Bobmeyerite, a new mineral from Tiger, Arizona, USA, structurally related to cerchiaraite and ashburtonite

A. R. KAMPF^{1,*}, J. J. PLUTH², Y.-S. CHEN³, A. C. ROBERTS⁴ AND R. M. HOUSLEY⁵

- ¹ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
- ² Department of Geophysical Sciences, Center for Advanced Radiation Sources, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637-1434, USA
- ³ Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637-1434, USA
- ⁴ Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada
- ⁵ Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA

[Received 2 October 2012; Accepted 6 January 2013; Associate Editor: Stuart Mills]

ABSTRACT

Bobmeyerite, $Pb_4(Al_3Cu)(Si_4O_{12})(S_{0.5}Si_{0.5}O_4)(OH)_7Cl(H_2O)_3$, is a new mineral from the Mammoth-Saint Anthony mine, Tiger, Pinal County, Arizona, USA. It occurs in an oxidation zone assemblage attributed to progressive alteration and crystallization in a closed system. Other minerals in this assemblage include atacamite, caledonite, cerussite, connellite, diaboleite, fluorite, georgerobinsonite, hematite, leadhillite, matlockite, murdochite, phosgenite, pinalite, quartz, wulfenite and yedlinite. Bobmeyerite occurs as colourless to white or cream-coloured needles, up to 300 µm in length, that taper to sharp points. The streak is white and the lustre is adamantine, dull or silky. Bobmeyerite is not fluorescent. The hardness could not be determined, the tenacity is brittle and no cleavage was observed. The calculated density is 4.381 g cm⁻³. Bobmeyerite is biaxial (-) with $\alpha \approx \beta$ = 1.759(2), $\gamma = 1.756(2)$ (white light), it is not pleochroic; the orientation is $X = \mathbf{c}$; Y or $Z = \mathbf{a}$ or \mathbf{b} . Electron-microprobe analyses provided the empirical formula $Pb_{3,80}Ca_{0,04}Al_{3,04}Cu_{0,96}^{2+}Cr_{0,13}^{3+}$ Si4.40S0.58O24.43Cl1.05F0.52H11.83. Bobmeyerite is orthorhombic (pseudotetragonal), Pnnm with unitcell parameters a = 13.969(9), b = 14.243(10), c = 5.893(4) Å, V = 1172.5(1.4) Å³ and Z = 2. The nine strongest lines in the X-ray powder diffraction pattern, listed as $[d_{obs}(\dot{A})(I)(hkl)]$, are as follows: 10.051(35)(110); 5.474(54)(011,101); 5.011(35)(220); 4.333(43)(121,211); 3.545(34)(040,400);3.278(77)(330,231,321); 2.9656(88)(141,002,411); 2.5485(93)(051,222,501); 1.873(39)(multiple). Bobmeyerite has the same structural framework as cerchiaraite and ashburtonite. In the structure, which refined to $R_1 = 0.079$ for 1057 reflections with $F > 4\sigma F$, SiO₄ tetrahedra share corners to form four-membered Si₄O₁₂ rings centred on the c axis. The rings are linked by chains of edge-sharing AlO₆ octahedra running parallel to [001]. The framework thereby created contains large channels, running parallel to [001]. The Cl site is centred on the c axis alternating along [001] with the Si₄O₁₂ rings. Two non-equivalent Pb atoms are positioned around the periphery of the channels. Both are elevencoordinate, bonding to the Cl atom on the c axis, to eight O atoms in the framework and to two O (H_2O) sites in the channel. The Pb atoms are off-centre in these coordinations, as is typical of Pb^{2+} with stereo-active lone-electron pairs. A (S,Si,Cr)O₄ group is presumed to be disordered in the channel. The name honours Robert (Bob) Owen Meyer, one of the discoverers of the new mineral.

* E-mail: akampf@nhm.org DOI: 10.1180/minmag.2013.077.1.08 **Keywords:** bobmeyerite, cerchiaraite, ashburtonite, new mineral, crystal structure, IR spectroscopy, electron microprobe analysis, cyclosilicate, Pb^{2+} 6s² lone-electron pair, Mammoth–Saint Anthony mine, Tiger, Arizona.

Introduction

BOBMEYERITE is the tenth new mineral species to be described from the famous Mammoth-Saint Anthony mine at Tiger, Arizona, USA. This mine, which was worked intermittently for baryte, fluorite and ores of gold, lead, molybdenum, silver, tungsten, vanadium and zinc from 1893 to 1953, has yielded a remarkable suite of supergene minerals (Bideaux, 1980). The new mineral, described herein, is almost certainly identical to the phase reported by Bideaux (1980) as an unknown lead silicate occurring in tapered colourless transparent needles, and to the phase listed by Smith and Nickel (2007) as invalid unnamed mineral UM1980-//-SiO:Pb. The other minerals first described from the mine are bideauxite, creasevite, georgerobinsonite, macquartite, mammothite, murdochite, pinalite, wherryite and yedlinite.

The name honours Robert (Bob) Owen Meyer (b. 1956) of Maple Valley, Washington, USA. Mr Mever acquired his first specimen from the Mammoth-Saint Anthony mine in 1978 and has subsequently spent thousands of hours studying specimens from the deposit. He has submitted many unusual samples for identification, and in 2008 discovered the first North American occurrence of the rare mineral munakataite on a specimen from the mine. Interestingly, Mr Meyer noticed the new mineral, described herein, on the first specimen he acquired in 1978. It was submitted for identification in the late 1980s. and although it was recognized as a probable new species at the time, the difficulty of working with the thin needles prevented its characterization. More recently, Bob and fellow collectors Joe Ruiz and Brent Thorne reawakened interest in the mineral and submitted new specimens for analysis. These have finally allowed it to be characterized as a new species.

The new mineral and name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA 2012-019). As no single specimen provided all of the data for the description, there is no specimen that qualifies as the holotype. However, three cotype specimens are housed in the collections of Mineral Sciences Department, Natural History Museum of Los Angeles County (900 Exposition Boulevard, Los Angeles, California 90007, USA), catalogue numbers 63824, 63825 and 63826.

Occurrence

Bobmeyerite occurs at the Mammoth–Saint Anthony mine, Tiger, Pinal County, Arizona, USA (32°42′23″N, 110°40′59″W). The most complete description of the mineralogy of this deposit is provided by Bideaux (1980). The new mineral occurs in an oxidation zone assemblage that includes atacamite, caledonite, cerussite, connellite, diaboleite, fluorite, georgerobinsonite, hematite, leadhillite, matlockite, murdochite, phosgenite, pinalite, quartz, wulfenite and yedlinite. The mode of occurrence is consistent with the "anomalous sequence" of mineralization discussed by Bideaux (1980) and attributed to progressive alteration and crystallization in a closed system.

Physical and optical properties

Bobmeyerite occurs as colourless to white or cream-coloured needles which are elongated on [001] and taper to sharp points. No forms could be measured optically, but SEM images suggest relatively equal development of $\{100\}$ and $\{010\}$. The needles occur in jumbled aggregates and Bideaux (1980) noted that some of them "wander across cavities and look astonishingly like woolly caterpillars" (Fig. 1). Crystals are up to about 300 µm in length and generally less than 2 µm in diameter (Fig. 2). No twinning was observed.

The crystals have a white streak, are transparent to translucent and have a vitreous lustre. They do not fluoresce in either long-wave or short-wave ultraviolet light. The hardness and fracture could not be determined because of the very small thickness of the needles. The tenacity is brittle and no cleavage was observed. The density could not be measured; it is greater than those of available high-density liquids and there is insufficient material for a physical determination. The calculated density is 4.381 g cm⁻³, based on

FIG. 1. Bobmeyerite 'woolly caterpillars' on quartz. The field of view is 1.2 mm. This is a composite stacked image taken by Bob Meyer from a specimen is his collection.

the empirical formula and the unit-cell parameters determined by single-crystal X-ray diffraction. Bobmeyerite dissolves very slowly in concentrated HCl; it is insoluble and unreactive in concentrated H_2SO_4 and 70% HNO₃.

The optical properties were measured in white light. Bobmeyerite is biaxial negative, with $\alpha \approx \beta = 1.759(2)$ and $\gamma = 1.756(2)$. The small size of the fibres precluded conoscopic observation, and therefore the 2V could not be determined, but it is expected to be very small. The optical

orientation is $X = \mathbf{c}$; Y or $Z = \mathbf{a}$ or \mathbf{b} . Bobmeyerite is not pleochroic.

Infrared spectroscopy

For analysis by Fourier transform infrared (FTIR) spectroscopy, a sample was positioned on a Spectra-Tech low-pressure diamond microsample cell and analysed using a Bruker Optics Hyperion 2000 microscope interfaced to a Tensor 27 spectrometer. The spectrum was acquired in the 4000 to 430 cm⁻¹ range by co-adding 150 scans (Fig. 3). The absorption at 3386 cm⁻¹ can be assigned to OH and that at 1649 cm⁻¹ to H_2O . The absorption peaks in the $1200-430 \text{ cm}^{-1}$ region are similar to those in the spectrum of ashburtonite and include contributions from both the SiO₄ tetrahedra and the four-member silicate ring. It was not possible to verify or disprove the presence of SO₄ or CrO₄ groups on the basis of the FTIR data, but CO₃ is absent as there are no characteristic CO₃ absorption bands.

Chemical composition

Chemical analyses were carried out on a JEOL 8200 electron microprobe in wavelength-dispersive spectrometry (WDS) mode at the Division of Geological and Planetary Sciences, California Institute of Technology, operating at 10 kV, 5 nA with a focussed beam. Data were processed with the *CITZAF* correction procedure. The

FIG. 2. Scanning electron microscope image of bobmeyerite needles on quartz.

A. R. KAMPF ET AL.

FIG. 3. The FTIR spectrum of bobmeyerite.

standards used were galena (for Pb), synthetic anorthite (for Al, Si and Ca), synthetic Cr_2O_3 (for Cr), anhydrite (for S), synthetic fluorophlogopite (for F) and sodalite (for Cl); Mg, V and Fe were sought, but not detected. There was insufficient material for CHN analyses, and therefore H₂O was calculated on the basis of Al + Cu = 4, charge balance and 27 total anions (O + Cl + F) p.f.u., based on structural considerations (see below); the presence of H_2O and OH and the absence of CO_3 were confirmed by FTIR spectroscopy.

Bobmeyerite was challenging to analyse due to the small size and very limited thickness of the acicular crystals. The largest grain found was only 2 μ m across, and most grains were 1 μ m or less. Flat areas on the two largest crystals appeared to

	- C	orrected	but not	normaliz	ed –		— N	lormalize	ed ——		
	1-1	1-2	2-1	2-2	2-3	1-1	1-2	2-1	2-2	2-3	Mean
CaO	0.16	0.14	0.12	0.15	0.13	0.17	0.13	0.12	0.16	0.13	0.14
PbO	49.40	58.28	53.82	51.96	58.71	53.37	54.42	55.00	54.87	56.48	54.83
CuO	5.61	5.26	4.98	4.05	4.53	6.06	4.91	5.09	4.28	4.36	4.94
Al_2O_3	8.95	11.14	9.43	9.80	10.42	9.67	10.4	9.64	10.35	10.02	10.02
SiO ₂	15.58	18.10	16.44	17.05	17.60	16.83	16.9	16.8	18.01	16.93	17.09
SO ₃	2.96	2.93	3.03	2.86	3.08	3.20	2.74	3.10	3.02	2.96	3.00
CrO ₃	0.41	0.59	1.43	0.80	1.00	0.44	0.55	1.46	0.84	0.96	0.85
F	0.80	0.36	0.75	0.53	0.71	0.86	0.34	0.77	0.56	0.68	0.64
Cl	2.13	1.93	3.10	2.57	2.17	2.30	1.80	3.17	2.71	2.09	2.41
H ₂ O*	7.39	8.96	5.78	5.72	6.39	7.98	8.37	5.91	6.04	6.15	6.89
O=F,Cl	-0.82	-0.59	-1.02	-0.80	-0.79	-0.89	-0.55	-1.04	-0.84	-0.76	-0.81
Total	92.57	107.10	97.86	94.69	103.95	99.99	100.01	100.02	100.00	100.00	100.00

TABLE 1. Analytical data for bobmeyerite.

* The H_2O values are based upon the structure, with 27 total anions and Al + Cu = 4. Means are calculated from the normalized data.

BOBMEYERITE, A NEW MINERAL FROM ARIZONA

TABLE 2. Powder X-ray data for bobmeyerite.

Iobs	$d_{\rm obs}$	d_{calc}	I_{calc}	hkl	I _{obs}	$d_{\rm obs}$	$d_{\rm calc}$	I_{calc}	hkl
35	10.051	9.9718	77	110			1.9072	3	171
(7 104	(7.1285	4	020			1.9041	6	442
0	/.104	6.9762	5	200			1.8786	3	123
7	()(7	6.3480	6	120			1.8764	3	213
/	0.30/	6.2663	5	210	39	1.873	1.8760	3	352
C 4	5 474	5.4516	33	011			1.8720	3	711
54	5.474	5.4341	30	101			1.8657	6	370
35	5.011	4.9859	54	220			1.8633	3	461
5	4.516	4.4986	7	130			1.8559	13	271
42	1 2 2 2	(4.3216	22	121			(1.8494	3	641
43	4.333	4.2956	21	211	25	1.837	1.8381	5	730
6	2 021	(3.9276	5	230			1.8254	11	721
6	3.921	3.8951	6	320			(1.7887	6	262
-	2 (00	(3.7010	3	031			1.7691	9	622
7	3.680	3.6525	5	301	27	1 5 6 0 0	1.7675	3	452
		(3.5773	4	131	27	1.7693	1.7621	4	542
24	2 5 4 5	3.5643	18	040			1.7585	8	233
34	3.545	3.5382	3	311			1.7556	6	323
		3.4881	20	400	_		(1.7090	6	143
		(3.3239	11	330	7	1.7100	1.7009	8	413
77	3.278	3.2694	49	231			1.6641	3	172
		3.2506	37	321	11	1.6572	1.6522	11	552
		(3.1740	5	240			(1.6189	6	053
		2.9804	37	141	16	1.6209	1.6075	5	503
88	2.966	2.9500	31	002			(1.5768	3	372
		2.9382	44	411	4	1.5737	1.5600	3	732
7	2.831	2.8288	4	112			(1.5299	2	091
		(2.7937	6	150	8	1.5314	1.5208	3	191
		2.7385	5	510			í 1.5164	2	182
9	2.747	2.7258	3	022	8	1.5033	1.5013	1	802
		2.7171	3	202			1.4994	2	901
		(2.5673	24	051			(1.4830	2	671
		2.5389	53	222			1.4750	8	004
100	2.549	2.5249	3	151	20	1.4767	1.4685	5	453
		2.5226	19	501			1.4654	3	543
6	2.498	2.4930	18	440			(1.4494	2	382
5	2.430	2.4309	5	350	4	1.4465	1.4427	2	851
		(2.2726	8	042			1.4405	1	363
22	2.265	2.2525	9	402	6	1.4320	1.4319	2	633
		(2.2108	4	620			(1.4245	3	770
23	2.218	2.2064	15	332	5	1.4173	1.4144	4	224
		(2.0676	17	451			(1.4011	4	491
28	2.072	2.0591	12	541			1.3887	3	192
		(2.0284	5	152	17	1.3909	1 3865	5	273
		2 0070	4	512			1 3821	3	941
20	2.001	1 9944	5	550			1 3755	1	681
		1 9918	3	361			1 3737	4	723
		(1.9690	6	631			1.3677	1	861
4	1 958	1 9482	ĩ	013	25	1 3704	1 3660	3	912
•	1.750	1 9474	3	103	23	1.3/04	1 3631	1	3.10.0
		1.21/1	5	105			1.3629	2	044
							1 3585	3	404
							1.5505	5	TUT

Calculated lines with relative intensities of less than 5 are not listed unless they correspond to observed lines.

be relatively stable in the electron beam, giving analytical totals that did not decrease as a function of time; however, the totals range from 92.57 to 107.10 wt.% when calculated H_2O is included. This is attributed to a combination of dehydration under vacuum (which would produce high values) and the limited thickness of the grains (which would produce low values). Regardless of the variability in the totals, generally consistent elemental ratios were obtained. Original and normalized analyses are listed in Table 1.

The empirical formula for bobmeyerite (based on 27 anions) is $Pb_{3.80}Ca_{0.04}Al_{3.04}Cu_{0.96}^{2+}Cr_{0.13}^{3+}$ Si_{4.40}S_{0.58}O_{24.43}Cl_{1.05}F_{0.52}H_{11.83}. The simplified formula recast using information from the structural analysis is (Pb,Ca)₄(Al,Cu)₄(Si₄O₁₂) [(S,Si,Cr)O₄][(OH),F]₇Cl(H₂O)₃. The simplified endmember formula Pb₄Al₄(Si₄O₁₂)(SO₄) (OH)₇Cl(H₂O)₃ has a charge of +2, and we therefore propose that the charge-balanced ideal formula should be $Pb_4(Al_3Cu)(Si_4O_{12})$ ($S_{0.5}Si_{0.5}O_4$)(OH)₇Cl(H₂O)₃, which requires PbO 56.50, Al₂O₃ 9.68, CuO 5.03, SiO₂ 17.11, SO₃ 2.53, Cl 2.24, H₂O 7.41, O=Cl -0.51; total 99.99 wt.%.

The Gladstone–Dale compatibility index, $1 - (K_{\rm P}/K_{\rm C})$, based on the calculated density and empirical formula, is 0.007, which is superior according to the classification of Mandarino (1981).

X-ray crystallography and structure refinement

The powder X-ray diffraction study was carried out using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer, with monochromatic Mo $K\alpha$ radiation. The observed

	TABLE	3.	Data	collection	and	structure	refinement	for	bobmeverite.
--	-------	----	------	------------	-----	-----------	------------	-----	--------------

D:00 /	
Diffractometer	Huber 4-circle diffractometer with
T T 11 (1)	Bruker 6000 SMART CCD detector
X-ray radiation wavelength	0.40651 A
Temperature	293(2) K
Structural formula	$Pb_4(Al_{3.28}Cu_{0.72})(Si_4O_{12})(OH)_8Cl[(H_2O)_{1.73}(OH)_{2.27}]$
Space group	Pnnm
Unit-cell dimensions	a = 13.969(9) Å
	b = 14.243(10) Å
	c = 5.893(4) Å
V	1172.4(1.4)Å ³
Ζ	2
Density (for above formula)	4.274 g cm^{-3}
Absorption coefficient	16.248 mm^{-1}
F(000)	1340.5
Crystal size	$80 \times 2 \times 2 \ \mu m$
θ range	1.64 to 15.66°
Index ranges	$-15 \leq h \leq 18, -14 \leq k \leq 18, -7 \leq l \leq 7$
Refls collected / unique	$10,555 / 1552 [R_{int} = 0.12]$
Reflections with $F_{0} > 4\sigma F$	1057
Completeness	98.1%
Refinement method	Full-matrix least-squares on F^2
Parameters refined	99
GoF	1.060
Final R indices $[F_o > 4\sigma F]$	$R_1 = 0.0791, wR_2 = 0.1589$
R indices (all data)	$R_1 = 0.1231, wR_2 = 0.1739$
Largest diff. peak / hole	$+4.18 / -3.60 \ e \ A^{-3}$

 $\begin{aligned} R_{\text{int}} &= \Sigma |F_o^2 - F_o^2(\text{mean})| \Sigma [F_o^2].\\ \text{GoF} &= S = \{\Sigma [w(F_o^2 - F_c^2)^2]/(n-p)\}^{\frac{1}{2}}.\\ R_1 &= \Sigma ||F_o| - |F_c|| / \Sigma |F_o|.\\ wR_2 &= \{\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]\}^{\frac{1}{2}}.\\ w &= 1/[\sigma^2 (F_o^2) + (aP)^2 + bP] \text{ where } a \text{ is } 0.0552, b \text{ is } 114.8607 \text{ and } P \text{ is } [2F_c^2 + \text{Max}(F_o^2, 0)]/3. \end{aligned}$

	x/a	y/b	z/c	U_{eq}	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Pb1	0.72313(11)	0.48502(9)	0	0.0312(4)	0.0477(9)	0.0294(6)	0.0163(5)	0	0	-0.0031(6)
Pb2	0.51318(10)	0.71552(10)	0	0.0300(4)	0.0354(7)	0.0381(7)	0.0166(5)	0	0	-0.0036(6)
Al*	0.7684(4)	0.2688(3)	0.7506(8)	0.0226(18)	0.033(3)	0.029(3)	0.006(2)	-0.0006(19)	0.001(2)	0.013(2)
Cu*	0.7684(4)	0.2688(3)	0.7506(8)	0.0226(18)	0.033(3)	0.029(3)	0.006(2)	-0.0006(19)	0.001(2)	0.013(2)
CI	1/2	1/2	0	0.030(3)	0.044(7)	0.031(6)	0.016(5)	0	0	-0.001(5)
Sil	0.5942(6)	0.6270(6)	1/2	0.0202(18)	0.025(5)	0.028(5)	0.008(4)	0	0	-0.006(4)
Si2	0.6296(6)	0.4081(6)	1/2	0.0184(18)	0.032(5)	0.016(4)	0.008(4)	0	0	0.008(3)
01	0.6323(18)	0.5200(15)	1/2	0.031(5)	0.040(15)	0.023(11)	0.030(12)	0	0	-0.002(11)
02	0.4787(16)	0.6313(16)	1/2	0.028(5)	0.030(13)	0.036(13)	0.018(10)	0	0	-0.016(11)
03	0.6314(11)	0.6780(10)	0.274(2)	0.024(3)	0.041(9)	0.025(7)	0.004(6)	0.000(6)	0.000(6)	-0.017(7)
04	0.6803(10)	0.3691(10)	0.728(2)	0.021(3)	0.025(8)	0.026(8)	0.013(7)	-0.005(6)	-0.004(6)	-0.002(6)
OH5	0.7036(17)	0.2162(18)	0	0.035(6)	0.035(14)	0.044(14)	0.027(13)	0	0	0.007(12)
0H6	0.7105(17)	0.2051(16)	1/2	0.034(6)	0.033(13)	0.026(12)	0.042(15)	0	0	0.007(11)
0H7	0.6591(15)	0.8225(15)	0	0.025(5)	0.014(10)	0.030(11)	0.031(12)	0	0	0.008(10)
OH8	0.8258(16)	0.3398(19)	0	0.039(6)	0.017(12)	0.061(17)	0.038(15)	0	0	0.013(12)
0W9	0.630(5)	0.028(5)	0	0.17(3)						
OW10	0.032(6)	0.366(6)	0	0.22(4)						

TABLE 4. Atom coordinates and displacement parameters (Å^2) for bobmeyerite.

* Refined site occupancy: Al 0.820(18), Cu 0.180(18).

BOBMEYERITE, A NEW MINERAL FROM ARIZONA

d-spacings and relative intensities derived by profile fitting using *JADE 9.3* software are listed in Table 2. Unit-cell parameters refined from the powder data using *JADE 9.3* software with whole-pattern fitting are as follows: a = 13.952(3), b = 14.257(3), c = 5.9000(10) Å and V = 1173.6(4) Å³. These unit-cell parameters were used to determine the calculated *d*-spacings and intensities listed in Table 2.

Single-crystal structure data were obtained at ChemMatCARS, Sector 15, Advanced Photon Source at Argonne National Laboratory, USA. These data were integrated and corrected for Lorentz, polarization and background effects and systematic errors, such as beam decay and absorption, using *SAINTPLUS* and *SADABS* (Bruker, 2005). The structure was solved by direct methods and refined using *SHELXTL* (Sheldrick, 2008).

In the final stages of structure refinement, the largest residual electron densities were in the immediate vicinities of the Pb sites. Attempts to split the Pb atoms into multiple partially occupied sites were marginally effective, reducing R_1 to about 0.074, but they confirmed that the vast majority of the Pb occupancies (~0.92) remained at the original unsplit sites. An attempt was also made to refine the occupancies of the unsplit Pb sites, but this yielded only slightly less than full occupancies and left the R_1 index unaffected. Consequently, the final structure refinement was based on unsplit, fully occupied Pb sites. It is probable that the F reported in the chemical analysis is distributed among the OH sites bonded to Al. As the OH sites account for 8 O + F p.f.u.of which there is only 0.52 F p.f.u and the scattering powers of O and F are not very different, no attempt was made to refine the occupancies of the OH sites.

Details of the data collection and the final structure refinement are provided in Table 3. The final atom coordinates and displacement parameters are listed in Table 4. Selected interatomic distances are listed in Table 5. A bond-valence analysis is provided in Table 6. A list of observed and calculated structure factors has been deposited with *Mineralogical Magazine* and can be downloaded from http://www.minersoc.org/pages/e_journals/dep_mat_mm.html.

Description of the structure

Bobmeyerite has the same structural framework as cerchiaraite (Basso *et al.*, 2000; Kampf *et al.*, 2013)

and ashburtonite (Grice et al., 1991), although it is orthorhombic, rather than tetragonal (Fig. 4). In the structure, SiO₄ tetrahedra share corners to form four-membered Si_4O_{12} rings centred on the *c* axis. The rings are linked by chains of edge-sharing AlO₆ octahedra which also run parallel to [001]. The framework thereby created contains large channels, which run parallel to [001]. The Cl site is centred on the c axis and alternates along [001] with the Si₄O₁₂ rings. Two non-equivalent Pb atoms are located around the periphery of the channels. Both are eleven-coordinate, bonding to the Cl atom on the c axis, to eight O atoms in the framework and to two O sites in the channel. They are off-centre in these coordinations, as is typical of Pb^{2+} with stereo-active lone-electron pairs.

A few remarks regarding the channel constituents are warranted. The channel O sites (OW9 and OW10) have very large isotropic thermal parameters, suggesting that they are loosely bonded to the Pb atoms (as was reported for the CO₃ group in ashburtonite). The OW9 and OW10 bonds to the Pb atoms have bond-valence sums (Table 6) that are consistent with H₂O groups; however, these sites probably also participate to some extent in bonds to S. Si and Cr in the channel. The S, Cr and excess Si determined by EMPA, $(S_{0.58}Si_{0.40}Cr_{0.13}^{3+})_{\Sigma 1.11}$, must be accommodated in the channel, presumably in tetrahedral coordination to O. We were unable to resolve a tetrahedral cation site in the channel; however, the considerable residual electron density leaves a good deal of latitude for accommodating additional constituents.

Resolving the formula of bobmeyerite

If H_2O cannot be directly determined, it is commonly calculated based upon the amount indicated by the crystal structure analysis and, in particular, by the number of O atoms. For a structure that includes unresolved disordered channel sites, such as that of bobmeyerite, it is not possible to rigorously define the number of O atoms based upon refined structural sites. Channel volume and packing considerations can provide a theoretical upper limit, but if a Pb²⁺ cation with stereo-active lone-electron pairs is present, calculations based on sphere packing become less reliable. In bobmeyerite, the channel constituents are certainly not very efficiently packed.

The two refined channel sites can reasonably be assigned to O atoms of H_2O groups, providing a total of 25 anions (O + Cl + F) p.f.u., but

Pb1 $-04 (\times 2)$	2.376(14)	Pb2 $-O3$ (×2)	2.369(15)	Al-OH5 1.881(17)	Sil $-03 (\times 2)$	1.606(14)
Pb1-OH8	2.52(2)	Pb2-OH7	2.55(2)	Al-O4 1.890(15)	Si1-01	1.61(2)
Pb1-Cl	3.124(3)	Pb2-Cl	3.075(3)	Al-O3 1.910(14)	Si1-02	1.61(2)
Pb1 $-01 (\times 2)$	3.247(10)	Pb2-OH5	3.18(2)	Al-OH6 1.912(16)	<si-0></si-0>	1.612
Pb1-OH6	3.27(2)	Pb2 $-02 (\times 2)$	3.217(9)	A1-OH7 1.947(14)		
Pb1 $-03 (\times 2)$	3.434(15)	$Pb2 - 04 (\times 2)$	3.364(15)	Al-OH8 1.956(19)	Si2-01	1.59(2)
$Pb1-OW9 (\times 2)$	3.64(4)	$Pb2-OW10 (\times 2)$	3.70(5)	<al-o> 1.916</al-o>	Si2-02	1.61(2)
< Pb -@>	3.119	< Pb -@>	3.100		$Si2-04 (\times 2)$	1.619(15)
					<si-0></si-0>	1.610

 T_{ABLE} 5. Selected bond distances (\mathring{A}) in bobmeyerite.

iun	
valence	
. 1	
expressed	
are	
Values	
verite.	
bobme	
for	
analvsis	
-valence	
Bond	
6.	
TABLE	

ts.

Ω	1.75 1.78 2.98 4.15 4.10
CI	0.20 × 2↓ 0.23 × 2↓ 0.86
OW10	0.01 × 2↓→ 0.02
0W9	$0.02 \times 2\downarrow \rightarrow 0.04$
OH8	0.33 0.44 × 2↓ 1.21
OH7	0.31 0.46 × 2↓ 1.23
0H6	0.04 0.50×21 1.04
OH5	0.06 0.54 × 2↓ 1.14
04	$\begin{array}{c} 0.49 \times 2 \rightarrow \\ 0.03 \times 2 \rightarrow \\ 0.53 \end{array}$ $\begin{array}{c} 0.053 \times 2 \rightarrow \\ 1.01 \times 2 \rightarrow \end{array}$ $\begin{array}{c} 2.06 \end{array}$
03	$0.03 \times 2 \rightarrow \\ 0.50 \times 2 \rightarrow \\ 0.50 \\ 1.05 \times 2 \rightarrow \\ 2.08 $
02	0.05 × 2↓ → 1.04 1.04 2.18
01	0.05 × 2↓ → 1.01 1.04 2.15
	Pb1 Pb2 Al Si1 Si2 Σ

Bond valence for the Al site is based on the refined occupancy indicated in Table 4. Multiplicity is indicated by $\times \downarrow \rightarrow$. All bond strengths are from Brown and Altermatt (1985).

BOBMEYERITE, A NEW MINERAL FROM ARIZONA

A. R. KAMPF ET AL.

FIG. 4. The structure of bobmeyerite canted slightly from [001]; $Pb-\phi$ bonds are shown as thin rods. The outline of the unit cell is shown by a dashed red line.

considerable widely dispersed residual electron density remains in the channel. Some of this electron density probably corresponds to approximately one cation, $(S_{0.58}Si_{0.40}Cr_{0.13}^{3+})_{\Sigma 1.11}$, p.f.u. tetrahedrally coordinated to O atoms. If this tetrahedral group is linked in a similar manner to the SiO_4 group in the channel of the cerchiaraite structure, three of its corners would be formed by O atoms bonded to three different Pb atoms and one would be an OH site (OH5, OH6, OH7 and/or OH8) of the Al octahedron. Adjacent OW sites cannot participate in the same tetrahedral coordination because no OW-OW pair is closer than 3.59 Å: therefore, there must be additional disordered O sites in the channel. As the tetrahedral group is essentially 1/4 occupied and disordered in the channel, it is not surprising that it remains unresolved in the structure refinement.

Assuming that statistically $\frac{1}{4}$ of each OW participates in a (S,Si,Cr)O₄ group, the OW9 and OW10 sites account for a total of three H₂O

groups p.f.u. in the channel. Combining that with one $(S,Si,Cr)O_4$ group p.f.u. requires that the formula be based upon 27 anions. For comparison, the formula of cerchiaraite is based on 27 anions (Kampf *et al.*, 2013) and that of ashburtonite is based on 29. Using 27 anions, the simplified structural formula for bobmeyerite is $(Pb,Ca)_4(A1,Cu)_4(Si_4O_{12})[(S,Si,Cr)O_4]$ $[(OH),F]_7CI(H_2O)_3$. The endmember formula $Pb_4Al_4(Si_4O_{12})(SO_4)(OH)_7CI(H_2O)_3$ has a net charge of +2; replacing Al₄ by Al₃Cu and SO₄ by $S_{0.5}Si_{0.5}O_4$ yields the charge-balanced ideal formula $Pb_4(Al_3Cu)(Si_4O_{12})(S_{0.5}Si_{0.5}O_4)(OH)_7$ $CI(H_2O)_3$.

Acknowledgements

Reviewers Peter Leverett and Mark Cooper and Editorial Board Member Stuart Mills are thanked for their constructive comments on the manuscript. Bob Meyer, Joe Ruiz and Brent Thorne provided specimens of the new species. The structure data collection was carried out at GSECARS and ChemMatCARS (CARS = Consortium for Advanced Radiation Sources) sectors 13 and 15, Advanced Photon Source at Argonne National Laboratory, with the support of the National Science Foundation, the U.S. Department of Energy and the W. M. Keck Foundation. The EMP analyses were supported by a grant to the California Institute of Technology from the Northern California Mineralogical Association. This study was funded, in part, by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County.

References

- Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (2000) Cerchiaraite, a new natural Ba-Mn-mixedanion silicate chloride from the Cerchiara mine, northern Apennines, Italy. *Neues Jahrbuch für Mineralogie, Monatshefte*, 2000, 373–384.
- Bideaux, R.A. (1980) Tiger, Arizona. *Mineralogical Record*, 11, 155–181.
- Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. *Acta*

Crystallographica, B41, 244–247.

- Bruker (2005) SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grice, J.D., Nickel, E.H. and Gault, R.A. (1991) Ashburtonite, a new bicarbonate-silicate mineral from Ashburton Downs, Western Australia: description and structure determination. *American Mineralogist*, **76**, 1701–1707.
- Kampf, A.R., Roberts, A.C., Venance, K.E., Carbone, C., Belmonte, D., Dunning, G.E. and Walstrom, R.E. (2013) Cerchiaraite-(Fe) and cerchiaraite-(Al), two new barium cyclosilicate chlorides from Italy and California (USA). *Mineralogical Magazine*, 77, 69–80.
- Mandarino, J.A. (1981) The Gladstone–Dale relationship: part IV. The compatibility concept and its application. *The Canadian Mineralogist*, **19**, 441–450.
- Sheldrick, G.M. (2008) SHELXL97 Program for the Refinement of Crystal Structures. University of Göttigen, Göttigen, Germany.
- Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. *The Canadian Mineralogist*, **45**, 983–1055.

data tiger audit creation method SHELXL-97 _chemical_name systematic ; ? ; _chemical_name common ? chemical melting point ? ? chemical formula moiety _chemical_formula_sum 'H13.72 Al3.28 Cl Cu0.72 O24 Pb4 Si4' chemical formula weight 1508.64 loop _atom_type_symbol atom type description atom type scat dispersion real _atom_type_scat_dispersion_imag atom type scat source 0' 0' 0.0056 0.0036 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Si' 'Si' 0.0522 0.0431 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cu' 'Cu' 0.3240 0.8257 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Pb' 'Pb' -1.1676 6.9287 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.0998 0.0984 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Al' 'Al' 0.0406 0.0313 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' ? _symmetry_cell_setting _symmetry_space_group_name H-M Pnnm loop _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z' '-x+1/2, y+1/2, -z+1/2' 'x+1/2, -y+1/2, -z+1/2' '-x, -y, -z' 'x, y, -z' 'x-1/2, -y-1/2, z-1/2' '-x-1/2, y-1/2, z-1/2' cell length a 13.969(9)_cell_length b 14.242(10) _cell_length_c 5.893(4)cell angle alpha 90.00

```
_cell_angle_beta
                                   90.00
_cell_angle_gamma
                                   90.00
cell volume
                                   1172.4(14)
cell formula units Z
                                   2
_cell_measurement_temperature
                                   293(2)
_cell_measurement_reflns used
                                   ?
cell measurement theta min
                                   ?
cell measurement theta max
                                   ?
_exptl_crystal_description
                                   ?
                                   ?
exptl crystal colour
_exptl_crystal_size_max
                                   0.08
_exptl_crystal size mid
                                   0.00
_exptl_crystal_size min
                                   0.00
                                   ?
exptl crystal density meas
exptl crystal density diffrn
                                   4.274
_exptl_crystal_density method
                                   'not measured'
exptl crystal F 000
                                   1340
                                   16.265
exptl absorpt coefficient mu
_exptl_absorpt_correction type
                                   ?
_exptl_absorpt_correction_T_min
                                   0.3561
_exptl_absorpt_correction_T_max
                                   0.9682
exptl absorpt process details
                                   ?
_exptl_special details
;
 ?
;
diffrn ambient temperature
                                   293(2)
diffrn radiation wavelength
                                   0.40651
diffrn radiation type
                                   ?
diffrn radiation source
                                   'synchrotron'
_diffrn_radiation_monochromator
                                   'diamond (111) crystal'
_diffrn_measurement_device_type
                                   'Bruker 6000 SMART CCD'
_diffrn_measurement_method
                                   ?
_diffrn_detector_area_resol_mean
                                   ?
_diffrn_standards_number
                                   ?
                                   ?
diffrn standards interval count
_diffrn_standards_interval time
                                   ?
_diffrn_standards_decay_%
                                   ?
_diffrn_reflns_number
                                   10555
_diffrn_reflns_av_R_equivalents
                                   0.1196
                                   0.0873
_diffrn_reflns_av_sigmaI/netI
_diffrn_reflns_limit_h_min
                                   -15
_diffrn_reflns_limit_h_max
                                   18
diffrn reflns limit k min
                                   -14
_diffrn_reflns_limit k max
                                   18
_diffrn_reflns_limit_l_min
                                   -7
_diffrn_reflns_limit l max
                                   7
_diffrn_reflns_theta min
                                   1.64
_diffrn_reflns_theta_max
                                   15.68
_reflns_number_total
                                   1552
reflns_number_gt
                                   1057
```

reflns threshold expression >2sigma(I) computing data collection ? computing cell refinement ? _computing_data reduction ? _computing_structure solution 'SHELXS-97 (Sheldrick, 1990)' 'SHELXL-97 (Sheldrick, 1997)' computing structure refinement computing molecular graphics ? computing publication material ? refine special details Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on $F^{2^{-}}$, conventional R-factors R are based on F, with F set to zero for negative $F^{2^{-1}}$. The threshold expression of F^2 > 2sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on $F^{2^{-1}}$ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. ; refine ls structure factor coef Fsqd refine ls matrix type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0552P)^2^+114.8607P] where $P = (Fo^2 + 2Fc^2) / 3'$ atom sites solution primary direct _atom_sites_solution secondary difmap _atom_sites_solution_hydrogens geom refine ls hydrogen treatment mixed _refine_ls_extinction_method none _refine_ls extinction coef ? _refine_ls number reflns 1552 refine ls number parameters 99 refine ls number restraints 0 _refine_ls_R_factor_all 0.1231 _refine_ls_R_factor gt 0.0791 refine ls wR factor ref 0.1739 _refine_ls_wR_factor gt 0.1589 _refine_ls_goodness_of_fit_ref 1.060 refine ls restrained S all 1.060 refine ls shift/su max 0.000 refine ls shift/su mean 0.000 loop atom site label _atom_site_type symbol _atom_site_fract_x _atom_site_fract y

```
_atom_site_fract z
 atom site U iso or equiv
 _atom_site_adp type
 atom site occupancy
 _atom_site_symmetry multiplicity
 atom site calc flag
 atom site refinement flags
 _atom_site_disorder assembly
 atom site disorder group
Pb1 Pb 0.72313(11) 0.48502(9) 0.0000 0.0312(4) Uani 1 2 d S . .
Pb2 Pb 0.51318(10) 0.71552(10) 0.0000 0.0300(4) Uani 1 2 d S . .
Al Al 0.7684(4) 0.2688(3) 0.7506(8) 0.0226(18) Uani 0.820(18) 1 d P . .
Cu Cu 0.7684(4) 0.2688(3) 0.7506(8) 0.0226(18) Uani 0.180(18) 1 d P.
Cl Cl 0.5000 0.5000 0.0000 0.030(3) Uani 1 4 d S . .
Sil Si 0.5942(6) 0.6270(6) 0.5000 0.0202(18) Uani 1 2 d S . .
Si2 Si 0.6296(6) 0.4081(6) 0.5000 0.0184(18) Uani 1 2 d S . .
01 0 0.6323(18) 0.5200(15) 0.5000 0.031(5) Uani 1 2 d S . .
02 0 0.4787(16) 0.6313(16) 0.5000 0.028(5) Uani 1 2 d S . .
O3 O 0.6314(11) 0.6780(10) 0.274(2) 0.024(3) Uani 1 1 d . . .
04 0 0.6803(10) 0.3691(10) 0.728(2) 0.021(3) Uani 1 1 d . . .
OH5 O 0.7036(17) 0.2162(18) 0.0000 0.035(6) Uani 1 2 d S . .
OH6 O 0.7105(17) 0.2051(16) 0.5000 0.034(6) Uani 1 2 d S . .
OH7 O 0.6591(15) 0.8225(15) 0.0000 0.025(5) Uani 1 2 d S . .
OH8 O 0.8258(16) 0.3398(19) 0.0000 0.038(6) Uani 1 2 d S . .
OW9 O 0.630(5) 0.028(5) 0.0000 0.17(3) Uiso 1 2 d S . .
OW10 O 0.032(6) 0.366(6) 0.0000 0.22(4) Uiso 1 2 d S . .
loop_
 _atom_site_aniso_label
 _atom_site aniso U 11
 atom site aniso U 22
 atom site aniso U 33
 _atom_site_aniso U 23
 _atom_site_aniso U 13
 atom site aniso U 12
Pb1 0.0479(9) 0.0294(6) 0.0162(5) 0.000 0.000 -0.0031(6)
Pb2 0.0355(7) 0.0380(7) 0.0165(5) 0.000 0.000 -0.0036(6)
Al 0.033(3) 0.029(3) 0.006(2) -0.0006(18) 0.001(2) 0.013(2)
Cu 0.033(3) 0.029(3) 0.006(2) -0.0006(18) 0.001(2) 0.013(2)
Cl 0.044(7) 0.031(6) 0.016(5) 0.000 0.000 -0.001(5)
Si1 0.025(5) 0.028(5) 0.008(4) 0.000 0.000 -0.006(4)
Si2 0.032(5) 0.016(4) 0.008(4) 0.000 0.000 0.008(3)
01 0.040(15) 0.023(11) 0.030(12) 0.000 0.000 -0.002(11)
02 0.031(13) 0.036(13) 0.018(10) 0.000 0.000 -0.016(11)
03 0.042(9) 0.025(7) 0.004(6) 0.000(6) 0.000(6) -0.017(7)
04 \ 0.025(8) \ 0.026(8) \ 0.012(7) \ -0.005(6) \ -0.004(6) \ -0.002(6)
0+5 0.035(14) 0.044(14) 0.027(13) 0.000 0.000 0.007(12)
OH6 0.033(13) 0.026(12) 0.042(15) 0.000 0.000 0.007(11)
OH7 0.014(10) 0.030(11) 0.031(12) 0.000 0.000 0.008(10)
OH8 0.017(12) 0.060(17) 0.038(15) 0.000 0.000 0.013(12)
```

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes)

```
are estimated using the full covariance matrix. The cell esds are taken
 into account individually in the estimation of esds in distances, angles
 and torsion angles; correlations between esds in cell parameters are
only
 used when they are defined by crystal symmetry. An approximate
(isotropic)
treatment of cell esds is used for estimating esds involving l.s.
planes.
;
loop
 geom bond atom site label 1
 _geom_bond_atom_site label 2
 _geom_bond_distance
 _geom_bond_site_symmetry 2
 geom bond publ flag
Pb1 04 2.376(14) 1 554 ?
Pb1 04 2.376(14) 6 556 ?
Pb1 OH8 2.52(2) . ?
Pb1 Cl 3.124(3) . ?
Pb1 01 3.247(10) . ?
Pb1 01 3.247(10) 1 554 ?
Pb1 OH6 3.27(2) 3 655 ?
Pb1 O3 3.434(15) . ?
Pb1 O3 3.434(15) 6 ?
Pb1 OW9 3.64(4) 3 655 ?
Pb2 03 2.369(15) 6 ?
Pb2 03 2.369(15) . ?
Pb2 OH7 2.55(2) . ?
Pb2 Cl 3.075(3) . ?
Pb2 OH5 3.18(2) 5 665 ?
Pb2 02 3.217(9) 1 554 ?
Pb2 02 3.217(9) . ?
Pb2 04 3.364(15) 2 664 ?
Pb2 04 3.364(15) 5 666 ?
Pb2 OW10 3.70(5) 3 ?
Al OH5 1.881(17) 1 556 ?
Al 04 1.890(15) . ?
Al 03 1.910(14) 8 756 ?
Al OH6 1.912(16) . ?
Al OH7 1.947(14) 3 645 ?
Al OH8 1.956(19) 1 556 ?
Cl Pb2 3.075(3) 5 665 ?
Cl Pb1 3.124(3) 5 665 ?
Si1 03 1.606(14) 6 556 ?
Sil 03 1.606(14) . ?
Sil 01 1.61(2) . ?
Si1 02 1.61(2) . ?
Si2 01 1.59(2) . ?
Si2 02 1.61(2) 5 666 ?
Si2 04 1.619(15) . ?
Si2 04 1.619(15) 6 556 ?
O1 Pb1 3.247(10) 1 556 ?
O2 Si2 1.61(2) 5 666 ?
```

```
O2 Pb2 3.217(9) 1 556 ?
O3 Cu 1.910(14) 8_765 ?
O3 Al 1.910(14) 8 765 ?
O4 Pb1 2.376(14) 1 556 ?
O4 Pb2 3.364(15) 5 666 ?
OH5 Cu 1.881(17) 6 556 ?
OH5 Al 1.881(17) 6 556 ?
OH5 Cu 1.881(17) 1 554 ?
OH5 Al 1.881(17) 1 554 ?
OH5 Pb2 3.18(2) 5 665 ?
OH6 Cu 1.912(16) 6 556 ?
OH6 Al 1.912(16) 6_556 ?
OH6 Pb1 3.27(2) 3 645 ?
OH6 Pb2 3.86(2) 3 645 ?
OH7 Cu 1.947(14) 8 765 ?
OH7 Al 1.947(14) 8 765 ?
OH7 Cu 1.947(14) 3 655 ?
OH7 Al 1.947(14) 3 655 ?
OH7 Pb1 4.092(16) 3 655 ?
OH7 Pb1 4.092(16) 3 654 ?
OH8 Cu 1.956(19) 1 554 ?
OH8 Al 1.956(19) 1 554 ?
OH8 Cu 1.956(19) 6 556 ?
OH8 Al 1.956(19) 6 556 ?
OH8 Pb2 4.107(16) 3 645 ?
OH8 Pb2 4.107(16) 3 644 ?
OW9 Pb1 3.64(4) 3 645 ?
OW9 Pb1 3.64(4) 3 644 ?
OW10 Pb2 3.70(5) 3 544 ?
OW10 Pb2 3.70(5) 3 545 ?
OW10 Pb1 4.03(9) 5 665 ?
loop
 _geom_angle_atom_site_label 1
 _geom_angle atom site label 2
 _geom_angle_atom_site_label 3
 _geom_angle
 _geom_angle_site_symmetry 1
 geom angle site symmetry 3
 _geom_angle_publ flag
O4 Pb1 O4 84.7(7) 1_554 6_556 ?
O4 Pb1 OH8 64.7(5) 1 554 . ?
O4 Pb1 OH8 64.7(5) 6 556 . ?
O4 Pb1 Cl 78.2(3) 1 554 . ?
O4 Pb1 Cl 78.2(3) 6_556 . ?
OH8 Pb1 Cl 128.6(6) . . ?
O4 Pb1 O1 128.3(5) 1 554 . ?
O4 Pb1 O1 52.9(5) 6 556 . ?
OH8 Pb1 O1 110.4(4) . . ?
Cl Pb1 O1 66.4(4) . . ?
O4 Pb1 O1 52.9(5) 1 554 1 554 ?
O4 Pb1 O1 128.3(5) 6 556 1 554 ?
OH8 Pb1 O1 110.4(4) . 1 554 ?
Cl Pb1 O1 66.4(4) . 1 554 ?
```

```
O1 Pb1 O1 130.3(8) . 1 554 ?
O4 Pb1 OH6 137.5(4) 1 554 3 655 ?
O4 Pb1 OH6 137.5(4) 6 556 3 655 ?
OH8 Pb1 OH6 128.8(7) . 3_655 ?
Cl Pb1 OH6 102.6(4) . 3_655 ?
O1 Pb1 OH6 87.9(4) . 3 655 ?
O1 Pb1 OH6 87.9(4) 1 554 3 655 ?
O4 Pb1 Si2 105.2(4) 1 554 . ?
O4 Pb1 Si2 25.4(4) 6 556 . ?
OH8 Pb1 Si2 87.4(3) . . ?
Cl Pb1 Si2 68.84(14) . . ?
O1 Pb1 Si2 27.6(4) . . ?
O1 Pb1 Si2 133.2(4) 1 554 . ?
OH6 Pb1 Si2 114.68(18) 3 655 . ?
O4 Pb1 Si2 25.4(4) 1 554 1 554 ?
O4 Pb1 Si2 105.2(4) 6 556 1 554 ?
OH8 Pb1 Si2 87.4(3) . 1 554 ?
Cl Pb1 Si2 68.84(14) . 1 554 ?
O1 Pb1 Si2 133.2(4) . 1 554 ?
O1 Pb1 Si2 27.6(4) 1 554 1 554 ?
OH6 Pb1 Si2 114.68(18) 3_655 1_554 ?
Si2 Pb1 Si2 119.9(3) . 1 554 ?
O4 Pb1 O3 141.1(4) 1 554 . ?
O4 Pb1 O3 98.4(4) 6 556 . ?
OH8 Pb1 O3 150.5(3) . . ?
Cl Pb1 O3 64.7(2) . . ?
O1 Pb1 O3 46.0(4) . . ?
O1 Pb1 O3 99.0(4) 1 554 . ?
OH6 Pb1 O3 48.6(4) 3_655 . ?
Si2 Pb1 03 73.0(3) . . ?
Si2 Pb1 03 121.4(3) 1 554 . ?
O4 Pb1 O3 98.4(4) 1 554 6 ?
O4 Pb1 O3 141.1(4) 6_556 6 ?
OH8 Pb1 O3 150.5(3) . 6 ?
Cl Pb1 O3 64.7(2) . 6 ?
O1 Pb1 O3 99.0(5) . 6 ?
O1 Pb1 O3 46.0(4) 1_554 6 ?
OH6 Pb1 O3 48.6(4) 3 655 6 ?
Si2 Pb1 03 121.4(3) . 6 ?
Si2 Pb1 03 73.0(3) 1 554 6 ?
O3 Pb1 O3 56.0(5) . 6 ?
O4 Pb1 Cu 31.1(3) 1 554 1 554 ?
O4 Pb1 Cu 73.4(4) 6 556 1 554 ?
OH8 Pb1 Cu 33.6(4) . 1 554 ?
Cl Pb1 Cu 104.03(10) . 1_554 ?
O1 Pb1 Cu 126.3(4) . 1 554 ?
O1 Pb1 Cu 79.8(4) 1 554 1 554 ?
OH6 Pb1 Cu 143.1(3) 3 655 1 554 ?
Si2 Pb1 Cu 98.67(16) . 1 554 ?
Si2 Pb1 Cu 54.40(16) 1 554 1 554 ?
O3 Pb1 Cu 167.7(3) . 1 554 ?
O3 Pb1 Cu 125.4(2) 6 1 554 ?
O4 Pb1 Al 31.1(3) 1 554 1 554 ?
O4 Pb1 Al 73.4(4) 6 556 1 554 ?
```

OH8 Pb1 Al 33.6(4) . 1 554 ? Cl Pb1 Al 104.03(10) . 1 554 ? O1 Pb1 Al 126.3(4) . 1 554 ? O1 Pb1 Al 79.8(4) 1 554 1 554 ? OH6 Pb1 Al 143.1(3) 3 655 1 554 ? Si2 Pb1 Al 98.67(16) . 1 554 ? Si2 Pb1 Al 54.40(16) 1 554 1 554 ? O3 Pb1 Al 167.7(3) . 1 554 ? O3 Pb1 Al 125.4(2) 6 1 554 ? Cu Pb1 Al 0.0(2) 1 554 1 554 ? O4 Pb1 Cu 73.4(4) 1 554 6 556 ? O4 Pb1 Cu 31.1(3) 6_556 6 556 ? OH8 Pb1 Cu 33.6(4) . 6 556 ? Cl Pb1 Cu 104.03(10) . 6 556 ? O1 Pb1 Cu 79.8(4) . 6 556 ? O1 Pb1 Cu 126.3(4) 1 554 6 556 ? OH6 Pb1 Cu 143.1(3) 3 655 6 556 ? Si2 Pb1 Cu 54.40(16) . 6 556 ? Si2 Pb1 Cu 98.67(16) 1 554 6 556 ? O3 Pb1 Cu 125.4(2) . 6 556 ? O3 Pb1 Cu 167.7(3) 6 6 556 ? Cu Pb1 Cu 50.10(17) 1 554 6 556 ? Al Pb1 Cu 50.10(17) 1 554 6 556 ? O4 Pb1 Al 73.4(4) 1 554 6 556 ? O4 Pb1 Al 31.1(3) 6 556 6 556 ? OH8 Pb1 Al 33.6(4) . 6 556 ? Cl Pb1 Al 104.03(10) . 6 556 ? O1 Pb1 Al 79.8(4) . 6 556 ? O1 Pb1 Al 126.3(4) 1_554 6_556 ? OH6 Pb1 Al 143.1(3) 3 655 6 556 ? Si2 Pb1 Al 54.40(16) . 6 556 ? Si2 Pb1 Al 98.67(16) 1 554 6 556 ? O3 Pb1 Al 125.4(2) . 6 556 ? O3 Pb1 Al 167.7(3) 6 6 556 ? Cu Pb1 Al 50.10(17) 1 554 6 556 ? Al Pb1 Al 50.10(17) 1 554 6 556 ? Cu Pb1 Al 0.0(2) 6 556 6 556 ? O4 Pb1 OW9 143.6(11) 1 554 3 655 ? O4 Pb1 OW9 73.4(10) 6 556 3 655 ? OH8 Pb1 OW9 79.6(11) . 3 655 ? Cl Pb1 OW9 123.3(9) . 3 655 ? O1 Pb1 OW9 57.3(10) . 3 655 ? O1 Pb1 OW9 158.2(11) 1 554 3 655 ? OH6 Pb1 OW9 71.2(11) 3 655 3 655 ? Si2 Pb1 OW9 64.5(9) . 3 655 ? Si2 Pb1 OW9 166.2(10) 1 554 3 655 ? O3 Pb1 OW9 72.2(11) . 3 655 ? O3 Pb1 OW9 117.0(11) 6 3 655 ? Cu Pb1 OW9 113.0(11) 1 554 3 655 ? Al Pb1 OW9 113.0(11) 1 554 3 655 ? Cu Pb1 OW9 72.9(11) 6 556 3 655 ? Al Pb1 OW9 72.9(11) 6 556 3 655 ? O3 Pb2 O3 85.8(7) 6 . ? O3 Pb2 OH7 65.0(4) 6 . ?

O3 Pb2 OH7 65.0(4) . . ? O3 Pb2 Cl 79.4(3) 6 . ? O3 Pb2 Cl 79.4(3) . . ? OH7 Pb2 Cl 130.2(5) . . ? O3 Pb2 OH5 137.1(4) 6 5 665 ? O3 Pb2 OH5 137.1(4) . 5 665 ? OH7 Pb2 OH5 125.4(7) . 5 665 ? Cl Pb2 OH5 104.4(5) . 5 665 ? O3 Pb2 O2 52.9(5) 6 1 554 ? O3 Pb2 O2 130.0(6) . 1 554 ? OH7 Pb2 O2 110.1(4) . 1 554 ? Cl Pb2 O2 67.6(4) . 1 554 ? OH5 Pb2 O2 88.4(5) 5 665 1 554 ? O3 Pb2 O2 130.0(6) 6 . ? O3 Pb2 O2 52.9(5) . . ? OH7 Pb2 O2 110.1(4) . . ? Cl Pb2 O2 67.6(4) . . ? OH5 Pb2 O2 88.4(5) 5 665 . ? O2 Pb2 O2 132.6(7) 1 554 . ? O3 Pb2 O4 98.9(4) 6 2 664 ? O3 Pb2 O4 143.4(4) . 2 664 ? OH7 Pb2 O4 149.1(3) . 2 664 ? Cl Pb2 O4 66.1(2) . 2 664 ? OH5 Pb2 O4 49.1(4) 5 665 2 664 ? O2 Pb2 O4 46.4(5) 1 554 2 664 ? O2 Pb2 O4 100.5(4) . 2 664 ? O3 Pb2 O4 143.4(4) 6 5 666 ? O3 Pb2 O4 98.9(4) . 5 666 ? OH7 Pb2 O4 149.1(3) . 5 666 ? Cl Pb2 O4 66.1(2) . 5 666 ? OH5 Pb2 O4 49.1(4) 5 665 5 666 ? O2 Pb2 O4 100.5(4) 1 554 5 666 ? O2 Pb2 O4 46.4(5) . $\overline{5}$ 666 ? O4 Pb2 O4 56.8(5) 2 664 5 666 ? O3 Pb2 Si1 105.9(4) 6 . ? O3 Pb2 Si1 25.1(4) . . ? OH7 Pb2 Si1 87.4(3) . . ? Cl Pb2 Si1 69.49(14) . . ? OH5 Pb2 Si1 115.49(19) 5 665 . ? O2 Pb2 Si1 134.9(4) 1 554 . ? O2 Pb2 Si1 28.1(4) . . ? O4 Pb2 Si1 123.2(3) 2 664 . ? O4 Pb2 Si1 73.9(3) 5 666 . ? O3 Pb2 Si1 25.1(4) 6 1 554 ? O3 Pb2 Si1 105.9(4) . 1 554 ? OH7 Pb2 Si1 87.4(3) . 1 554 ? Cl Pb2 Si1 69.49(14) . 1 554 ? OH5 Pb2 Sil 115.49(19) 5 665 1 554 ? O2 Pb2 Si1 28.1(4) 1 554 1 554 ? O2 Pb2 Si1 134.9(4) . 1 554 ? O4 Pb2 Si1 73.9(3) 2 664 1 554 ? O4 Pb2 Si1 123.2(3) 5 666 1 554 ? Sil Pb2 Sil 120.2(3) . 1 554 ? O3 Pb2 Cu 74.1(4) 6 8 765 ?

```
O3 Pb2 Cu 31.5(3) . 8 765 ?
OH7 Pb2 Cu 33.5(3) . 8 765 ?
Cl Pb2 Cu 105.70(9) . 8 765 ?
OH5 Pb2 Cu 140.3(4) 5 665 8 765 ?
O2 Pb2 Cu 127.0(4) 1 554 8 765 ?
O2 Pb2 Cu 79.8(4) . 8 765 ?
O4 Pb2 Cu 170.4(3) 2 664 8 765 ?
O4 Pb2 Cu 125.6(3) 5 666 8 765 ?
Sil Pb2 Cu 54.55(17) . 8 765 ?
Sil Pb2 Cu 99.05(17) 1 554 8 765 ?
O3 Pb2 Al 74.1(4) 6 8 765 ?
O3 Pb2 Al 31.5(3) . 8 765 ?
OH7 Pb2 Al 33.5(3) . 8_765 ?
Cl Pb2 Al 105.70(9) . 8 765 ?
OH5 Pb2 Al 140.3(4) 5 665 8 765 ?
O2 Pb2 Al 127.0(4) 1 554 8 765 ?
O2 Pb2 Al 79.8(4) . 8 765 ?
O4 Pb2 Al 170.4(3) 2 664 8 765 ?
O4 Pb2 Al 125.6(3) 5 666 8 765 ?
Sil Pb2 Al 54.55(17) . 8 765 ?
Sil Pb2 Al 99.05(17) 1 554 8 765 ?
Cu Pb2 Al 0.00(16) 8 765 8 765 ?
O3 Pb2 Cu 31.5(3) 6 3 655 ?
O3 Pb2 Cu 74.1(4) . 3 655 ?
OH7 Pb2 Cu 33.5(3) . 3 655 ?
Cl Pb2 Cu 105.70(9) . 3 655 ?
OH5 Pb2 Cu 140.3(4) 5 665 3 655 ?
O2 Pb2 Cu 79.8(4) 1 554 3 655 ?
O2 Pb2 Cu 127.0(4) . 3 655 ?
O4 Pb2 Cu 125.6(3) 2 664 3 655 ?
O4 Pb2 Cu 170.4(3) 5 666 3 655 ?
Sil Pb2 Cu 99.05(17) . 3 655 ?
Sil Pb2 Cu 54.55(17) 1 554 3 655 ?
Cu Pb2 Cu 50.33(17) 8 765 3 655 ?
Al Pb2 Cu 50.33(17) 8 765 3 655 ?
O3 Pb2 Al 31.5(3) 6 3 655 ?
O3 Pb2 Al 74.1(4) . 3 655 ?
OH7 Pb2 Al 33.5(3) . 3 655 ?
Cl Pb2 Al 105.70(9) . 3 655 ?
OH5 Pb2 Al 140.3(4) 5 665 3 655 ?
O2 Pb2 Al 79.8(4) 1_554 3_655 ?
O2 Pb2 Al 127.0(4) . 3 655 ?
O4 Pb2 Al 125.6(3) 2 664 3 655 ?
O4 Pb2 Al 170.4(3) 5 666 3 655 ?
Si1 Pb2 Al 99.05(17) . 3 655 ?
Sil Pb2 Al 54.55(17) 1 554 3 655 ?
Cu Pb2 Al 50.33(17) 8 765 3 655 ?
Al Pb2 Al 50.33(17) 8 765 3 655 ?
Cu Pb2 Al 0.00(15) 3 655 3 655 ?
O3 Pb2 OW10 142.3(13) 6 3 ?
O3 Pb2 OW10 72.9(12) . 3 ?
OH7 Pb2 OW10 77.8(13) . 3 ?
Cl Pb2 OW10 124.6(11) . 3 ?
OH5 Pb2 OW10 70.2(13) 5 665 3 ?
```

O2 Pb2 OW10 157.0(13) 1 554 3 ? O2 Pb2 OW10 57.3(11) . 3 ? O4 Pb2 OW10 116.8(13) 2 664 3 ? O4 Pb2 OW10 72.1(13) 5 666 3 ? Sil Pb2 OW10 65.2(11) . 3 ? Sil Pb2 OW10 164.3(12) 1 554 3 ? Cu Pb2 OW10 71.5(13) 8 765 3 ? Al Pb2 OW10 71.5(13) 8 765 3 ? Cu Pb2 OW10 111.2(13) 3 655 3 ? Al Pb2 OW10 111.2(13) 3 655 3 ? OH5 Al O4 92.4(9) 1 556 . ? OH5 Al O3 91.6(9) 1_556 8_756 ? O4 Al O3 173.5(7) . 8_756? OH5 Al OH6 102.2(8) 1 556 . ? O4 Al OH6 91.7(8) . . ? O3 Al OH6 92.5(8) 8 756 . ? OH5 Al OH7 177.4(9) 1 556 3 645 ? O4 Al OH7 89.4(8) . 3 645 ? O3 Al OH7 86.5(8) 8 756 3 645 ? OH6 Al OH7 79.6(7) . 3 645 ? OH5 Al OH8 79.4(9) 1_556 1_556 ? O4 Al OH8 85.9(8) . 1 556 ? O3 Al OH8 89.8(8) 8 756 1 556 ? OH6 Al OH8 177.2(10) . 1 556 ? OH7 Al OH8 98.9(8) 3 645 1 556 ? OH5 Al Cu 38.6(6) 1 556 6 557 ? O4 Al Cu 94.0(5) . 6 557 ? O3 Al Cu 86.0(4) 8 756 6 557 ? OH6 Al Cu 140.6(6) . 6_557 ? OH7 Al Cu 139.3(5) 3 645 6 557 ? OH8 Al Cu 41.3(6) 1 556 6 557 ? OH5 Al Al 38.6(6) 1 556 6 557 ? O4 Al Al 94.0(5) . 6 557 ? O3 Al Al 86.0(4) 8_756 6_557 ? OH6 Al Al 140.6(6) . 6 557 ? OH7 Al Al 139.3(5) 3 645 6 557 ? OH8 Al Al 41.3(6) 1_556 6_557 ? Cu Al Al 0.0(3) 6 557 6 557 ? OH5 Al Al 141.4(6) 1 556 6 556 ? O4 Al Al 86.0(5) . 6 556 ? O3 Al Al 94.0(4) 8_756 6_556 ? OH6 Al Al 39.4(6) . 6 556 ? OH7 Al Al 40.7(5) 3 645 6 556 ? OH8 Al Al 138.7(6) 1 556 6 556 ? Cu Al Al 179.997(1) 6_557 6_556 ? Al Al Al 179.997(1) 6 557 6 556 ? OH5 Al Cu 141.4(6) 1 556 6 556 ? O4 Al Cu 86.0(5) . 6 556 ? O3 Al Cu 94.0(4) 8 756 6 556 ? OH6 Al Cu 39.4(6) . 6 556 ? OH7 Al Cu 40.7(5) 3 645 6 556 ? OH8 Al Cu 138.7(6) 1 556 6 556 ? Cu Al Cu 179.997(1) 6 557 6 556 ? Al Al Cu 179.997(1) 6 557 6 556 ?

```
Al Al Cu 0.0(3) 6 556 6 556 ?
OH5 Al Pb1 86.3(7) 1_556 1_556 ?
O4 Al Pb1 40.5(4) . 1 556 ?
O3 Al Pb1 134.8(5) 8 756 1 556 ?
OH6 Al Pb1 132.1(7) . 1_556 ?
OH7 Al Pb1 93.9(6) 3 645 1 556 ?
OH8 Al Pb1 45.4(7) 1 556 1 556 ?
Cu Al Pb1 64.95(8) 6 557 1 556 ?
Al Al Pb1 64.95(8) 6 557 1 556 ?
Al Al Pb1 115.05(8) 6 556 1 556 ?
Cu Al Pb1 115.05(8) 6 556 1 556 ?
OH5 Al Pb2 131.9(7) 1_556 3_645 ?
O4 Al Pb2 135.0(5) . 3_645 ?
O3 Al Pb2 40.4(5) 8 756 3 645 ?
OH6 Al Pb2 86.5(7) . 3 645 ?
OH7 Al Pb2 46.1(6) 3 645 3 645 ?
OH8 Al Pb2 94.1(6) 1_556 3_645 ?
Cu Al Pb2 115.16(8) 6 557 3 645 ?
Al Al Pb2 115.16(8) 6 557 3 645 ?
Al Al Pb2 64.83(8) 6 556 3 645 ?
Cu Al Pb2 64.83(8) 6_556 3_645 ?
Pb1 Al Pb2 122.27(16) 1 556 3 645 ?
Pb2 Cl Pb2 180.0 5 665 . ?
Pb2 Cl Pb1 89.52(4) 5 665 . ?
Pb2 Cl Pb1 90.48(4) . . ?
Pb2 Cl Pb1 90.48(4) 5 665 5 665 ?
Pb2 Cl Pb1 89.52(4) . 5 665 ?
Pb1 Cl Pb1 180.0 . 5_665 ?
O3 Si1 O3 112.4(11) 6 556 . ?
O3 Si1 O1 108.7(8) 6_556 . ?
O3 Si1 O1 108.7(8) . . ?
O3 Si1 O2 107.8(8) 6 556 . ?
O3 Si1 O2 107.8(8) . . ?
01 Sil 02 111.4(13) . . ?
O3 Si1 Pb2 131.3(7) 6_556 . ?
O3 Si1 Pb2 38.7(6) . . ?
01 Sil Pb2 117.4(2) . . ?
O2 Si1 Pb2 69.7(4) . . ?
O3 Si1 Pb2 38.7(6) 6 556 1 556 ?
O3 Si1 Pb2 131.3(7) . 1 556 ?
01 Si1 Pb2 117.4(2) . 1_556 ?
O2 Sil Pb2 69.7(4) . 1 556 ?
Pb2 Si1 Pb2 120.2(3) . 1 556 ?
O3 Si1 Pb1 134.0(7) 6 556 . ?
O3 Sil Pbl 58.0(6) . . ?
O1 Si1 Pb1 51.3(3) . . ?
02 Sil Pbl 118.0(5) . . ?
Pb2 Sil Pb1 72.48(6) . . ?
Pb2 Sil Pb1 167.3(2) 1 556 . ?
O3 Si1 Pb1 58.0(6) 6 556 1 556 ?
O3 Si1 Pb1 134.0(7) . 1 556 ?
O1 Si1 Pb1 51.3(3) . 1 556 ?
O2 Sil Pbl 118.0(5) . 1 556 ?
Pb2 Si1 Pb1 167.3(2) . 1 556 ?
```

```
Pb2 Si1 Pb1 72.48(6) 1 556 1 556 ?
Pb1 Si1 Pb1 94.8(2) . 1 556 ?
O1 Si2 O2 111.7(13) . 5 666 ?
O1 Si2 O4 109.4(7) . . ?
O2 Si2 O4 106.9(7) 5_666 . ?
O1 Si2 O4 109.4(7) . 6 556 ?
O2 Si2 O4 106.9(7) 5 666 6 556 ?
O4 Si2 O4 112.4(11) . 6 556 ?
01 Si2 Pb1 70.7(4) . 1_556 ?
O2 Si2 Pb1 118.2(2) 5 666 1 556 ?
O4 Si2 Pb1 39.0(5) . 1 556 ?
O4 Si2 Pb1 131.4(7) 6_556 1_556 ?
O1 Si2 Pb1 70.7(4) . . ?
O2 Si2 Pb1 118.2(2) 5 666 . ?
04 Si2 Pb1 131.4(7) . . ?
O4 Si2 Pb1 39.0(5) 6 556 . ?
Pb1 Si2 Pb1 119.9(3) 1 556 . ?
O1 Si2 Pb2 117.1(5) . 5 665 ?
O2 Si2 Pb2 51.3(3) 5 666 5 665 ?
O4 Si2 Pb2 133.2(6) . 5 665 ?
O4 Si2 Pb2 56.7(6) 6_556 5_665 ?
Pb1 Si2 Pb2 168.0(2) 1 556 5 665 ?
Pb1 Si2 Pb2 72.13(6) . 5 665 ?
O1 Si2 Pb2 117.1(5) . 5 666 ?
O2 Si2 Pb2 51.3(3) 5_666 5_666 ?
O4 Si2 Pb2 56.7(6) . 5 666 ?
O4 Si2 Pb2 133.2(6) 6 556 5 666 ?
Pb1 Si2 Pb2 72.13(6) 1 556 5 666 ?
Pb1 Si2 Pb2 168.0(2) . 5_666 ?
Pb2 Si2 Pb2 95.9(2) 5_665 5_666 ?
Si2 01 Si1 159.4(18) . . ?
Si2 O1 Pb1 81.7(5) . . ?
Sil Ol Pbl 105.9(5) . . ?
Si2 O1 Pb1 81.7(5) . 1 556 ?
Sil Ol Pbl 105.9(5) . 1 556 ?
Pb1 01 Pb1 130.3(8) . 1 556 ?
Si2 O2 Si1 157.4(17) 5 666 . ?
Si2 O2 Pb2 105.7(5) 5 666 . ?
Sil 02 Pb2 82.2(5) . . ?
Si2 O2 Pb2 105.7(5) 5 666 1 556 ?
Si1 O2 Pb2 82.2(5) . 1_556 ?
Pb2 02 Pb2 132.6(7) . 1_556 ?
Sil 03 Cu 127.0(9) . 8 765 ?
Si1 O3 Al 127.0(9) . 8 765 ?
Cu O3 Al 0.0(4) 8 765 8 765 ?
Sil 03 Pb2 116.2(8) . . ?
Cu O3 Pb2 108.0(6) 8 765 . ?
Al O3 Pb2 108.0(6) 8 765 .
                           ?
Sil 03 Pbl 98.6(7) . . ?
Cu O3 Pb1 103.6(6) 8 765 . ?
Al O3 Pb1 103.6(6) 8 765 . ?
Pb2 03 Pb1 97.0(4) . . ?
Si2 04 Al 127.0(9) . . ?
Si2 O4 Pb1 115.6(7) . 1 556 ?
```

Al O4 Pb1 108.3(6) . 1 556 ? Si2 O4 Pb2 99.6(7) . 5 666 ? Al O4 Pb2 102.7(6) . 5 666 ? Pb1 04 Pb2 97.5(5) 1 556 5 666 ? Cu OH5 Al 0.0(3) 6_556 6_556 ? Cu OH5 Cu 102.7(12) 6 556 1 554 ? Al OH5 Cu 102.7(12) 6 556 1 554 ? Cu OH5 Al 102.7(12) 6 556 1 554 ? Al OH5 Al 102.7(12) 6 556 1 554 ? Cu OH5 Al 0.0(5) 1 554 1 554 ? Cu OH5 Pb2 109.6(8) 6 556 5 665 ? Al OH5 Pb2 109.6(8) 6_556 5 665 ? Cu OH5 Pb2 109.6(8) 1 554 5 665 ? Al OH5 Pb2 109.6(8) 1 554 5 665 ? Cu OH5 Pb1 64.4(7) 6 556 . ? Al OH5 Pb1 64.4(7) 6 556 . ? Cu OH5 Pb1 64.4(7) 1 554 . ? Al OH5 Pb1 64.4(7) 1 554 . ? Pb2 OH5 Pb1 76.3(5) 5 665 . ? Cu OH6 Al 0.0(3) 6 556 6 556 ? Cu OH6 Al 101.1(11) 6 556 . ? Al OH6 Al 101.1(11) 6 556 . ? Cu OH6 Pb1 109.6(7) 6 556 3 645 ? Al OH6 Pb1 109.6(7) 6 556 3 645 ? Al OH6 Pb1 109.6(7) . 3 645? Cu OH6 Pb2 63.9(6) 6 556 3 645 ? Al OH6 Pb2 63.9(6) 6 556 3 645 ? Al OH6 Pb2 63.9(6) . 3_645 ? Pb1 OH6 Pb2 75.7(4) 3 645 3 645 ? Cu OH7 Al 0.0(3) 8 765 8 765 ? Cu OH7 Cu 98.7(10) 8 765 3 655 ? Al OH7 Cu 98.7(10) 8 765 3 655 ? Cu OH7 Al 98.7(10) 8 765 3 655 ? Al OH7 Al 98.7(10) 8 765 3 655 ? Cu OH7 Al 0.0(3) 3 655 3 655 ? Cu OH7 Pb2 100.4(8) 8 765 . ? Al OH7 Pb2 100.4(8) 8 765 . ? Cu OH7 Pb2 100.4(8) 3 655 . ? Al OH7 Pb2 100.4(8) 3 655 . ? Cu OH7 Pb1 57.8(4) 8 765 3 655 ? Al OH7 Pb1 57.8(4) 8_765 3_655 ? Cu OH7 Pb1 124.0(8) 3 655 3 655 ? Al OH7 Pb1 124.0(8) 3 655 3 655 ? Pb2 OH7 Pb1 131.3(3) . 3 655 ? Cu OH7 Pb1 124.0(8) 8_765 3_654 ? Al OH7 Pb1 124.0(8) 8 765 3 654 ? Cu OH7 Pb1 57.8(4) 3 655 3 654 ? Al OH7 Pb1 57.8(4) 3 655 3 654 ? Pb2 OH7 Pb1 131.3(3) . 3 654 ? Pb1 OH7 Pb1 92.1(5) 3 655 3 654 ? Cu OH8 Al 0.0(4) 1 554 1 554 ? Cu OH8 Cu 97.4(12) 1 554 6 556 ? Al OH8 Cu 97.4(12) 1 554 6 556 ? Cu OH8 Al 97.4(12) 1 554 6 556 ?

Al OH8 Al 97.4(12) 1 554 6 556 ? Cu OH8 Al 0.0(4) 6 556 6 556 ? Cu OH8 Pb1 101.0(8) 1 554 . ? Al OH8 Pb1 101.0(8) 1 554 . ? Cu OH8 Pb1 101.0(8) 6 556 . ? Al OH8 Pb1 101.0(8) 6 556 . ? Cu OH8 Pb2 122.7(10) 1 554 3 645 ? Al OH8 Pb2 122.7(10) 1 554 3 645 ? Cu OH8 Pb2 57.5(4) 6 556 3 645 ? Al OH8 Pb2 57.5(4) 6 556 3 645 ? Pb1 OH8 Pb2 131.8(4) . 3 645 ? Cu OH8 Pb2 57.5(4) 1_554 3_644 ? Al OH8 Pb2 57.5(4) 1 554 3 644 ? Cu OH8 Pb2 122.7(10) 6 556 3 644 ? Al OH8 Pb2 122.7(10) 6 556 3 644 ? Pb1 OH8 Pb2 131.8(4) . 3 644 ? Pb2 OH8 Pb2 91.7(5) 3 645 3 644 ? Pb1 OW9 Pb1 108.1(18) 3 645 3 644 ? Pb2 OW10 Pb2 106(2) 3 544 3 545 ? Pb2 OW10 Pb1 116.7(14) 3 544 5 665 ? Pb2 OW10 Pb1 116.7(14) 3_545 5_665 ? _diffrn_measured_fraction theta max 0.981 diffrn reflns theta full 15.68

______diffrn_measured_fraction_theta_full 0.981 __refine_diff_density_max 4.182 __refine_diff_density_min -3.601 __refine_diff_density_rms 0.532 Observed and calculated structure factors for bobmeyerite

Page	1
------	---

h	k	l 10Fo 10Fc 10s	h	k l	. 10Fo 10Fc	10s	h k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1 1	l0Fo	10Fc	10s
4	0	0 4117 4480 50	9	5 0	1852 2005	30	12 10	0	324	307	323	0	18	0	418	304	292	17	4	1	0	157	1
6	0	0 12/1 12/4 40	10	5 0	J 383 229	122	13 10	0	743	/34 520	149	1	10	0	610	200	95	1	5	1 1	1004	5027 1061	65 17
10	0	0 2021 2703 07	12	5 0) 133 131) 570 619	132	14 10	0	203	180	203	2 3	19	0	789	830	134	2	5	1 1	1094	373	22
12	0	0 1270 1329 32	13	5 0	1125 880	54	1 11	0	644	651	47	4	18	0	714	437	87	3	5	1 1	1230	1297	12
14	0	0 912 943 46	14	5 0	334 252	334	2 11	Ő	460	312	88	5	18	Ő	862	745	166	4	5	1 3	3492	3524	19
16	0	0 528 296 172	15	5 0	0 133	1	3 11	0	1445	1494	25	1	0	1	2510	2516	16	5	5	1	425	322	36
18	0	0 551 421 163	16	5 0	339 207	339	4 11	0	1322	1396	27	3	0	1	1627	1821	24	6	5	1	620	584	25
2	1	0 916 924 29	17	5 0	0 148	1	5 11	0	169	140	169	5	0	1	4443	4584	105	7	5	1	508	507	33
3	1	0 1077 989 34	0	6 0	1839 1742	22	6 11	0	637	689	48	7	0	1	219	78	56	8	5	1 1	1660	1689	23
4	1	0 863 970 27	1	6 0	697 771	26	7 11	0	1259	1131	28	9	0	1	2478	2610	44	9	5	1	231	155	126
5	1	0 1902 2037 30	2	6 0	1 2035 1836	15	8 II 9 11	0	636	532	24 87	13	0	1	207	1401	25	11	5	1 1	215	265	214
7	1	0 906 922 30	4	6 0	427 239	45	10 11	0	423	224	1.32	15	0	1	356	4.3	355	12	5	1	238	140	237
8	1	0 746 889 26	5	6 0	910 679	37	11 11	õ	1311	1281	54	17	Ō	1	493	254	133	13	5	1	717	643	59
9	1	0 1893 2181 31	6	6 0	608 398	57	12 11	0	1020	981	106	0	1	1	2647	2637	20	14	5	1	703	720	102
10	1	0 1206 1289 27	7	6 0	1849 1930	26	13 11	0	464	139	325	1	1	1	0	42	1	15	5	1	39	106	39
11	1	0 796 856 45	8	6 0	488 406	76	14 11	0	0	48	1	2	1	1	1888	1955	23	16	5	1	62	200	62
12	1	0 567 627 43	9	6 0	958 907	43	15 11	0	0	117	1	3	1	1	903	859	23	17	5	1	345	377	345
1.4	1	0 1260 1201 55	10	6 0	1 292 43	224	U 12 1 12	0	61/ 75/	435	/5	4	1	1	3618	3/08	39	1	6	1	336	42	41
15	1	0 1209 1301 33	12	6 0	1 326 399	176	2 12	0	1500	1554	28	6	1	1	575	538	20	23	6	1 1	1662	1449	15
16	1	0 204 408 204	13	6 0	862 852	69	3 12	Ő	554	548	63	7	1	1	1272	1407	12	4	6	1 1	1590	1632	15
17	1	0 344 138 221	14	6 0	408 285	407	4 12	0	613	591	49	8	1	1	473	383	30	5	6	1	658	693	24
18	1	0 451 542 140	15	6 0	0 229	1	5 12	0	706	657	42	9	1	1	1449	1540	30	6	6	1	0	26	1
0	2	0 980 1148 36	16	6 0	0 438	1	6 12	0	865	813	33	10	1	1	431	446	38	7	6	1 1	1414	1333	22
1	2	0 928 998 31	17	6 0	989 890	102	7 12	0	261	25	261	11	1	1	989	1052	25	8	6	1 1	1315	1333	24
2	2	0 3406 3365 30	2	7 0	1 196 279	186	8 12 9 12	0	98	147	97	13	1	1	230	798	28	10	6	1	1029	906	29
4	2	0 1388 1214 24	3	7 0	3128 3090	25	10 12	0	751	674	87	14	1	1	589	614	34	11	6	1 1	1151	1118	36
5	2	0 655 506 40	4	7 0	533 468	33	11 12	õ	357	406	288	15	1	1	859	736	50	12	6	1 1	1358	1375	29
6	2	0 2292 2376 24	5	7 0	341 191	116	12 12	0	528	402	241	16	1	1	381	376	103	13	6	1	361	434	360
7	2	0 208 103 208	6	7 0	1456 1459	30	13 12	0	0	41	1	17	1	1	734	655	57	14	6	1	426	532	217
8	2	0 937 915 33	.7	7 0	3128 3048	39	14 12	0	0	101	1	18	1	1	425	451	109	15	6	1	270	245	269
10	2	0 234 228 103	9	7 0	1 1447 1548	31 71	2 13	0	387	267	92	2	2	1	1948	2000	27	10	6	1	279	53	203
11	2	0 633 573 51	10	7 0	738 730	61	3 13	Ő	310	342	128	3	2	1	3205	3205	53	0	7	1	365	379	67
12	2	0 1063 1068 47	11	7 0	1401 1353	38	4 13	0	259	51	178	4	2	1	287	283	48	1	7	1 1	1462	1482	13
13	2	0 598 405 75	12	7 0	632 562	75	5 13	0	478	552	68	5	2	1	219	46	57	2	7	1 3	3646	3636	17
14	2	0 415 215 91	13	7 0	456 287	320	6 13	0	915	1028	39	6	2	1	227	161	45	3	7	1 1	1007	968	15
15	2	0 524 386 62	14	7 0	0 626 612	183	/ 13	0	382	290	/8	/	2	1	3164	3409	52	4	7	1	422	510	35
17	2	0 392 261 168	16	7 0	1 315 262	315	9 1 3	0	598	239	115	9	2	1	469	483	39	5	7	1 1	1758	1828	21
18	2	0 445 222 207	17	7 0	308 9	308	10 13	õ	1186	1166	60	10	2	1	403	461	45	7	7	1	571	395	32
1	3	0 1430 1461 16	1	8 0	907 1000	24	11 13	0	144	94	144	11	2	1	1581	1645	23	8	7	1	898	801	32
2	3	0 1399 1290 15	2	8 0	1601 1662	17	12 13	0	0	19	1	12	2	1	624	602	34	9	7	1	474	376	64
3	3	0 2594 2714 25	3	8 0	911 781	25	13 13	0	230	138	230	13	2	1	343	289	69	10	7	1	888	754	35
4	3	0 189 248 189	4 5	8 0	1352 1358	24	0 14 1 14	0	1/3/	1521	44	14	2	1	232	4/	129	12	7	1	4/8	232	69 37
7	3	0 2888 2950 28	6	8 0	1203 1058	56	2 14	Ő	802	677	43	16	2	1	395	360	155	13	7	1	308	370	308
8	3	0 523 508 62	7	8 0	1181 1074	53	3 14	0	1008	990	54	17	2	1	291	69	207	14	7	1	163	156	163
9	3	0 789 835 46	8	8 0	401 202	107	4 14	0	1275	1296	37	18	2	1	356	407	188	15	7	1	181	136	181
10	3	0 1850 1837 29	9	8 0	501 387	92	5 14	0	921	842	41	0	3	1	1483	1404	31	16	7	1	331	276	330
12	3	0 1629 1731 39	10	8 0	0 382 249	210	6 14 7 14	0	697	668 727	50	1	3	1	992	2620	20	1/	0	1 1	1062	1100	16
13	3	0 756 676 57	12	8 0	26 64	26	8 14	0	332	353	158	2	3	1	141	1020	141	2	8	1	913	813	19
14	3	0 1014 930 117	13	8 0	656 675	170	9 14	Ō	622	127	115	4	3	1	686	596	32	4	8	1	132	214	131
15	3	0 628 473 158	14	8 0	0 148	1	10 14	0	729	653	121	5	3	1	1164	1256	30	5	8	1 1	1214	1026	20
16	3	0 0 263 1	15	8 0	785 773	137	11 14	0	0	137	1	6	3	1	2041	2155	31	6	8	1 1	1312	1265	18
17	3	0 307 155 306	16	8 0	522 256	238	12 14	0	483	182	384	.7	3	1	511	469	30	.7	8	1 1	1105	1080	21
18	3	0 260 729 179	1	9 0	1 2092 2191	19	1 15 2 15	0	5/2	211	125	8	3	1	410	345 624	45	8	8	1	013	30 785	50
1	4	0 1027 1113 20	3	9 0	1131 1122	23	3 15	0		23	1	10	3	1	403	213	61	10	8	1 1	1643	1678	28
2	4	0 1658 1569 14	4	9 0	594 588	39	4 15	õ	707	743	228	11	3	1	676	753	37	11	8	1	890	775	38
3	4	0 111 144 111	5	9 0	1876 1845	19	5 15	0	530	455	101	12	3	1	510	584	47	12	8	1	275	138	275
4	4	0 4422 4484 38	6	9 0	1206 1355	52	6 15	0	263	136	263	13	3	1	780	784	35	13	8	1	0	369	1
5	4	0 1065 1017 30	-7	9 0	886 758	50	7 15	0	366	322	134	14	3	1	309	314	104	14	8	1	813	792	96
ю 7	4	0 506 346 72	8	9 0	1 355 157 1 1273 1222	135	8 15 9 15	0	982 533	211	201	15	3	1	620	789 599	56 149	15	8	1	0 448	34 451	⊥ 217
8	4	0 1753 1813 26	10	9 0	857 795	63	0 16	Ő	671	565	129	17	3	1	339	191	228	10	9	1 2	2525	2593	40
9	4	0 903 949 44	11	9 0	600 577	83	1 16	0	603	591	97	18	3	1	411	296	150	1	9	1 1	1889	1909	25
10	4	0 632 578 63	12	9 0	0 32	1	2 16	0	514	491	173	1	4	1	3534	3305	38	2	9	1	561	518	32
11	4	0 1197 1203 37	13	9 0	559 492	215	3 16	0	491	548	123	2	4	1	224	222	57	3	9	1	712	649	24
12 13	4 ⊿		14 15	9 U 9 n	1 / 34 4/0	101	4 16 5 1 C	U	605 255	53/ 1/0	∠64 254	3	4 1	1 1	もちろ 15つ	562 125	22	4	9 G	1	2049 720	2044	21
14 14	4	0 991 994 98	16	9 N	541 52	227	5 16 6 16	0	483	456	204 116	-4	4	1	3012	2925	50	6	9	1	806	855	24
15	4	0 823 692 120	0	10 0	2064 2070	30	7 16	0	292	210	291	6	4	1	1553	1690	25	7	9	1	516	385	42
16	4	0 0 262 1	1	10 0	1535 1565	23	8 16	0	557	470	95	7	4	1	353	370	45	8	9	1 1	1153	1052	31
17	4	0 468 476 258	3	10 0	2134 2096	21	9 16	0	441	115	321	8	4	1	0	206	1	9	9	1	674	440	87
⊥8 1	4	U 44/ 455 282 0 2200 2250 14	4	10 0	1184 1158 846 755	28 39	1 17	U	390	266 250	389 1	9 10	4 1	⊥ 1	2256	∠4⊥0 1110	31	11 11	ч	1 1	/33 491	661 475	53 75
2	5	0 796 622 23	6	10 0	563 450	79	2 1/ 3 17	0	560	157	109	11	4	1 1	21.3	167	130	12	9	1	376	272	186
3	5	0 2156 2043 15	7	10 0	894 930	47	4 17	Ő	237	482	237	12	4	1	519	563	45	13	9	1	0	68	1
4	5	0 815 746 67	8	10 0	926 767	46	5 17	0	570	230	144	13	4	1	942	938	33	14	9	1	487	640	232
5	5	0 2788 2703 27	9	10 0	160 238	159	6 17	0	840	957	116	14	4	1	901	818	46	15	9	1	534	526	163
/ 8	5	0 249 211 63	11 11	⊥∪ 0 10 ∩	010 033 0597 414	80 108	/ 1/ 8 17	0	0 300	150 238	1 300	15 16	4 4	⊥ 1	0 379	149 336	131	⊥6 1	9 10	⊥ 1 1	U 1153	1075	19
9	-		÷ +	0			ο ± /	~	200			± 0	-	-	~	200		-					

L L	1 100- 100- 10-	h h l 100- 100- 10-	-	1-	1 108-	108-	10-	b b	,	108- 105	- 10-	1-	1-	1	108-	108-	10-
пк	1 10FO 10FC 10S	n k i 10FO 10FC 10S	n	ĸ.	I IUFO	TOFC	105	пк	1	IUFO IUF	CIUS	n	ĸ	1.	LUFO	TOFC	105
2 10	1 420 497 49	1 17 1 759 832 55	15	4	2 657	740	89	4 10	2	1484 147	3 21	0	18	2	103	146	103
4 10	1 867 934 22	3 17 1 337 373 145	17	4	2 335	278	148	6 10	2	272 23	1 103	2	18	2	410 604	422 502	72
5 10	1 1568 1573 15	4 17 1 534 325 76	1	5	2 1893	1923	17	7 10	2	431 53	1 60	1	0	3 2	2451	2330	18
6 10 7 10	1 211 158 155	5 17 1 551 564 71	2	5	2 793	783	18	8 10	2	1020 84	1 32	3	0	3 :	1335	1195	20
8 10	1 1615 1599 27	7 17 1 223 165 223	4	5	2 1351	1513	18	10 10	2	389 36	1 73	7	0	3	0/9	10	25
9 10	1 943 860 41	1 18 1 476 502 135	5	5	2 3421	3477	33	11 10	2	376 31	8 111	9	0	3 2	2060	2196	46
10 10	1 306 199 163	2 18 1 559 501 78	6	5	2 781	734	24	12 10	2	258 4	8 257	11	0	3	185	189	184
12 10	1 906 973 86	4 18 1 0 220 1	8	5	2 1545	1560	27	14 10	2	611 36	7 139	15	0	3	0	15	1
13 10	1 519 495 169	5 18 1 0 296 1	9	5	2 2002	2080	30	1 11	2	733 79	7 32	17	0	3	351	260	350
14 10	1 0 145 1 1 386 146 385	0 0 2 6188 6328 54 2 0 2 1411 1447 17	11	5	2 2/5	261	95 106	2 11	2	1074 112	5 22	1	1	33	2506	2400	18
0 11	1 323 107 109	4 0 2 3225 3372 21	12	5	2 793	860	31	4 11	2	1057 110	2 22	2	1	3 :	1826	1691	12
1 11	1 1205 1247 20	6 0 2 1466 1452 28	13	5	2 1107	1145	45	5 11	2	148 21	2 148	3	1	3	824	779	18
3 11	1 1037 1150 21	10 0 2 1626 1621 37	14	5	2 460	223	103	7 11	2	852 73	5 32	4	1	3	559	2092 541	28
4 11	1 179 75 178	12 0 2 350 170 109	16	5	2 474	623	135	8 11	2	1214 123	1 27	6	1	3	421	338	40
5 11 6 11	1 362 319 58	14 0 2 951 974 36 16 0 2 412 360 168	17	5	2 399	322	170	9 11 10 11	2	363 25	3 82	7	1	3	962 413	1001 342	19 44
7 11	1 1080 974 32	1 1 2 1631 1455 11	1	6	2 623	574	23	11 11	2	387 45	4 105	9	1	3 :	1369	1410	17
8 11	1 651 639 40	2 1 2 209 68 67	2	6	2 2798	2595	25	12 11	2	785 81	2 103	10	1	3	423	376	46
9 11 10 11	1 525 414 78	4 1 2 1223 1165 13	3	6 6	2 846	1698	20	13 11 14 11	2	574 14	5 I 6 154	11	1	3	866 127	926 123	23 127
11 11	1 329 312 187	5 1 2 1723 1706 15	5	6	2 520	502	32	1 12	2	1696 179	7 27	13	1	3	599	620	44
12 11	1 294 290 294	6 1 2 484 400 28 7 1 2 1057 1147 22	6	6	2 1305	1337	19 27	2 12	2	1435 143 1135 111	7 19 6 24	14	1	3	572	521 669	103
14 11	1 0 45 1	8 1 2 1663 1744 28	8	6	2 386	64	59	4 12	2	628 56	7 40	16	1	3	133	300	132
1 12	1 778 726 29	9 1 2 2128 2263 22	9	6	2 1234	1192	37	5 12	2	1030 100	1 27	17	1	3	644	586	64
2 12 3 12	1 431 515 53	10 1 2 276 221 66 11 1 2 892 994 21	10	6 6	2 205	848	205	6 12 7 12	2	470 42	2 35	1	2	3.	1852	44	113
4 12	1 618 645 34	12 1 2 1546 1571 21	12	6	2 215	113	202	8 12	2	601 56	3 69	3	2	3 2	2526	2468	13
6 12 7 12	1 1147 1127 25	13 1 2 806 854 23 14 1 2 683 749 35	13 14	6	2 738	639 185	46 1	9 12 10 12	2	427 43	1 89	4	2	3	533 220	412	27
8 12	1 545 476 49	15 1 2 370 215 117	15	6	2 566	502	111	11 12	2	418 34	4 121	6	2	3	220	41	1
9 12	1 328 22 156	16 1 2 441 645 125	16	6	2 490	520	131	12 12	2	818 40	9 104	7	2	3 2	2899	2887	19
10 12	1 425 336 160	1/ 1 2 181 /8 181 0 2 2 1420 1546 17	2	7	2 13/1	1463 371	14 43	13 12	2	439 52	5 1	8	2	3.	356	363	19 53
12 12	1 453 248 220	1 2 2 326 129 39	3	7	2 1892	1943	18	2 13	2	771 80	3 36	10	2	3	597	540	31
13 12	1 439 57 245	2 2 2 5016 5031 21	4	7	2 517	433	33	3 13	2	221 4	0 179	11	2	3 :	1332	1376	18
0 13	1 977 923 48	4 2 2 252 15 46	6	7	2 799	633	26	5 13	2	817 83	4 33	13	2	3	313	264	106
1 13	1 1025 1078 24	5 2 2 706 722 20	7	7	2 2097	2199	27	6 13	2	788 81	3 35	14	2	3	340	36	147
2 13	1 250 115 117	6 2 2 2992 3102 23 7 2 2 548 510 27	8	7	2 886	119	25	7 13	2	415 29	1 125	15 16	2	3	469 412	549 356	72
4 13	1 631 608 36	9 2 2 397 279 41	10	7	2 330	328	75	9 13	2	807 67	6 53	17	2	3	196	55	195
5 13	1 1076 1157 23	10 2 2 1038 985 17	11	7	2 982	932	38	10 13	2	1172 103	4 44	1	3	3	886	817	17
7 13	1 247 278 120	12 2 2 958 964 31	13	7	2 305	73	318	12 13	2	363 2	7 363	2	3	3	0 2004	97	1
8 13	1 171 304 171	13 2 2 692 691 30	14	7	2 0	152	1	0 14	2	1077 126	0 59	4	3	3	624	590	25
9 13	1 722 563 78	14 2 2 245 245 137 15 2 2 133 257 132	15	7	2 355	262	1229	1 14 2 14	2	675 72	5 41	5	3	3.	1722	1902	2.0
11 13	1 604 616 153	16 2 2 361 457 182	1	8	2 1942	1943	19	3 14	2	476 41	4 73	7	3	3	618	479	28
12 13	1 0 171 1	17 2 2 427 174 99	2	8	2 705	580	26	4 14	2	956 102	3 36	8	3	3	302	303	64 32
1 14	1 918 1023 28	2 3 2 0 137 1	5	8	2 1845	1876	14	6 14	2	425 55	5 82	10	3	3	269	169	78
2 14	1 0 75 1	3 3 2 3513 3350 31	6	8	2 856	714	26	7 14	2	360 16	4 100	11	3	3	671	671	29
3 14 4 14	1 527 615 51	4 3 2 968 831 19 5 3 2 935 869 20	8	8 8	2 3/6	3/2	63 154	8 14 9 14	2	328 15	7 188	1.2	3	3	506 612	490 706	41 65
5 14	1 949 966 28	6 3 2 567 470 22	9	8	2 870	806	28	10 14	2	507 43	1 117	14	3	3	564	290	68
6 14 7 14	1 904 856 38 1 507 478 60	7 3 2 1842 1922 19 8 3 2 1193 1191 22	10	8	2 537	383	45 35	11 14	2	0 17	9 1	15 16	3	3	639 511	666 574	62 79
8 14	1 661 561 55	9 3 2 306 351 72	12	8	2 453	359	70	2 15	2	276 31	5 256	1	4	3 2	2376	2366	15
9 14	1 789 758 46	10 3 2 1002 1042 45	13	8	2 378	471	346	3 15	2	419 26	8 101	2	4	3	490	394	31
10 14 11 14	1 126 224 126	11 3 2 1310 1315 23 12 3 2 538 638 66	14 15	8 8	2 92	403 903	92 223	4 15 5 15	2	260 4	3 2 6 0	3 4	4	3	646 0	565 90	25
12 14	1 486 434 220	13 3 2 353 271 75	16	8	2 0	280	1	6 15	2	340 40	5 132	5	4	3 2	2278	2251	20
0 15	1 0 345 1	14 3 2 414 415 108 15 3 2 239 216 239	1	9 9	2 2192	2277	16 84	7 15	2	489 8	7 103 8 94	6	4	3:	408	1265	17
3 15	1 1028 1090 38	16 3 2 723 668 87	3	9	2 532	577	38	9 15	2	235 3	9 234	8	4	3	274	205	72
4 15	1 188 136 187	17 3 2 0 154 1	4	9	2 403	376	51	10 15	2	228 19	3 228	9	4	3 2	2056	2132	24
6 15	1 261 143 201	1 4 2 1295 1311 13	5	9	2 1503	1515	18	1 16	∠ 2	692 82	3 59	11	4	3	223	210	35 194
7 15	1 628 490 53	2 4 2 334 367 41	7	9	2 341	313	88	2 16	2	592 52	1 69	12	4	3	448	451	87
8 15 9 15	1 203 150 203 1 355 348 168	3 4 2 1033 977 16 4 4 2 2633 2563 29	8 9	9	2 573 2 1918	472 1855	41 25	316 416	2	964 96 210 30	9 85	13 14	4	3	840 812	861 694	71
10 15	1 401 20 400	5 4 2 1645 1787 18	10	9	2 1103	1043	37	5 16	2	563 64	0 72	15	4	3	218	136	217
1 16	1 508 568 82	6 4 2 1299 1138 30 7 4 2 274 289 75	11	9	2 229	207	228	6 16 7 16	2	491 55	1 90	16	4	3	204	315	204
3 16	1 609 725 65	8 4 2 790 690 26	13	9	2 1044	896	76	8 16	2	488 44	8 117	1	5	3	698	757	23
4 16	1 599 563 65	9 4 2 798 721 28	14	9	2 641	737	126	1 17	2	492 31	7 89	2	5	3	431	354	39
5 ⊥6 6 16	1 479 483 81	10 4 2 912 927 29 11 4 2 904 980 26	12 T2	9 10	2 2367	101 2363	3∠6 30	2 1/ 3 17	2 2	235 9	3 115	3 4	э 5	3 3	1152 2560	1040 2709	⊥6 24
7 16	1 462 287 85	12 4 2 246 90 123	1	10	2 312	157	77	4 17	2	391 18	2 114	5	5	3	318	235	58
8 16 9 16	1 938 815 96	13 4 2 435 351 71	2	10 10	2 522	334	43	5 17 6 17	2	499 3	4 92	6	5	3	492	453	37
~ ±0	220 ILL		J .	- V		+ - + 1	20	U 1/	4	JJ-1 00	- 00		J	~	0 T .J	J 4 1	29

Observed and calculated structure factors for bobmeyerite

Obser	ved and	d calculat	ed structure	e facto	rs fo	or bobmey	er	ite												Pag	re 3
h k	1 10F	0 10Fc 10s	h k .	L 10Fo	10Fc	10s	h	k	1	10Fo 10Fc	10s	h k	1	10Fo	10Fc	10s	h	k	1 10F	o 10Fc	10s
8 5	3 158	5 1588 24	3 11 3	3 1025	1015	27	0	2	4	745 591	32	11 7	4	1100	1030	75	5	15	4 52	3 351	91
95	3 290) 66 74	4 11 3	3 65 2 2 5 2	38	65	1	2	4	697 587	24	12 7	4	209	430	209	6	15	4 0	106	1
10 5	3 105	5 240 206	5 II . 6 11 ·	3 352	251 970	74 29	2	2	4	2506 2508	14 22	13 /	4	216	238 484	215 262	1	16 16	4 Z 4 54	/ 452 1 472	91
12 5	3 38	5 73 268	7 11 3	3 903	808	38	4	2	4	811 722	24	0 8	4	1577	1454	51	2	16	4 203	3 382	203
13 5	3 66	5 611 95	8 11 3	3 184	461	183	5	2	4	207 252	131	1 8	4	707	654	35	1	0	5 148	3 1415	25
14 5 15 5	3 74	1 670 84) 70 1	9 11 3	3 526	369	85 213	6	2	4	293 119	17	28	4	1257	1239	21 59	3	0	5 126	1 1290	27
15 J 16 5	3 36	5 175 365	11 11 3	3 535	287	124	8	2	4	883 733	46	4 8	4	955	929	25	7	0	5 205 5 351) 119	104
1 6	3 393	92 45	12 11 3	3 263	301	263	9	2	4	228 94	119	58	4	1008	996	29	9	0	5 150	1 1666	40
26	3 21	7 125 99	13 11 3	3 681	554	100 1	1	2	4	528 426	46	68	4	891	816	27	11	0	5 37	9 144	379
4 6	3 123	1327 23 1218 18	2 12 3	3 365	357	75 1	2	2	4	769 816	45	88	4	261	179	153	0	1	5 90. 5 151) 1482	25
56	3 60	5 544 30	3 12 3	8 841	867	43 1	3	2	4	349 371	146	98	4	424	333	77	1	1	5 (56	1
6676	3 14	3 30 147	4 12 3	3 585	528	47 1	4	2	4	349 173	148	10 8	4	226	183	225	2	1	5 117	1103	19
8 6	3 117	1050 27 1162 32	6 12 3	3 981	1016	38	1	3	4	1003 959	19	12 8	4	0	47	102	4	1	5 195:	L 1993	17
96	3 88	838 28	7 12 3	3 981	995	37	2	3	4	713 714	25	13 8	4	596	518	124	5	1	5 41	5 427	55
10 6	3 23	L 44 230	8 12 3	3 474	421	176	3	3	4	1924 1869	14	1 9	4	1496	1581	20	6	1	5 36	1 348	65
12 6	3 126:	L 1007 29 L 1250 56	10 12 3	3 657	756	90	5	3	4	889 792	23	39	4	749	830	34	8	1	5 34°	7 316	81
13 6	3 56	5 357 118	11 12 3	3 368	361	254	6	3	4	1133 1048	19	4 9	4	515	437	47	9	1	5 83	5 872	82
14 6	3 49	5 442 141	12 12 3	3 211	222	210	7	3	4	1985 2035	21	59	4	1263	1328	28	10	1	5 37	7 264	139
16 6	3 210) 183 1) 563 209	1 13 3	3 871	831	43	9	3	4	652 635	32	7 9	4	598	550	20 48	12	1	5 /0. 5 9:	3 97	93
0 7	3 11	204 118	2 13 3	3 160	118	159 1	0	3	4	1384 1391	40	89	4	291	145	171	13	1	5 63	7 603	72
1 7	3 103	3 1047 20 1 2117 27	3 13 3	3 829	821	52 1	1	3	4	1324 1307	26	99	4	964	969	60 105	14	1	5 41) 5 121) 448	125
3 7	3 99	5 920 22	5 13 3	3 1069	1077	41 1	.2	3	4	433 504	88	10 9	4	83	421	83	2	2	5 121 5 1) 1122	20
4 7	3 50	5 452 37	6 1 3 3	3 371	129	107 1	4	3	4	664 718	66	12 9	4	87	31	87	3	2	5 198	3 1902	17
57	3 63	9 573 30	7 13 3	3 174	228	174 1	.5	3	4	258 360	258	13 9	4	393	382	236	4	2	5 25	3 142	106
7 7	3 39	7 341 50	9 13 3	3 566	482	105	1	4	4	780 720	25	1 10	4	1144	1161	25	6	2	5 33	1 190	72
8 7	3 82	1 732 32	10 13 3	3 0	327	1	2	4	4	1014 987	19	3 10	4	1499	1571	21	7	2	5 204	1 2051	24
9 /	3 45	1 286 60 639 52	11 13 .	5 522 3 818	535 867	164 53	3	4	4	U 151 3186 3159	17	4 10 5 10	4	905 579	850 574	31 56	8	2	5 /41	3 760 3 321	189
11 7	3 24	198 248	2 14 3	3 0	45	1	5	4	4	585 612	34	6 10	4	430	358	73	10	2	5 33	2 241	167
12 7	3 721	3 753 89	3 14 3	3 686	697	73	6	4	4	321 169	67	7 10	4	711	709	52	11	2	5 105	3 1122	45
13 7	3 51.	1 314 135 127 1	5 14 3	5 465 3 918	496 891	94 45	8	4	4	1210 1235	69 19	9 10	4	/44	176	49	12	2	5 49. 5 I	2 429) 198	101
15 7	3 41	7 156 191	6 14 3	3 839	746	118	9	4	4	743 713	29	10 10	4	604	478	94	14	2	5 30) 37	263
28	3 91	901 23 700 30	7 14 3	3 412	382	99 1 89 1	1	4	4	538 419 865 859	48 45	11 10 12 10	4	409	329 228	201 317	0	3	5 121: 5 32:	3 1129) 378	28
4 8	3 () 185 1	9 1 4 3	3 735	646	81 1	2	4	4	294 8	293	1 11	4	339	484	107	2	3	5 2093	2 2146	17
58	3 118) 1017 22	10 14 3	3 591	512	131 1	3	4	4	348 210	262	2 11	4	223	186	223	3	3	5 0) 56	1
ь 8 78	3 111	2 975 23	1 15 .	3 494 3 739	319 739	58 1	.4	4	4	709 745 573 534	58 73	3 11 4 11	4	1055	994	45	4	3	5 291 5 933	2 100	25
8 8	3 (46 1	2 15 3	3 521	102	84	1	5	4	1535 1520	16	5 11	4	324	66	186	6	3	5 123	1262	21
98	3 72	5 604 36	3 15 3	3 1036	935	116	2	5	4	371 337	59	6 11	4	444	490	85	7	3	5 44	5 302	53
10 8	3 1444	1 1428 20 7 595 60	4 15 . 5 15 3	3 216	234	215	4	5 5	4	484 426	43	8 11	4	932 1050	867 977	41	9	3	5 40'	7 398	105
12 8	3 40	3 154 198	6 1 5 3	3 406	140	111	5	5	4	2074 2082	18	9 11	4	449	394	132	10	3	5 30	9 130	309
13 8	3 53	L 321 130	7 15 3	3 572	479	73	6	5	4	209 254	141	10 11	4	1076	189	1	11	3	5 56	495	81
14 0	3 343	3 27 342	1 16 3	3 420	468	110	8	5	4	718 712	31	0 12	4	521	295	220	13	3	5 45:	, 420 L 538	110
0 9	3 211	2156 29	2 16 3	3 343	243	149	9	5	4	1421 1451	27	1 12	4	675	621	82	1	4	5 183	L 1762	17
29	3 159	9 1687 18 3 412 56	316. 416 [°]	3 614 3 594	689 515	72 1	1	5	4	355 176 188 77	82 187	2 12	4	469	1194 390	51 104	2	4	5 26) 99 5 163	105
3 9	3 59	517 37	5 16 3	3 376	385	128 1	2	5	4	481 447	70	4 12	4	346	415	166	4	4	5 10	2 68	102
4 9	3 220	5 2235 30	6 16 3	3 578	401	105 1	3	5	4	779 675	64	5 12	4	477	479	106	5	4	5 176	2 1706	18
69	3 80) 755 28	1 17 3	3 624	765	72 1	.5	5	4	90 102	90	7 12	4	16	15	16	7	4	5 15	1 232	154
79	3 433	3 298 52	2 17 3	3 454	194	104	0	6	4	827 869	36	8 12	4	231	135	230	8	4	5 363	2 108	96
89	3 884	1 824 32 367 48	3 17 3	3 542 1 6764	348	98 57	1	6	4	878 819	25 19	9 12 10 12	4	0 530	121 508	1 169	9 10	4	5 145: 5 75.	3 1535 1 696	32
10 9	3 60	5 614 55	2 0 4	1 703	663	33	3	6	4	1219 1260	20	1 13	4	0	289	1	11	4	5 22:	L 94	221
11 9	3 51	2 416 105	4 0 4	1 3089	3135	23	4	6	4	411 305	63	2 13	4	396	422	127	12	4	5 43	379	113
12 9	3 45	48 187	8 0 4	1 1905	546 1957	52 36	5	6 6	4	309 406 478 382	75 46	3 13 4 13	4	0	252 70	1	13	4	5 296) 5 296)	2 621	2.4
14 9	3 452	2 518 163	10 0 4	1 1035	972	59	7	6	4	1382 1377	20	5 13	4	532	429	87	1	5	5 51	3 553	46
1 10	3 84	5 912 32	12 0 4	1 0	223	1	8	6	4	440 332	50	6 13	4	739	801	61 254	2	5	5 I 5 05') 185	1
3 10	3 71	, 558 38) 540 36	1 1 4	1 1475	1418	16 1	0	6	4	324 64	100	8 13	4	359	400	148	4	5	5 194	5 2041	18
4 10	3 89	3 901 29	2 1	1 715	556	25 1	1	6	4	789 742	114	9 13	4	339	180	154	5	5	5 24	5 222	126
5 IU 6 10	3 135 3 24'	1 1316 - 25 2 - 111 - 134	3 1 4 4 1 4	1 819 1 678	629 621	23 1 27 1	.2	ь 6	4 4	432 307 632 664	98 107	U 14 1 14	4	913 1199	999 1191	/1 107	6 7	5 5	5 451 5 22') 403 7 257	2.27
7 10	3 41	5 149 63	5 1 4	1 1422	1357	24 1	4	6	4	353 226	353	2 14	4	558	528	147	8	5	5 106	3 1039	35
8 10	3 138	7 1354 43	6 1 4	1 748	646 691	29	1	7	4	914 908	25	3 14	4	661	758	70	10	5	5 I 5 01'	204	1
10 10	3 45	, ,80 35 7 177 167	8 1 4	1 642	544	29 32	∠ 3	7	4	2040 2092	21	4 14 5 14	4	∍∠8 654	578 644	108	11	5	5 01 5 12	, öib 3 191	127
11 10	3 54	3 37 118	914	1 1569	1582	26	4	7	4	376 406	62	6 14	4	565	526	91	12	5	5 42	3 133	113
12 10 13 10	3 84	426 255	10 1 4	1 1009 1 655	965 642	28 46	5 6	7	4 4	189 66 1180 1041	189 26	714 814	4	564 336	577 286	⊥66 264	13 1	5 6	5 411 5 21	2 391 44	119 211
14 10	3 (158 1	12 1	1 670	504	56	7	7	4	2160 2216	22	1 15	4	441	213	113	2	6	5 30	7 86	92
0 11	3 104) 69 1 7 1136 25	13 1 4	1 634 1 052	568	68 46	8 0	7	4	1173 1101	26	2 15	4	345	316	232	3	6	5 94	1 844	27
2 11	3 111	5 1166 26	15 1 4	1 355	129	355 1	.0	7	4	642 542	68	4 15	4	487	580	102	5	6	5 463	2 488	56

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Obse	rved	l and	calcul	ated	stru	ictu	re	facto	ors fo	or bo	bmeyeri	te															Pag	e 4
6 6 5 2.26 6.22 51 7.2 2 2 6.2639 2.8 7.6 6 6.11 6.11 6.14 2.11 1.2 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	h k	1	10Fo	10Fc 1	0s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s	h	k	1	10Fo	10Fc	10s
1 7 5 983 966 27 6 11 5 7 6 530 429 87 4 2 7 0 214 1 3 7 5 657 610 39 8 11 5 385 505 137 1 3 6 417 499 7 6 1204 1247 448 90 7 7 7 6 1204 1247 448 90 7 7 7 6 1204 1247 141 42 7	6 6 7 6 9 6 10 6 11 6 12 6 0 7	5 5 5 5 5 5 5 5 5 5 5	226 1034 841 643 84 784 975 212	22 2 913 846 632 78 725 896 271 2	26 44 47 62 83 57 65 12	9 10 0 1 2 3 4 5	10 10 11 11 11 11 11 11	5 5 5 5 5 5 5 5 5 5 5	622 200 784 855 657 0 337	591 128 86 786 938 778 83 258	72 199 1 59 55 63 1 149	2 3 4 5 7 8 9	2 2 2 2 2 2 2 2 2 2	ର ର ର ର ର ର ର	2639 216 0 224 1582 218 0 0	2685 218 174 332 1673 241 90 104	23 215 1 223 29 218 1 1	7 8 9 10 1 2 3 4	6 6 7 7 7 7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	671 142 660 295 749 0 1073 297	637 11 696 104 794 156 1097 217	84 142 94 295 50 1 50 195	4 5 7 8 1 2 3	1 1 1 2 2 2	7 7 7 7 7 7 7 7	1209 0 432 494 85 785 0 1209	1235 210 131 461 206 836 36 1168	43 1 134 113 85 51 1 36
7 7 5 335 242 133 3 12 5 6 7 6 18 6 101 1023 42 1 3 7 264 386 264 386 73 1 8 6 101 18 2 8 6 305 410 1188 2 8 6 305 410 118 2 8 3 7 13 7 12 2 8 12 7 5 567 514 46 6 12 5 81 14 14 7 12 5 817 842 64 9 3 6 621 588 6 610 179 1 7 5 566 513 543 642 113 5 586 562 181 13 6 611 789 96 7 8 6 0 98 1 1 1 1 1 1 1 1 1 1 1 1<1	1 7 2 7 3 7 4 7 5 7 6 7	5 5 5 5 5 5 5 5	983 2093 657 338 286 1171	966 2202 610 319 254 1 1215	27 18 39 84 20 71	6 7 9 1 2	11 11 11 11 12 12	5 5 5 5 5 5 5	714 747 385 545 632 380	702 667 505 305 496 360	58 62 137 99 76 145	10 11 2 3 4	2 2 3 3 3 3	0 0 0 0 0 0 0 0 0 0	447 0 417 0 1446 345	545 208 499 155 1441 291	117 1 73 1 31 111	5 6 7 8 9 0	7 7 7 7 8	6 6 9 9 9 9 9 9 9 9 9 9 9	530 460 1204 533 142 787	429 378 1247 448 14 627	87 104 41 90 142 68	4 5 7 8 0	2 2 2 2 2 3	7 7 7 7 7 7	0 277 0 1379 473 416	214 35 88 1453 531 461	1 276 1 44 233 151
2 8 5 813 742 35 0 13 5 583 662 123 11 3 6 16 78 8 6 0 179 1 7 3 7 315 266 314 8 5 527 489 65 1 3 5 105 60 104 1 4 6 933 794 45 1 9 6 1188 1268 42 2 4 7 0 233 1 5 8 5 788 5 599 740 98 4 6 298 373 183 3 9 6 545 340 7 0 297 3 4 7 0 297 3 4 7 0 1023 3 5 556 552 77 1 14 5 544 744 7 0 197 1 10 10 10 110 10 10 110 10 10	7 7 8 7 9 7 10 7 11 7 12 7	5 5 5 5 5 5 5 5	335 331 434 567 0 566	242 1 445 1 270 1 514 174 623	33 52 01 84 1 88	3 4 5 6 7 8	12 12 12 12 12 12 12	5 5 5 5 5 5	617 295 393 831 878 415	690 432 205 748 842 340	89 295 140 80 64 415	5 6 7 8 9 10	3 3 3 3 3 3 3 3 3	9 9 9 9 9 9 9 9 9 9	505 341 1140 683 0 621	369 289 1092 651 232 598	73 143 39 72 1 81	1 2 3 4 5 6	8 8 8 8 8 8	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1013 395 817 261 1098 430	1023 410 785 181 1093 379	42 118 57 261 43 118	1 2 3 4 5 6	3 3 3 3 3 3 3 3	7 7 7 7 7 7	264 1334 0 182 563 904	386 1356 53 296 540 988	264 33 1 182 84 63
8 8 5 213 14 213 6 13 5 19 6 803 809 51 5 9 6 1149 1183 64 6 4 7 696 955 82 10 8 5 155 77 1 14 5 0 72 1 7 4 6 00 143 1 7 9 6 0 1155 14 7 14 5 017 7 4 6 00 143 1 7 9 6 0 1155 14 7 14 5 0 72 1 7 4 6 0 143 1 0 6 128 1357 162 1 5 7 142 20 10 10 4 6 303 38 143 1 10 6 144 1058 10 10 6 124 166 120 6 10 10 10 10 10 10 10 </td <td>2 8 3 8 4 8 5 8 6 8 7 8</td> <td>5 5 5 5 5 5 5 5 5</td> <td>813 527 280 764 843 497</td> <td>742 489 155 1 580 800 600</td> <td>35 65 41 57 45 85</td> <td>0 1 2 3 4 5</td> <td>13 13 13 13 13 13</td> <td>5 5 5 5 5 5 5 5 5</td> <td>583 616 105 593 259 599</td> <td>662 783 60 622 406 740</td> <td>123 110 104 100 259 98</td> <td>11 0 1 2 3 4</td> <td>3 4 4 4 4 4</td> <td>6 6 6 6 6 6 6 6</td> <td>816 1513 693 0 298 1396</td> <td>789 1474 794 40 373 1474</td> <td>96 51 45 1 183 34</td> <td>7 8 1 2 3 4</td> <td>8 9 9 9 9 9</td> <td>6 6 6 6 6 6 6 6</td> <td>0 0 1188 202 545 320</td> <td>179 98 1268 65 340 290</td> <td>1 42 201 79 180</td> <td>7 1 2 3 4 5</td> <td>3 4 4 4 4 4</td> <td>7 7 7 7 7 7 7</td> <td>315 1097 0 297 1043</td> <td>266 1092 233 269 36 1055</td> <td>314 39 1 255 46</td>	2 8 3 8 4 8 5 8 6 8 7 8	5 5 5 5 5 5 5 5 5	813 527 280 764 843 497	742 489 155 1 580 800 600	35 65 41 57 45 85	0 1 2 3 4 5	13 13 13 13 13 13	5 5 5 5 5 5 5 5 5	583 616 105 593 259 599	662 783 60 622 406 740	123 110 104 100 259 98	11 0 1 2 3 4	3 4 4 4 4 4	6 6 6 6 6 6 6 6	816 1513 693 0 298 1396	789 1474 794 40 373 1474	96 51 45 1 183 34	7 8 1 2 3 4	8 9 9 9 9 9	6 6 6 6 6 6 6 6	0 0 1188 202 545 320	179 98 1268 65 340 290	1 42 201 79 180	7 1 2 3 4 5	3 4 4 4 4 4	7 7 7 7 7 7 7	315 1097 0 297 1043	266 1092 233 269 36 1055	314 39 1 255 46
2 9 5 309 331 124 2 0 6 796 709 48 11 4 6 470 551 115 3 10 6 811 701 60 4 5 7 1250 1242 41 3 9 5 490 425 79 4 0 6 1563 1630 81 1 5 6 1144 1058 30 4 10 6 811 701 60 4 5 7 0 107 1 4 9 5 144 101 32 6 705 724 75 3 5 6 715 686 48 6 10 6 175 136 174 1 6 9 5 746 750 59 2 1 6 985 30 5 6 188 114 3 11 6 114 108 114 108 114 108 114 108 114	8 8 9 8 10 8 11 8 0 9 1 9	5 5 5 5 5 5 5 5	213 556 1189 636 1615 1043	14 2 552 1155 601 1677 1089	13 77 74 74 37 32	6 1 2 3 4 0	13 14 14 14 14 0	5 5 5 5 5 6	195 584 0 511 0 2866	113 734 72 493 476 2855	194 108 1 155 1 40	5 6 7 8 9 10	4 4 4 4 4	9 9 9 9 9 9 9 9 9 9	803 650 0 389 354 602	809 620 143 398 492 520	51 65 1 143 354 83	5 6 7 0 1 2	9 9 10 10 10	9 9 9 9 9 9 9 9 9 9	1149 965 0 1288 66 224	1183 906 115 1357 120 166	64 72 1 162 66 224	6 7 1 2 3	4 5 5 5 5	7 7 7 7 7 7	696 0 1983 246 306 412	595 197 2108 331 178 529	82 1 96 246 232 127
8 9 5 746 750 59 2 1 6 155 68 154 6 6 405 352 111 3 11 6 714 662 71 4 6 7 530 579 97 9 9 5 366 300 132 3 1 6 487 281 66 7 5 6 278 225 278 4 11 6 581 645 156 5 6 7 265 270 264 10 9 5 390 434 134 4 1 6 725 712 43 8 5 6 952 906 46 0 12 6 528 269 156 0 7 7 0 56 1 10 5 695 676 58 6 1 0 5 345 101 344 1 0 7 1509 1588 57 7 7 1509	2 9 3 9 4 9 5 9 6 9 7 9	5 5 5 5 5 5 5	309 490 1478 534 529 26	331 1 425 1601 580 569 271	24 79 32 76 73 26	2 4 6 8 10 1	0 0 0 0 1	6 6 6 6 6	796 1563 705 932 981 896	709 1630 724 988 951 855	48 81 75 75 76 30	11 1 2 3 4 5	4 5 5 5 5 5 5	6 6 6 6 6 6	470 1144 391 715 693 1858	551 1058 371 686 666 1952	115 30 88 48 51 30	3 4 5 6 1 2	10 10 10 10 11 11	9 9 9 9 9 9 9 9 9 9	811 881 311 175 297 194	701 848 183 136 452 60	60 77 311 174 297 194	4 5 1 2 3	5 5 5 6 6 6	7 7 7 7 7 7	1250 0 344 168 0 756	1242 107 229 103 133 721	41 168 168 1 66
	8 9 9 9 10 9 11 9 1 10 2 10 3 10 4 10 5 10 6 10	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	746 366 390 290 695 311 421 501 1112 161	/50 300 1 434 1 292 2 676 240 1 393 1 553 1066 130 1	59 32 34 90 58 66 04 85 38 60	2 3 4 5 6 7 8 9 10 11	1 1 1 1 1 1 1 1 1 1 1	999999999999	155 487 725 988 295 598 918 1186 228 505	68 281 712 956 225 631 905 1262 81 562	154 66 43 35 160 71 54 48 228 131	6 7 8 9 10 0 1 2 3 4	5 5 5 5 5 6 6 6 6 6 6 6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	405 278 952 1192 345 952 295 1419 500 924	352 225 906 1245 101 936 325 1408 405 959	111 278 46 43 344 58 157 30 75 44	3 4 0 1 3 5 7 0 1	11 11 12 12 0 0 0 0 0 1 1	66667777777777	/14 581 528 1035 1194 533 1866 61 1230 277	662 645 269 1078 1165 542 1942 18 1205 11	/1 156 156 51 52 107 52 60 60 211	4 5 0 1 2 3 4 1 2	6 7 7 7 7 8 8	7 7 7 7 7 7 7 7 7 7	530 265 0 523 1509 589 0 302 516	579 270 56 481 1588 521 228 136 452	97 264 123 57 88 1 301 115