventruti, G. (2009) Sideronatrite, Na₂Fe(SO₄)₂(OH)·3H₂O: Crystal structure of the orthorhombic polytype and OD character analysis. *American Mineralogist*, **94**, 1679–1686.
- Shcherbakova, Y.P., Bazhenova, L.F.and Chesnokov, B.V. (1988) Godovikovite – NH₄(Al,Fe)(SO₄)₂, a new ammonium-bearing sulfate. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 117, 208–211.
- Sheldrick, G.M. (2000) SADABS Area-Detector Absorption Correction Program, Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.

Table S1. Observed and calculated structure factors for aluminopyracmonite

h ł	s 1	. 10Fo	10Fc	10σ	h	k	1	10Fo	10Fc	10σ	h	k	1	10Fo	10Fc	10σ	h	k	1	10Fo	10Fc	10σ	h	k	1	10Fo	10Fc	10σ
-1 2	2 0	2082	2024	2	-10	7	1	629	655	2	-12	17	1	50	8	50	-19	12	2	110	93	22	-3	6	3	88	27	6
0 3	3 0	60	63	8	-7	7	1	827	802	2	-9	17	1	565	567	5	-16	12	2	327	321	7	0	6	3	50	35	14
-2 4	1 O	652	701	1	-4	7	1	836	800	2	-6	17	1	239	231	11	-13	12	2	433	448	б	3	6	3	478	484	3
-4 5	5 0	152	122	3	-1	7	1	1467	1452	2	-3	17	1	495	500	8	-10	12	2	664	688	4	б	6	3	200	202	7
-1 5	5 0	184	182	3	2	7	1	24	37	24	0	17	1	567	539	8	-7	12	2	891	902	3	-11	7	3	1646	1648	3
-3 6	5 0	575	600	2	5	7	1	282	277	5	3	17	1	282	271	17	-4	12	2	898	897	3	-8	7	3	86	114	10
0 6	5 0	481	521	2	-15	8	1	485	486	5	-17	18	1	358	358	8	-1	12	2	316	326	5	-5	7	3	54	57	14
-5 7	7 0	628	594	2	-12	8	1	935	957	3	-14	18	1	73	65	33	2	12	2	224	231	9	-2	7	3	552	547	2
-2 7	7 0	874	916	2	-9	8	1	62	25	12	-11	18	1	756	754	6	5	12	2	465	465	8	1	7	3	204	189	4
-7 8	3 0	1317	1279	2	-6	8	1	154	145	4	-8	18	1	82	94	28	8	12	2	367	371	10	4	7	3	362	360	4
-4 8	3 0	401	422	4	-3	8	1	386	423	3	-5	18	1	197	194	14	-21	13	2	213	203	16	7	7	3	63	47	25
-1 8	3 0	1506	1500	2	0	8	1	391	399	3	-2	18	1	166	161	17	-18	13	2	523	516	6	-13	8	3	459	469	5
-6 9	9 0	123	132	6	3	8	1	538	518	3	1	18	1	21	57	20	-15	13	2	247	238	8	-10	8	3	698	704	3
-3 9	9 0	349	331	3	б	8	1	148	148	8	-19	19	1	105	117	48	-12	13	2	29	14	29	-7	8	3	113	107	7
0 9	9 0	1004	969	2	-17	9	1	151	149	12	-16	19	1	0	27	1	-9	13	2	24	16	24	-4	8	3	1766	1771	3
-8 10) ()	916	901	2	-14	9	1	795	800	4	-13	19	1	65	61	64	-6	13	2	235	232	6	-1	8	3	29	39	29
-5 10) ()	210	210	5	-11	9	1	546	559	4	-10	19	1	293	272	9	-3	13	2	27	13	26	2	8	3	688	712	3
-2 10) ()	236	226	4	-8	9	1	927	939	2	-7	19	1	276	268	11	0	13	2	123	119	15	5	8	3	69	72	20
-10 11	L 0	44	81	34	-5	9	1	1118	1145	2	-4	19	1	537	518	9	3	13	2	604	596	6	8	8	3	60	57	39
-7 11	L 0	1207	1209	2	-2	9	1	93	77	7	-1	19	1	94	105	67	б	13	2	239	250	14	-15	9	3	677	674	4
-4 11	L 0	619	624	3	1	9	1	528	528	3	-15	20	1	58	30	57	-20	14	2	39	5	38	-12	9	3	1266	1297	3
-1 11	L 0	0	54	1	4	9	1	106	105	11	-12	20	1	83	103	38	-17	14	2	346	333	8	-9	9	3	802	809	3
-9 12	2 0	420	420	4	7	9	1	842	840	4	-9	20	1	86	77	35	-14	14	2	233	229	8	-б	9	3	623	638	3
-6 12	2 0	1496	1513	3	-19	10	1	179	186	11	-б	20	1	135	144	21	-11	14	2	398	391	б	-3	9	3	576	579	3
-3 12	2 0	125	128	8	-16	10	1	558	554	5	-14	21	1	46	7	45	- 8	14	2	534	532	4	0	9	3	558	565	3
0 12	2 0	540	539	5	-13	10	1	15	5	15	-11	21	1	395	368	13	-5	14	2	542	553	4	3	9	3	354	355	5
-11 13	30	222	215	7	-10	10	1	612	603	3	-8	21	1	121	93	36	-2	14	2	414	419	7	б	9	3	103	103	17
-8 13	30	1594	1599	3	-7	10	1	290	287	5	0	1	2	1671	1719	2	1	14	2	548	564	6	9	9	3	225	221	10
-5 13	30	347	346	5	-4	10	1	457	444	3	-2	2	2	567	474	1	4	14	2	136	114	20	-17	10	3	339	328	8
-2 13	3 0	640	670	4	-1	10	1	248	249	5	1	2	2	2351	2304	2	7	14	2	73	32	72	-14	10	3	136	137	10
-13 14	1 O	318	310	7	2	10	1	110	85	10	-4	3	2	1723	1710	6	-19	15	2	422	400	9	-11	10	3	410	423	4
-10 14	1 O	422	423	5	5	10	1	59	69	29	-1	3	2	1693	1662	3	-16	15	2	262	282	8	-8	10	3	767	765	3
-7 14	1 O	785	774	4	8	10	1	641	630	5	2	3	2	37	16	21	-13	15	2	328	321	7	-5	10	3	691	698	3
-4 14	1 O	142	144	9	-21	11	1	223	237	19	-6	4	2	305	281	3	-10	15	2	561	554	5	-2	10	3	388	409	4
-1 14	1 O	734	727	5	-18	11	1	28	38	28	-3	4	2	1297	1311	3	-7	15	2	498	499	5	1	10	3	694	692	3
-12 15	5 0	324	298	7	-15	11	1	522	515	5	0	4	2	774	784	1	-4	15	2	187	190	10	4	10	3	634	630	5
-9 15	5 0	0	19	1	-12	11	1	247	257	6	3	4	2	1070	1056	2	-1	15	2	211	186	10	7	10	3	315	311	9
-6 15	5 0	173	176	9	-9	11	1	965	938	3	-8	5	2	152	160	4	2	15	2	268	259	10	10	10	3	0	51	1
-3 15	5 0	674	671	5	-6	11	1	158	159	6	-5	5	2	1372	1379	2	5	15	2	322	290	11	-19	11	3	79	63	43
0 15	5 0	23	49	22	-3	11	1	877	900	3	-2	5	2	1124	1132	2	-18	16	2	375	372	8	-16	11	3	436	421	7
-14 16	5 0	128	120	15	0	11	1	602	605	4	1	5	2	757	702	2	-15	16	2	309	320	8	-13	11	3	74	83	23

-11	16	0	405	399	7	3	11	1	701	704	4	4	5	2	1143	1158	2	-12	16	2	439	441	7	-10 1	1 3	3 661	651	4
-8	16	0	220	218	8	6	11	1	506	512	7	-10	б	2	1181	1170	2	-9	16	2	634	648	5	-7 1	1 3	3 29	14	29
-5	16	0	164	167	12	9	11	1	23	4	23	-7	6	2	915	967	2	-6	16	2	622	613	5	-4 1	1 3	3 1349	1369	3
-2	16	0	250	221	8	-20	12	1	0	27	1	-4	6	2	299	304	3	-3	16	2	130	136	19	-1 1	1 3	3 125	131	10
-16	17	0	142	160	15	-17	12	1	195	177	11	-1	6	2	693	634	2	0	16	2	524	532	8	2 1	1 :	3 28	47	28
-13	17	0	172	184	11	-14	12	1	26	62	25	2	6	2	1018	1002	2	3	16	2	0	50	1	5 1	1 1	3 0	1	1
-10	17	0	101	102	20	-11	12	1		7	1	5	6	2	0_0_0	15	1	-20	17	2	97	104	41	8 1	1 1	3 260	250	11
-7	17	0	150	158	12	-8	12	1	387	408	5	-12	7	2	211	212	6	-17	17	2	469	475	7	-21 1	2 -	3 132	137	32
_4	17	0	97	116	23	-5	12	1	421	421	4	-9	7	2	196	179	4	-14	17	2	149	158	13	-18 1	2 1	3 146	137	16
_1	17	0	0	36	1	-2	12	1	104	92	10	-6	, 7	2	44	63	20	_11	17	2	281	288	20	_15 1	2 .	2 122	113	13
_15	1 Q	0	546	556	6	1	12	1	120	128	10	-3	7	2	67	80	10	- 8	17	2	252	220	7	_12 1	2 ·	2 2/1	313	± 5 7
_12	10	0	200	215	11	1	12	1	247	2/1	Q	0	7	2	613	641	2	-5	17	2	133	103	, 0	_0 1	2 ·	2 161	168	5
_12	1 Q	0	209	213	1	т 7	12	1	230	271	12	3	7	2	1077	1052	2	- 2	17	2	510	521	Q	-6 1	. ຊ ເ	2 155	400	1
-9	10 10	0	200	⊿⊥ /10		10	12	1	230 110	101	⊥∠ 21	5	7	⊿ 2	1077 072	1055	∠ ∕	- 2	17	2	216	242	10	-0 1	. 2 . 2	5 400 11/15	1160	4
-0	10 10	0	100	412 100	11	-19	12	1	112 50	124 02	۲ 21 51	11	0	⊿ 2	120	121	-1	10	10	2	160	170	12 22	-3 1	. 2 . 2	2 2 1 H D	247	4 7
- 3	10	0	192	TOZ	74	-10	10	1	22	03 C1	11	-14	0	2	1144	1140	2	-19	10	2	202	1/2	10	2 1	. <u> </u>	0 540 0 570	547	7
17	10	0	21	5	20	-13	13	1	45	107	44	-11	8	2	1144	1142	3	-10	10	2	285	∠8⊥ ⊏1		5 1	. 2	5 5/3	2/5	1
-1/	19	0	03	90	03	-10	13	1	129	152	10	-8	8	2	1407	1205	4	-13	10	2	52	120	51	0 1		s 0		1 21
-14	19	0	833	831	6	- /	13	1	155	153	8	-5	8	2	1427	1395	2	-10	10	2	440	438	1	9 I 20 1	. 2	3 203	208	3⊥ ₁
-11	19	0	50		55	-4	13	1	144	160	8	-2	8	2	275	306	3	- /	18	2	160	139	10	-20 I	. 5	3 U	9	1
-8	19	0	784	787	6	-1	13	T	209	229	8	Ţ	8	2	62	66	13	-4	18	2	661 150	648	8	-17 1	.3.	3 192	203	
-5	19	0	241	252	12	2	13	T	520	534	5	4	8	2	489	486	4	-1	18	2	150	153	19	-14 1	.3.	3 184	211	10
-2	19	0	297	279	11	5	13	1	0	5	1	.7	8	2	65	49	25	-18	19	2	301	321	13	-11 1	.3 .	3 0	36	1
-16	20	0	568	5.79	10	8	13	1	359	366	13	-16	9	2	536	545	5	-15	19	2	470	458	8	-8 1	.3.	3 178	192	8
-13	20	0	255	252	10	-21	14	1	115	94	31	-13	9	2	840	841	4	-12	19	2	183	186	15	-5 1	.3 .	3 94	107	16
-10	20	0	234	235	11	-18	14	1	341	352	8	-10	9	2	547	534	3	-9	19	2	49	55	48	-2 1	.3 .3	3 190	192	8
-7	20	0	698	682	8	-15	14	1	178	164	10	-7	9	2	411	409	3	-6	19	2	0	56	1	1 1	.3 3	3 131	125	13
-4	20	0	205	211	15	-12	14	1	728	744	5	-4	9	2	897	898	2	-3	19	2	184	163	16	4 1	.3 3	3 148	155	17
-12	21	0	195	176	15	-9	14	1	158	164	9	-1	9	2	429	413	3	-17	20	2	226	227	29	7 1	.3 3	3 90	61	35
-9	21	0	568	549	10	-6	14	1	638	657	4	2	9	2	1049	1058	3	-14	20	2	212	185	14	-19 1	.4 3	3 245	232	11
-11	22	0	0	46	1	-3	14	1	174	179	9	5	9	2	224	221	6	-11	20	2	300	296	11	-16 1	.4 3	3 211	205	10
-1	1	1	265	262	1	0	14	1	324	323	7	8	9	2	470	472	6	-8	20	2	387	377	10	-13 1	.4 3	3 158	155	11
-3	2	1	1338	1288	2	3	14	1	123	124	18	-18	10	2	145	146	13	-5	20	2	242	257	13	-10 1	.4 3	3 401	393	6
0	2	1	384	370	1	6	14	1	212	201	16	-15	10	2	671	685	4	-13	21	2	275	269	21	-7 1	.4 3	3 154	157	10
-5	3	1	935	968	2	-20	15	1	49	78	49	-12	10	2	307	291	6	-10	21	2	264	252	17	-4 1	.4 3	3 68	65	27
-2	3	1	1547	1507	3	-17	15	1	205	201	10	-9	10	2	1105	1124	2	0	0	3	826	837	5	-1 1	.4 3	3 168	186	12
1	3	1	3142	3196	3	-14	15	1	549	546	6	-6	10	2	979	972	2	1	1	3	1514	1499	3	2 1	.4 .3	3 209	209	12
-7	4	1	202	170	3	-11	15	1	474	475	6	-3	10	2	623	632	3	-1	2	3	1252	1234	2	5 1	.4 3	3 233	215	13
-4	4	1	715	745	2	-8	15	1	319	315	6	0	10	2	670	663	3	2	2	3	724	798	2	-18 1	5 3	3 391	364	8
-1	4	1	1865	1867	2	-5	15	1	902	904	4	3	10	2	505	503	4	-3	3	3	996	972	1	-15 1	5 3	3 267	279	8
2	4	1	973	956	2	-2	15	1	108	117	16	6	10	2	362	370	7	0	3	3	1169	1141	2	-12 1	.5 .3	3 737	748	6
-9	5	1	557	580	2	1	15	1	265	256	9	9	10	2	87	74	33	3	3	3	478	444	2	-9 1	.5 .3	3 222	218	8
-6	5	1	1991	1917	3	4	15	1	118	111	24	-20	11	2	229	222	13	-5	4	3	791	725	2	-6 1	5 3	3 703	704	5
-3	5	1	1995	2041	4	-19	16	1	237	206	11	-17	11	2	151	145	12	-2	4	3	867	919	2	-3 1	.5 .3	3 157	154	13
0	5	1	718	690	2	-16	16	1	471	473	7	-14	11	2	158	153	10	1	4	3	719	748	2	0 1	5 3	3 428	434	9
3	5	1	266	296	3	-13	16	1	346	345	8	-11	11	2	997	1010	4	4	4	3	1445	1450	2	3 1	5 3	3 271	265	11
-11	6	1	95	97	10	-10	16	1	526	528	5	-8	11	2	861	856	3	-7	5	3	511	487	3	-17 1	6 3	3 338	337	9
-8	6	1	51	47	13	-7	16	1	310	314	7	-5	11	2	513	503	3	-4	5	3	227	272	4	-14 1	.6	3 106	111	21
-	-	-			. –		-	-				2	_	-			-	-	-	-		. –	-		-			

-5	б	1	69	39	7	-4	16	1	151	176	13	-2 11	2	2 596	587	3	-1	5	3	637	608	2	-11	16	3	206	208	9
-2	6	1	274	263	2	-1	16	1	41	4	40	1 11	2	2 536	536	4	2	5	3	506	491	2	-8	16	3	71	50	28
1	6	1	489	470	2	2	16	1	527	502	8	4 11	2	2 711	687	5	5	5	3	999	1002	2	-5	16	3	403	402	7
4	6	1	1396	1388	2	-18	17	1	259	249	9	7 11	2	2 219	229	12	-9	6	3	70	59	11	-2	16	3	107	120	25
-13	7	1	11	3	11	-15	17	1	275	272	8	10 11	2	2 252	239	18	-6	6	3	284	283	4	1 1	16	3	765	727	8
-19	17	3	199	224	17	-14	12	4	1017	1007	4	-11 8	5	5 1095	1086	3	-1	2	6	244	218	4	-14	16	6	523	517	9
-16	17	3	577	571	7	-11	12	4	62	74	26	-8 8	5	5 576	584	3	2	2	6	1146	1142	3	-11	16	6	598	599	6
-13	17	3	187	180	12	-8	12	4	792	797	4	-5 8	5	5 1068	1070	3	-3	3	6	1228	1228	2	-8	16	6	383	392	8
-10	17	3	299	298	8	-5	12	4	457	464	5	-2 8	ŗ	5 454	471	4	0	3	6	324	333	4	-5	16	6	232	241	10
-7	17	3	441	435	7	-2	12	4	497	493	5	1 8	ŗ	5 661	670	3	3	3	6	652	654	3	-2	16	6	82	107	42
-4	17	3	267	268	11	1	12	4	415	409	6	4 8	ŗ	5 132	146	13	-5	4	6	481	488	3	-13	17	6	141	125	18
-1	17	3	261	273	12	4	12	4	0	6	1	78	ŗ	5 41	25	41	-2	4	6	1109	1104	5	-10	17	6	385	372	8
-18	18	3	176	172	19	7	12	4	225	231	13	-16 9	ŗ	5 437	438	7	1	4	6	408	386	4	-7	17	6	168	167	13
-15	18	3	133	141	19	-19	13	4	48	55	48	-13 9	ŗ	5 448	455	6	4	4	6	940	939	3	-4	17	6	295	312	10
-12	18	3	57	16	57	-16	13	4	161	184	13	-10 9	ŗ	5 208	201	6	-7	5	6	175	167	7	-12	18	6	18	44	18
_9	18	3	105	99	20	-13	13	4	765	775		-7 9	c.	5 58	83	2.4	- 4	5	6	578	585	3	_9	18	6	313	321	- 0
-6	18	3	107	109	26	-10	13	4	,00	3	1	-4 9	5	5 879	899	3	-1	5	6	313	322	4	-6	18	6	151	170	17
- 3	18	3	422	405	10	-7	13	4	1460	1462	4	-1 9	ŗ	5 153	155	7	2	5	6	249	240	5	-11	19	6	279	271	13
-17	19	3	59	85	58	- 4	13	4	90	81	18	2 9	5	5 1050	1043	, 3	5	5	6	741	732	4	-8	19	6	286	276	23
-14	19	2	122	139	19	-1	13	4	1063	1059	5	5 9		5 101	99	17	-9	6	6	401	202	5	-1	1	7	128	124	7
-11	19	2	168	159	14	2	13	4	146	160	14	8 9		5 168	155	12	-6	6	6	75	83	15	-3	2	7	725	742	, 2
-8	19	2	141	122	20	5	13	4	343	357	12	-18 10		5 54	46	53	-3	6	6	1016	1033	3	0	2	7	95	106	11
-5	19	2	452	439	10	_18	14	4	358	325	10	-15 10	5	5 588	573	55	0	6	6	553	562	3	-5	2	, 7	782	803	- 2
-2	19	2	238	241	29	_15	14	4	779	767	10	-12 10	5	5 453	466	6	3	6	6	623	627	4	-2	2	7	600	616	2
-16	20	3	230 69	19	69	-12	14	4	400	425	8	-9 10		5 429	434	5	5	6	6	383	376	6	1	2	, 7	1219	1233	2
_13	20	2	10	1	19	_0	11	1	520	520	5	-6 10	5	5 961	883	7	_11	7	6	668	671	1		1	, 7	30	12	30
_10	20	2	190	179	11	-6	11	7	212	307	5 7	-0 10		5 822	002 921		-11	7	6	202	311	-	- / _ /	т Л	7	100	106	11
-10	20	2	67	20	67	-3	11	7	764	762	5	-3 10		5 3/5	3/18	т 6	-0	7	6	115	115	4	_1	т Л	7	606	£10	2
_1	20	2	116	1/0	72	0	11	7	505	607	5	3 10		5 5 6	540	6	- 2	7	6	338 413	313	т Б	-1	т Л	7	610	633	2
_12	20	2	228	235	73	3	11	7	110	152	23	5 10 6 10		5 127	122	17	-2	7	6	55	242	24	_0	т Б	7	251	252	7
-12 0	21 21	2	220	233	27	5	11	7	226	240	15	0 10	-	5 127	123	1	1	7	6	126	122	10	- 5	5	7	2J1 570	2J2 501	, л
-9	21 1	7	561	622	1 2	20	15	4	120	162	17	9 IU 20 II	2 C	5 0		1	7	7	6	160	147	10	-0	5	7	100/	1202	2
_ 2 _ T	2	7	1009	1000	2	-20	15	7	130	103		-20 11		5 250	252	10	_12	2 2	6	562	567	12	0	5	7	107	105	5
0	2	7	2/3	256	1	-1/	15	7	236	253	10	-1/ 11		5 163	161	15	-10	Q	6	183	172	5	3	5	7	126	110	5
-5	2	7	521	197	2	_11	15	7	230 13	40	13	_11 11		2 300	300	13	-10	Q	6	202	22	22	_11	5	7	420 83	103	21
- 2	2	7	746	722	2 /	-11	15	7	470	470	т <u>э</u> 6	-11 11		5 361	351	6	_ / _ /	Q	6	440	122	22	-11	6	7	212	212	2 I Q
- <u>2</u> 1	2	7	650	625	т 2	-0	15	7	1,0	- 7 U	1	-0 II 5 11	-	5 30 1 5 373	200	6		0	6	504	517	7	-0	6	7	212	21J 02	22
1 7		4	1050	1020	2	-5	15	4	0	5 020	L E	-5 II 2 11	:	5 5/5 5 670	500	0	-1	0	6	204 410	120	-4 E	-5	6	7		92 E01	23 1
- /	4	4	T722	1222 E 21	2	-2	15	4	100	100	כ 1 יד	-Z II 1 11	:	5 0/2 5 0/2	094	4 7		0	6	410	430	5	-2	6	7	160	204 14E	4
-4	4	4	242	231 270	2 2	1	15	4	109 E10	100 E01	⊥/ 11		:	5 245 5 410	240 401	,	с 0	0	6	000 E 4 2	609 E44	5	1	6	7	10U 611	140 611	0
-1	4	4	545	570	2	10	10	4	010	501 110	1	4 II 7 11	:	- 200	421 205	10	0 1 F	0	6	545	544	0	10	07	7	20	40	4 2 F
2	4	4	10	022	10	-19	10	4	200	100	10	/ II 10 12	:	5 389 - 100	395	10	-15	9	с С	5/4 107	104	11	-13	7	7	30	4Z	35
-9	5	4	1005	45	19	-10	10	4	200	182		-19 12	:	5 189 - 140	170	19	-12	9	с С	18/	184	11	-10	7	7	205	189	10
- b 2	с Г	4 1	1007	1043	2	-13	10 10	4	40	40	45 10	-10 12		5 148 = 200	1/8 217	44	-9	9	6	338	5⊥/ 1002	/ /	- /	/ 7	/ 7	18	∠4 100	10 10
- 3	с Г	4 1	90/ 160/	05/ 1652		-10	10 10	4	TRR	7.70 T.70	ΤŪ	-13 12 10 10		5 3∠0 = 401	31/ 400	9	- 6	9	6	T003	1003 221	4	-4	/ 7	/ 7	/0	T00	τQ
U	р Г	4	1084	1053	5	- /	10 10	4	5	∠4 20	ל דר	-10 12	5	o 4∠⊥ - 1.2⊡	422	10	- 3	9	ь С	∠35 200	∠3⊥ 202	/	-T	/	/	613 62	020	4
3 11	5	4	464	4/1 02	3	-4	10	4	31	39	51	-/ 12		5 <u>10</u> 57	1056	⊥∠	U	9	6	309	503	5	2	/	/	0⊿ 012	00	26
$-\perp\perp$	6	4	92	83	$\perp \perp$	-1	16	4	63	105	63	-4 12	5	5 IU53	T020	4	3	9	6	494	508	6	5	/	/	213	212	9

-8	6	4	941	958	2	2	16	4	0	62	1	-1 12	5	0	12	1	69	6	222	237	9	-15 8	7	183	180	13
-5	б	4	1187	1177	2	-18	17	4	142	177	33	2 12	5	540	535	6	99	6	233	234	15	-12 8	7	451	443	7
-2	6	4	1048	1020	2	-15	17	4	41	31	40	5 12	5	107	115	26	-17 10	б	304	305	11	-9 8	7	108	100	15
1	6	4	827	834	2	-12	17	4	239	242	10	8 12	5	120	87	60	-14 10	6	286	292	10	-6 8	7	364	367	6
4	6	4	500	498	4	-9	17	4	75	63	29	-18 13	5	297	279	11	-11 10	6	258	258	8	-3 8	7	103	95	13
-13	7	4	867	886	4	-6	17	4	63	50	45	-15 13	5	48	19	47	-8 10	6	449	458	5	0 8	7	120	120	11
-10	7	4	245	235	5	- 3	17	4	58	58	58	-12 13	5	103	87	20	-5 10	6	610	616	5	38	7	575	570	
-7	7	4	1479	1477	3	0	17	4	135	111	26	-9 13	5	112	106	15	-2.10	6	741	733	4	68	7	35	2	35
-4	7	4	199	184	4	-17	18	4	0	20	1	-6 13	5	193	194	- 9	1 10	6	608	603	5	-17 9	7	0	21	1
-1	7	4	1600	1620	3	-14	18	4	453	429	9	-3 13	5	377	381	7	4 10	6	220	223	11	-14 9	7	517	508	7
2	7	4	83	85	12	-11	18	4	86	81	30	0 13	5	219	227	10	7 10	6	386	397		-11 9	7	267	260	. 7
5	7	4	1159	1161	4	-8	18	4	128	122	16	3 13	5	256	243	11	-19 11	6	310	317	16	-8 9	7	379	384	6
-15	8	4	14	44	13	-5	18	4	315	305	10	6 13	5	135	176	26	-16 11	6	337	335	10	-5 9	7	851	855	4
-12	8	4	38	4	38	-2	18	4	57	46	56	-17 14	5	414	408	11	-13 11	6	68	58	57	-2.9	7	203	199	7
-9	8	4	564	571	3	-16	19	4	224	218	20	-14 14	5	94	96	24	-10 11	6	681	693	5	1 9	7	722	712	5
-6	8	4	227	233	5	-13	19	4	473	471	8	-11 14	5	536	535	6	-7 11	6	50	76	50	4 9	7	16	16	16
-3	8	4	1316	1305	2	-10	19	4	205	209	11	-8 14	5	0	4	1	-4 11	6	1018	1019	4	7 9	7	671	652	8
0	8	4	863	865	3	-7	19	4	209	209	14	-5 14	5	183	185	10	-1 11	6	562	565	5	-16 10	7	425	425	10
з З	8	4	466	492	4	- 4	19	4	286	277	17	-2 14	5	80	65	28	2 11	6	380	383	9	-13 10	7	43	52	42
6	8	4	1243	1249	4	-12	20	4	0	35	1	1 14	5	111	91	24	5 11	6	415	410	ģ	-10 10	7	412	208	8
-17	9	4	128	123	15	-9	20	4	571	561	11	4 14	5	50	74	50	8 11	6	216	220	17	-7 10	, 7	220	361	7
-14	9	4	40	32	29	-11	21	4	131	171	51	-16 15	5	104	94	29	-18 12	6	44	32	44	-4 10	, 7	134	145	12
-11	9	4	156	157	7	0	1	5	68	83	10	-13 15	5	209	211	11	-15 12	6	109	109	25	-1 10	, 7	62	81	22
-8	9	4	52	52	22	-2	2	5	400	388	3	-10 15	5	209	294	7	-12 12	6	0	4	1	2 10	, 7	202	191	14
-5	9	4	361	364	4	1	2	5	1031	1028	2	-7 15	5	457	459	6	-9 12	6	149	161	12	5 10	, 7	87	79	29
-2	9	4	584	584	3	-4	2	5	583	595	2	-4 15	5	163	162	12	-6 12	6	369	374	- 2	8 10	7	490	483	11
1	g	- -	791	806	3	_1	2	5	491	517	2	_1 15	5	103	102	1	-3 12	6	583	572	5	-18 11	, 7	45	59	44
1 1	g	- -	360	343	5	2	2	5	402	422	3	2 15	5	322	301	12	0 12	6	303	20	30	_15 11	, 7	207	374	10
- 7	g	- -	166	165	11	-6	4	5	585	564	2	_18 16	5	111	123	91	3 1 2	6	624	616	50	-12 11	, 7	167	176	15
-19 -	10	4	355	371	10	-3	4	5	1064	1060	2	-15 16	5	551	526	9	6 1 2	6	150	157	17	_9 11	, 7	495	507	13
_16	10	1	222	10	22	0	1	5	967	965	2	_12 16	5	240	220	10	_17 13	6	210	300	12	-6 11	7	210	212	á
_13	10	- -	564	560	22 4	3	4	5	382	384	2 4	_9 16	5	382	374	20	_14 13	6	425	400	12	_3 11	, 7	427	436	5
_10 1	10	- -	407	428	5	-8	5	5	656	648	3	-6 16	5	581	578	6	_11 13	6	432	434	12	0 11	, 7	350	346	8
-7 1	10	4	617	624	2	-5	5	5	322	318	2	-3 16	5	41	54	41	-8 13	6	612	614	5	3 11	, 7	413	412	9
_4 -	10	- -	69	77	21	-2	5	5	340	347	4	0 16	5	581	566	10	-5 13	6	466	454	5	6 11	, 7	499	486	g
-1 1	10	4	64	43	21	1	5	5	235	244	5	-14 17	5	0	0	1	-2 13	6	157	159	12	-17 12	, 7	0	16	1
2 -	10	4	240	255	7	4	5	5	1192	1100	3	_11 17	5	209	196	10	1 13	6	94	22	29	_14 12	, 7	49	80	4.8
5	10	- -	180	184	11	_10	6	5	43	17	43	-8 17	5	202	1)0 60	25	4 13	6	94	73	20	_11 12	, 7	0	17	1
2 - 8 -	10	- -	128	125	21	-7	6	5	198	197	-1-5 5	-5 17	5	146	148	16	-16 14	6	98	111	22	-8 12	, 7	276	267	2 Q
_18 *	11	- -	120	123	21	_4	6	5	191	218	5	-2 17	5	97	55	21	-13 14	6	29	43	29	-5 12	, 7	342	346	8
_15 1	11	1	217	223	10	_1	6	5	1/0	150	5	_12 10	5	90	33 72	27	_10 14	6	27	227	20	_2 12	7	942	96	20
-12 -	L L 1 1	т Л	668	665	10 5	-1	6	5	140	1/3	7	-10 18	5	266	255	<u>د</u> م	-10 14	6	217	201	9	1 1 2	7	288	270	10
	L L 1 1	т Л	724	755	1	5	6	5	1/9	167	, 0	-10 10	5	122	117	10	-/ 14	6	562	569	5	1 12	7	200	219	12
-9-	⊥⊥ 11	⊐ ⊿	72 1 111	05	12	_10	0 7	5	500	107 105	ש ה	-/ 10 _/ 10	<u>כ</u>	310 770	3E0	10 10	-± ±4 _1 1/	6	202	202	10	+ ±4	' 7	221 222	⊿⊥/ 21Ω	17
_0	⊥⊥ 11	⊐ ⊿	330 TTT	2/17	ک ד ک	 0	י ר	5	000	750 75	-5 1	-4 10 -15 10	<u>כ</u>	111		±0 67	-1 14 0 1/	6	299 161	490 160	17	-10 13 -12 12	' 7	222	210 75	エ / フ に
- 5 -	⊥⊥ 11	⊐ ⊿	160	1/11	Q Q	-9 _6	י ר	5	226	20	т Т	-10 10	<u>כ</u>	۲ ۲ ۲ ۲ ۲ ۲	101	27	∠ ⊥4 _15 15	6	270	707 707	⊥ / 1∩	-10 12	' 7	2/1	226	10
0 _ > ^	⊥⊥ 11	± ∕	т00 Т00	10	0	-0	' 7	5	200	244	C N	-12 19 0 10	2 F	20 120	111	4/ 10	-10 15 10 1F	6	5/2	574	10 7	-IU IS	, 7	2≒⊥ 100	107	10
<u>د</u>	ьт	4	U	42	T	- 3	/	С	5/5	514	4	-9 19	S	T 2 0	114	ΤO	-12 15	0	549	540	/	- / I3	/			тэ

6 1	1	4	169	169	15	0	7	5	453	460	4	-6	19	5	230	231	16	-9	15 6	154	151	13	-4	13 7	64	75	40
9 1	1	4	92	122	36	3	.7	5	50	56	29	-11	20	5	89	38	66	-6	15 6	360	366	8	-1	13 7	41	2	40
-20 1	2	4	483	480	11	6	7	5	52	40	51		0	6	2018	2035	11	_3	15 6	179	158	13	2	13 7	497	466	a
_17 1	2	4	140	135	16	_14	, Q	5	214	197	a	1	1	6	66	84	12	0	15 6	117	149	24	5	13 7	58	11	57
1 5 1	. <u>2</u> Л	7	0.0	133	22	16	0	0	214	100	11	1	1	0	206	200	12	0	15 0	11/	112	40	5	1/ 10	110	126	10
10 1	. -1 ./	7	50	11	33	-10	9	0	101	114	14 21	+ 7		9	390	299	21	- 9	15 9	405	110	10	-0	1 1 1 1	110	130	25
-12 1	. -1 ./	7	509	20/	9	-13	9	0	101	120	31 1E	- /	5	9	200	200	21	-0	1 10	100	106	10	0	1 11 0 11	162	164	11
-91	.4± 1	7	200	202	40	-10	9	0	204	202	15	-4	2 E	9	260	390 375	, ,	-1	2 10	103	T 0 0	10	-2		124	104	14
-0 I 2 1	.4± 1	7	590	397	25	- /	9	0	294	302	16	-1	2 E	9	200	2/5	ע ד	- 3	2 10	207	209	/	1		102	441 200	10
-5 1	.4± 1	7	267	40 255	33 11	-4	9	0	105	206	40		2 E	9	220	320		U F	2 10	205	230	0	-4	$3 \perp 1$	193	200	11
0 I 2 1	.4	7	207	200	20	-1	9	0	195	200	0	5	5	9	140	110	10	-5	5 IU 2 10	202	202	07	-1	$3 \perp 1$	204	204	10
5 L	.4 _	7	143	210	29	2	9	8	201	201	9	-9	c c	9	142	119	13	-2	3 IU 2 10	4/3	4/Z	/	2	3 II 4 11	301 107	299	10
-14 1	. D	7	323 275	312	11	5	9	8	5/0	549 201	0	-0	c c	9	78	2 . 1	24	1 7	3 IU	338	345	8	-0	4 11 4 11	107 271	254	22
	. D	7	3/5	300	9	8 1 F	10	8	210	201	∠⊥ 1 2	- 3	c c	9	344	354	10	- /	4 10 4 10	100 205	110	20	- 3	4 11 4 11	3/1	354	10
-8 I	. D	7	239	243	9	-15	10	8	233 160	209	10	0	c c	9	110	101	10	-4	4 10 4 10	295	293	8	0	4 11 4 11	290	284	10
-5 1	5	/	04/	032	20	-12	10	8	108	117	10	3	o C	9	419	401	20	-1	4 10 4 10	0/0	0/8	0	3	4 II F 11	318	319	TO
-21	.5	/	84	67	38	-9	10	8	85		27	6	6	9	83	68	30	2	4 10	399	403	8	-8	5 II 5 11	3/0	3/9	9
	.5	/	62	85	61 11	-6	10	8	210	221	10	-11	/	9	637	610	6	-9	5 IU	393	396	8	-5	5 II 5 11	303	314	10
-13 1	.6	/	31/	302	ΤŢ	- 3	10	8	125	120	14	-8	/	9	40	20	39	-6	5 IU	529	520	/	-2	5 II 5 11	136	143	
-10 1	.6	/	511	503	/	0	10	8	134	144	10	-5	/	9	27	/2	26	- 3	5 10	536	544	/	1	5 II 5 11	/4	6Z	/4
-7 1	.6	7	265	258	9	3	10	8	90	88	39	-2	.7	9	225	229	8	0	5 10	49	38	49	4	5 11	591	599	8
-4 1	.6	7	125	122	20	6	10	8	51	35	50	Ţ	.7	9	0	23	1	3	5 10	666	665	.7	-10	6 II	217	203	14
-1 1	.6	7	140	124	30	-14	11	8	265	266	12	4	.7	9	198	186	10	-11	6 10	283	284	9	- 7	6 II	164	154	15
-12 1	.7	7	56	43	56	-11	11	8	82	74	30	.7	.7	9		105	23	-8	6 10	198	160	10	-4	6 II	61	48	60
-91	. /	/	482	465	8	-8	11	8	301	296	8	-13	8	9	149	130 200	10	-5	6 IU	133	120	16	-1	6 II	66	61	66
-6 1	. /	/	297	268	9	-5	11	8	162	144	12	-10	8	9	3/6	3/6	8	-2	6 IU	20	59	20	2	6 II	261	254	12
-31	.7	7	316	314	22	-2	11	8	76	58	27	- 7	8	9	88	62	21	Ţ	6 10	90	14	35	5	6 II	101	68	38
-8 1	.8	7	86	63	40	Ţ	11	8	126	119	24	-4	8	9	603	588	5	4	6 10	517	508	.7	-12	7 11	316	337	25
-5 I	.8	.7	0	53	Ţ	4		8	236	209	15	-1	8	9	186	176	13	-13	7 10	198	201	15	-9	7 11	93	117	29
0	T	8	1754	1775	4	-13	12	8	568	566	9	2	8	9	376	371	9	-10	7 10	349	343	8	-6	7 11	65	49	65
-2	2	8	650	662	4	-10	12	8	118	121	20	5	8	9	167	155	16	- 7	7 10	388	394	8	-3	7 11	259	256	10
1	2	8	-73	.79	20	- '/	12	8	1031	1035	5	-15	9	9	450	428	15	-4	7 10	345	352	9	0	7 11	117	116	28
-4	3	8	.73	.79	21	-4	12	8	261	257	8	-12	9	9	365	349	10	-1	7 10	351	330	10	3	7 11	65	27	64
-1	3	8	247	251	6	-1	12	8	407	412	8	-9	9	9	346	330	9	2	7 10	439	429	9	-11	8 11	661	652	17
2	3	8	177	176	8	2	12	8	100	85	29	-6	9	9	556	555	6	5	7 10	334	337	10	-8	8 11	136	137	21
-6	4	8	73	52	23	-15	13	8	454	442	26	-3	9	9	80	18	28	-12	8 10	272	279	10	-5	8 11	614	610	.7
-3	4	8	389	399	6	-12	13	8	323	341	12	0	9	9	331	307	9	-9	8 10	94	85	23	-2	8 11	101	100	30
0	4	8	143	139	8	-9	13	8	631	614	7	3	9	9	227	213	15	-6	8 10	235	246	9	1	8 11	286	266	17
3	4	8	192	194	9	-6	13	8	433	422	7	6	9	9	158	172	27	- 3	8 10	0	24	1	-10	9 11	24	24	23
-8	5	8	321	300	7	-3	13	8	87	94	25	-14	10	9	162	132	18	0	8 10	0	45	1	-7	9 11	0	4	1
-5	5	8	574	567	5	0	13	8	474	471	9	-11	10	9	46	64	46	3	8 10	196	203	13	-4	9 11	466	467	10
-2	5	8	357	371	5	-14	14	8	328	343	24	-8	10	9	439	444	8	-11	9 10	348	358	9	-1	9 11	0	30	1
1	5	8	290	297	6	-11	14	8	69	47	51	-5	10	9	361	350	9	-8	9 10	466	450	8	-6	10 11	325	313	15
4	5	8	175	175	10	-8	14	8	683	681	6	-2	10	9	173	147	15	-5	9 10	445	441	9	-3	10 11	395	384	22
-10	6	8	244	238	8	-5	14	8	123	102	17	1	10	9	429	418	9	-2	9 10	164	157	20	0	0 12	543	537	17
-7	6	8	1043	1045	4	-2	14	8	476	466	9	4	10	9	353	373	12	1	9 10	537	535	13	1	1 12	247	248	12
-4	6	8	96	90	16	1	14	8	105	106	44	-13	11	9	23	55	23	4	9 10	0	39	1	-1	2 12	108	71	27
-1	6	8	422	410	5	-13	15	8	0	84	1	-10	11	9	408	399	9	-13	10 10	105	135	104	2	2 12	44	23	44

2	6	8	246	247	7	-10	15	8	82	58	36	-7 11	9	90	70	28	-10 10 10	592	586	7	-3	3 12	96	97	27
5	6	8	617	617	5	-7	15	8	108	110	21	-4 11	9	341	323	9	-7 10 10	478	476	8	0	3 12	0	16	1
-12	7	8	207	198	11	-4	15	8	195	200	12	-1 11	9	107	95	25	-4 10 10	362	361	12	3	3 12	206	204	17
-9	7	8	328	335	7	-1	15	8	321	327	15	2 11	9	98	90	38	-1 10 10	307	310	13	-5	4 12	287	297	10
-б	7	8	644	657	5	-9	16	8	251	247	11	-12 12	9	145	143	20	2 10 10	364	363	16	-2	4 12	185	178	16
-3	7	8	198	191	7	-б	16	8	51	35	50	-9 12	9	270	273	10	-12 11 10	0	41	1	1	4 12	248	255	13
0	7	8	927	942	4	-8	17	8	57	31	56	-6 12	9	163	161	15	-9 11 10	654	642	7	-7	5 12	585	579	15
3	7	8	194	195	9	0	0	9	319	329	13	-3 12	9	348	351	9	-6 11 10	189	193	15	-4	5 12	146	153	17
6	7	8	915	903	6	1	1	9	367	369	6	0 12	9	67	36	67	-3 11 10	465	466	11	-1	5 12	311	320	11
-14	8	8	25	72	24	-1	2	9	238	240	7	-11 13	9	169	186	17	0 11 10	109	100	69	-6	6 12	602	606	10
-11	8	8	107	104	18	2	2	9	795	814	5	-8 13	9	76	68	40	-11 12 10	232	220	19	-3	6 12	39	24	38
-8	8	8	525	550	6	-3	3	9	133	122	14	-5 13	9	107	98	23	-8 12 10	135	118	22	0	6 12	716	724	15
-5	8	8	0	29	1	0	3	9	206	190	9	-2 13	9	61	91	60	-5 12 10	178	192	14	-8	7 12	536	532	21
-2	8	8	795	799	5	3	3	9	342	366	7	-10 14	9	166	165	16	-2 12 10	104	96	85	-5	7 12	149	142	27
1	8	8	559	574	5	-5	4	9	174	194	10	-7 14	9	63	42	63	-10 13 10	143	204	33	-2	7 12	506	528	18
4	8	8	882	865	5	-2	4	9	724	734	5	-4 14	9	240	230	13	-7 13 10	520	503	11	1	7 12	168	205	40
7	8	8	183	184	14	1	4	9	556	561	6	-1 14	9	75	38	74	-4 13 10	232	260	27					