Belakovskiite, $\mathrm{Na}_{7}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{SO}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA

A. R. Kampf ${ }^{1}$, ${ }^{*}$, J. Plášil ${ }^{2}$, A. V. Kasatkin ${ }^{3}$ and J. Marty ${ }^{4}$
${ }^{1}$ Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
2 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic
${ }^{3}$ V/O "Almazjuvelirexport", Ostozhenka Street, 22, Block 1, 119034 Moscow, Russia
${ }^{4} 5199$ East Silver Oak Road, Salt Lake City, UT 84108, USA

[Received 15 December 2013; Accepted 28 January 2014; Associate Editor: S. Krivovichev]

ABSTRACT

The new mineral belakovskiite (IMA2013-075), $\mathrm{Na}_{7}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{SO}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$, was found in the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA, where it occurs as a secondary alteration phase in association with blödite, ferrinatrite, kröhnkite, meisserite and metavoltine. Crystals of belakovskiite are very pale yellowish-green hair-like fibres up to 2 mm long and usually no more than a few $\mu \mathrm{m}$ in diameter. The fibres are elongated on [100] and slightly flattened on $\{021\}$. Crystals are transparent with a vitreous lustre. The mineral has a white streak and a probable Mohs hardness of ~ 2. Fibres are flexible and elastic, with brittle failure and irregular fracture. No cleavage was observed. The mineral is readily soluble in cold $\mathrm{H}_{2} \mathrm{O}$. The calculated density is $2.953 \mathrm{~g} \mathrm{~cm}^{-3}$. Optically, belakovskiite is biaxial (+) with $\alpha=1.500(1), \beta=1.511(1)$ and $\gamma=1.523(1)$ (measured in white light). The measured 2 V is $87.1(6)^{\circ}$ and the calculated 2 V is 88°. The mineral is non-pleochroic. The partially determined optical orientation is $X \approx \mathbf{a}$. Electron-microprobe analysis provided $\mathrm{Na}_{2} \mathrm{O} 21.67, \mathrm{UO}_{3} 30.48, \mathrm{SO}_{3} 40.86, \mathrm{H}_{2} \mathrm{O} 6.45$ (structure), total 99.46 wt. $\%$ yielding the empirical formula $\mathrm{Na}_{6.83}\left(\mathrm{U}_{1.04} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{~S}_{0.99} \mathrm{O}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ based on 25 O a.p.f.u. Belakovskiite is triclinic, $P \overline{1}$, with $a=5.4581(3), b=11.3288(6), c=18.4163(13) \AA, \alpha=104.786(7)^{\circ}, \beta=90.092(6)^{\circ}$, $\gamma=96.767(7)^{\mathrm{o}}, V=1092.76(11) \AA^{3}$ and $Z=2$. The eight strongest X-ray powder diffraction lines are $\left[d_{\mathrm{obs}} \AA(I)(h k l)\right]: 8.96(35)(002), 8.46(29)(011), 5.19(100)(\overline{1} 01,101, \overline{1} 10), 4.66(58)(013, \overline{1} 02, \overline{1} \overline{1} 0,110)$, $3.568(37)(120,023,005,0 \overline{3} 3), 3.057(59)(0 \overline{1} 6,1 \overline{1} 5, \overline{1} 31), 2.930(27)($ multiple) and $1.8320(29)($ multiple). The structure, refined to $R_{1}=5.39 \%$ for $3163 F_{\mathrm{o}}>4 \sigma F$ reflections, contains $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ polyhedral clusters connected via an extensive network of $\mathrm{Na}-\mathrm{O}$ bonds and H bonds involving eight Na sites, three other $\mathrm{H}_{2} \mathrm{O}$ sites and an $\mathrm{SO}_{3} \mathrm{OH}$ (hydrosulfate) group. The 3-D framework, thus defined, is unique among known uranyl sulfate structures. The mineral is named for Dmitry Ilych Belakovskiy, a prominent Russian mineralogist and Curator of the Fersman Mineralogical Museum.

Keywords: belakovskiite, new mineral, uranyl sulfate, hydrosulfate, crystal structure, Blue Lizard mine, Utah, USA.

[^0]
Introduction

Uranyl sulfate minerals are found in most U deposits world-wide. They generally form by hydration-oxidation weathering of primary U minerals, mainly uraninite, by acidic solutions

A. R. KAMPF ET AL.

derived from the decomposition of associated sulfides such as pyrite, marcasite and chalcopyrite (Finch and Murakami, 1999; Krivovichev and Pláśil, 2013). Our mineralogical investigations of the Blue Lizard mine over the last three years have revealed a remarkable secondary assemblage of uranyl sulfates, the majority of which are new to science. Two of them, meisserite (Plášil et al., 2013; IMA2013-039) and bluelizardite (Plášil et al., 2014; IMA2013-062) were recently described by our team; a third one, belakovskiite, is described herein. In addition to these, seven other new uranyl sulfates from this mine are currently under study by our group. The discovery of such a wealth of new uranyl sulfates at a single mine is unprecedented. At least as many have been described from the classic Jáchymov deposit (Ondruš et al., 2003; Tvrdý and Plášil, 2010); however, they have been described from several mines and over a lengthy time period. The fact that seven of the ten new phases from the Blue Lizard mine contain only Na as the additional cation and only one contains no essential Na is similarly remarkable. Prior to the discovery of the Na-rich uranyl sulfate assemblage at the Blue Lizard mine, natrozippeite was the only known sodium uranyl sulfate.

The mineral is named for Dmitry Ilych Belakovskiy (born 1957), a prominent Russian mineralogist and Curator of the Fersman Mineralogical Museum, Russian Academy of Science, Moscow, Russia, since 1989. His research has included the descriptions of more than 40 new minerals, among them holfertite, a secondary U mineral from the Thomas Range in Utah (Belakovskiy et al., 2006). It seems particularly appropriate that belakovskiite occurs in close association with meisserite, which is named in honour of Nicolas Meisser, the curator of another prominent European museum, the Geological Museum in Lausanne. Both Dmitry and Nicolas focus much of their efforts towards the preservation of rare mineral species in their collections. These two curators also represent their respective countries on the IMA Commission on Museums.
The new mineral and the name were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2013-075). The description is based on two cotype specimens. One cotype specimen, deposited in the collections of the Natural History Museum of Los Angeles County, catalogue
number 64055, is also one of the cotypes for meisserite. A crystal from this specimen was used for the structure determination and optical study. The second cotype specimen is housed in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, registration number 4410/1 and it is also a cotype for meisserite. Crystals from that specimen were used for the electron-microprobe analysis.

Occurrence

Belakovskiite was found underground in the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA ($37^{\circ} 33^{\prime} 26^{\prime \prime} \mathrm{N}$ $110^{\circ} 17^{\prime} 44^{\prime \prime} \mathrm{W}$) by one of the authors (JM). Thaden et al. (1964) provided the most complete description of the mine and its geological setting and Chenoweth (1993) provided a more up-todate report on the geology of the district. The mine was first claimed in 1943 and produced its first U ore in 1951. An extensive exploration program, begun in 1954, led to the discovery of high-grade U ore. The mine has been inactive since 1978.

The deposit is located in a channel cut into the Moenkopi Formation (Lower Triassic) and filled with sediments of the Shinarump Member of the Chinle Formation (Upper Triassic). The Shinarump Member consists of medium- to coarse-grained sandstone. Ore minerals (especially uraninite) and sulfides (pyrite, chalcopyrite, bornite and covellite) were deposited as replacements of wood and other organic material and as disseminations in the enclosing sandstone. The main ore body was interpreted by Thaden et al. (1964) as being related to ponding of ore solutions in permeable sandstone between less permeable siltstone and claystone. Since the mine closed in 1978, oxidation of primary ores in the relatively humid underground environment has produced a variety of secondary minerals, mainly sulfates, as efflorescent crusts on the surfaces of mine walls. The vast majority of the secondary minerals contain essential Na ; however, there is nothing described in geological reports of the area to suggest a source for the Na enrichment in the secondary assemblage.

The Blue Lizard mine is the type locality for the recently described new minerals manganoblödite (Kasatkin et al., 2013; IMA2012-029), cobaltoblödite (Kasatkin et al., 2013; IMA2012-059), meisserite (Plášil et al. 2013; IMA2013-039) and bluelizardite (Plásil et al.

2014; IMA2013-062) and several other new uranyl sulfates and another new sulfate (without uranyl) are currently under study. These phases occur on tunnel walls as efflorescent crusts, which have resulted from post-mining oxidation of primary ores (uraninite, pyrite and chalcopyrite disseminated in lenses of organic matter) in the humid underground environment.

The matrix of the belakovskiite specimens is sandstone consisting of irregular quartz grains. Secondary minerals found in direct association with belakovskiite include blödite, ferrinatrite, kröhnkite, meisserite and metavoltine. Other secondary minerals in the general assemblage include atacamite, boyleite, brochantite, chalcanthite, cobaltoblödite, copiapite, coquimbite, cyanotrichite, d'ansite-(Mn), dickite, gerhardtite, gordaite, gypsum, halite, johannite, manganoblödite, natrochalcite, natrozippeite, pickeringite, pseudojohannite, rhomboclase, römerite, sideronatrite and tamarugite. Other minerals found associated with the host sandstone include baryte, calcite, feldspar and clays.

Physical and optical properties

Crystals of belakovskiite (Fig. 1) are very pale yellowish-green hair-like fibres up to 2 mm long and usually no more than a few $\mu \mathrm{m}$ in diameter. The fibres are elongated on [100], slightly flattened on $\{021\}$ and exhibit several $\{0 k l\}$ forms, none of which could be measured. Crystals are transparent with a vitreous lustre. The mineral has a white streak. The Mohs hardness could not be tested, but is probably ~ 2. Fibres are flexible

Fig. 1. Fibrous belakovskiite with light green meisserite crystals on blödite; field of view 2 mm .
and elastic, with brittle failure and irregular fracture. No cleavage was observed. The mineral is readily soluble in cold $\mathrm{H}_{2} \mathrm{O}$ and, because it is also soluble in available aqueous density liquids, its density could not be measured. The calculated densities are $2.953 \mathrm{~g} \mathrm{~cm}^{-3}$ based on the empirical formula and $2.936 \mathrm{~g} \mathrm{~cm}^{-3}$ based on the ideal formula.

Optically, belakovskiite is biaxial $(+)$ with $\alpha=$ $1.500(1), \beta=1.511(1)$ and $\gamma=1.523(1)$ (measured in white light). The measured 2 V based on extinction data using EXCALIBR (Gunter et al., 2004) is $87.1(6)^{\circ}$ and the calculated 2 V is 88°. Dispersion could not be observed. The mineral is non-pleochroic. The partially determined optical orientation is $X \approx \mathbf{a}$.

Composition

The chemical composition of belakovskiite was determined using a CamScan 4 D scanning electron microscope (SEM) equipped with an Oxford Link ISIS energy-dispersive X-ray spectrometer (EDS). An operating voltage of 20 kV was used with a beam current of 1 nA and a $1 \mu \mathrm{~m}$ beam diameter. The EDS mode on the SEM was chosen for the analysis instead of the wavelength-dispersive spectrometer (WDS) mode on the electron microprobe because of the extreme thinness of the fibres and instability of belakovskiite under the electron beam caused by the high contents of both Na and $\mathrm{H}_{2} \mathrm{O}$. Attempts to use the WDS mode were unsuccessful because of significant decomposition of the mineral after several seconds under the electron beam with a current of 15 nA . The $\mathrm{H}_{2} \mathrm{O}$ content was not determined directly because of the scarcity of pure material. Instead, the $\mathrm{H}_{2} \mathrm{O}$ content was calculated by stoichiometry on the basis of 25 O a.p.f.u. (atoms per formula unit), as indicated by the crystal-structure determination. No other elements with atomic numbers higher than 8 were observed. Analytical data are given in Table 1.

The empirical formula of belakovskiite, calculated as the mean of nine representative spot analyses (Table 1), is $\mathrm{Na}_{6.83} \mathrm{U}_{1.04} \mathrm{~S}_{4.99} \mathrm{O}_{25.00} \mathrm{H}_{7.00}$, or $\mathrm{Na}_{6.83}\left(\mathrm{U}_{1.04} \mathrm{O}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{~S}_{0.99} \mathrm{O}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ (based on 25 O a.p.f.u.). The simplified formula is $\mathrm{Na}_{7}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{SO}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ which requires $\mathrm{Na}_{2} \mathrm{O} 22.45, \mathrm{UO}_{3} 29.60, \mathrm{SO}_{3} 41.43$ and $\mathrm{H}_{2} \mathrm{O} 6.53$, total $100 \mathrm{wt} . \%$. The Gladstone-Dale compatibility index $1-\left(\mathrm{K}_{\mathrm{P}} / \mathrm{K}_{\mathrm{C}}\right)$ is 0.023 for the empirical formula, in the range of superior compatibility (Mandarino, 2007).

A. R. KAMPF ET AL.

Table 1. Chemical analyses for belakovskiite.

Constituent	Wt. $\%$	Range	SD	Probe standard
$\mathrm{Na}_{2} \mathrm{O}$	21.67	$20.78-22.60$	0.57	chkalovite
UO_{3}	30.48	$27.83-33.54$	1.67	syn. UO_{2}
SO_{3}	40.86	$36.95-43.50$	1.89	syn. ZnS
$\mathrm{H}_{2} \mathrm{O}^{*}$	6.45			
Total	99.46			

* Calculated by stoichiometry on the basis of 25 O a.p.f.u.

X-ray crystallography and structure refinement

Both powder and single-crystal X-ray studies were carried out using a Rigaku R-Axis Rapid II curved imaging plate microdiffractometer, with monochromatized $\mathrm{Mo} K \alpha$ radiation. For the powder-diffraction study, a Gandolfi-like motion on the φ and ω axes was used to randomize the sample and observed d spacings and intensities were derived by profile fitting using JADE 2010 software (Materials Data, Inc.). The powder data presented in Table 2 show good agreement with the pattern calculated from the structure determination. Unit-cell parameters refined from the powder data using JADE 2010 with wholepattern fitting are $a=5.454(4), b=11.308(4), c$ $=18.340(4) \AA, \alpha=104.76(2), \beta=89.83(3), \gamma=$ $96.77(2)^{\circ}$ and $V=1085.7(9) \AA^{3}$.

The Rigaku CrystalClear software package was used for processing structure data, including the application of an empirical multi-scan absorption correction using $A B S C O R$ (Higashi, 2001). The structure was solved by direct methods using SIR2004 (Burla et al., 2005). SHELXL-2013 (Sheldrick, 2008) was used for the refinement of the structure. Data collection and refinement details are given in Table 3, atom coordinates and displacement parameters in Table 4, selected bond distances in Table 5 and a bond-valence analysis in Table 6.

Description and discussion of the structure

The structure of belakovskiite is shown in Fig. 2. The U site is surrounded by seven O atom sites forming a squat pentagonal bipyramid. This is a

FIG. 2. The crystal structure of belakovskiite viewed down [100]. The unit cell is shown by dashed lines. $\mathrm{Na}-\mathrm{O}$ bonds are shown as sticks. Hydrogen bonds are shown as thin lines.

Table 2. Powder X-ray data for belakovskiite.*

[^1]
A．R．KAMPF ET AL．

Table 3．Data collection and structure refinement details for belakovskiite．

Diffractometer	Rigaku R－Axis Rapid II
X－ray radiation／power	$\operatorname{Mo} K \alpha(\lambda=0.71075 \AA) / 50 \mathrm{kV}, 40 \mathrm{~mA}$
Temperature	298（2）K
Structural Formula	$\mathrm{Na}_{7}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{SO}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
Space group	
Unit－cell dimensions	$a=5.4581(3) \AA$ 。
	$b=11.3288(6) \AA$ 。
	$c=18.4163(13) \AA$
	$\alpha=104.786(7)^{\circ}$
	$\beta=90.092(6)^{\circ}$ 。
	$\gamma=96.767(7){ }^{\circ}$
V	1092．76（11） A^{3}
Z	2
Density（for above formula）	$2.936 \mathrm{~g} \mathrm{~cm}^{-3}$
Absorption coefficient	$8.161 \mathrm{~mm}^{-1}$
$F(000)$	912
Crystal size（ $\mu \mathrm{m}$ ）	$300 \times 10 \times 5$
θ range	$3.31-25.02^{\circ}$
Index ranges	$-5 \leqslant h \leqslant 6,-13 \leqslant k \leqslant 13,-21 \leqslant l \leqslant 21$
Reflections collected／unique	16，376／3854；$R_{\text {int }}=0.093$
Reflections with $F_{\mathrm{o}}>4 \sigma(F)$	3163
Completeness to $\theta=25.02^{\circ}$	99．5\％
Max．and min．transmission	0.960 and 0.193
Refinement method	Full－matrix least－squares on F^{2}
Parameters refined	358
GoF	1.083
Final R indices［ $\left.F_{\mathrm{o}}>4 \sigma(F)\right]$	$R_{1}=0.0539, w R_{2}=0.1084$
R indices（all data） Largest diff．peak／hole	$R_{1}=0.0718, w R_{2}=0.1162$ $+2.21 /-2.63 \mathrm{e} \cdot \mathrm{A}^{-3}$
Largest diff．peak／hole	$+2.21-2.63 \mathrm{e} \cdot \mathrm{A}$

```
* \(R_{\text {int }}=\Sigma \mid F_{\mathrm{o}}^{2}-F_{\mathrm{o}}^{2}(\) mean \() \mid \Sigma\left[F_{\mathrm{o}}^{2}\right] . \mathrm{GoF}=S=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] /(n-p)\right\}^{1 / 2}\).
\(R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right|\).
\(w R_{2}=\left\{\Sigma\left[w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}\right] / \Sigma\left[w\left(F_{\mathrm{o}}^{2}\right)^{2}\right]\right\}^{1 / 2} ; w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(a P)^{2}+b P\right]\) where \(a\) is \(0, b\) is 27.0359 and
\(P\) is \(\left[2 F_{\mathrm{c}}^{2}+\operatorname{Max}\left(F_{o}^{2}, 0\right)\right] / 3\).
```

typical coordination for U^{6+} in which the two short apical bonds of the bipyramid（1．728 and $1.760 \AA$ in belakovskiite）constitute the UO_{2}^{2+} uranyl group．Four of the five equatorial vertices of the bipyramid link to four distinct SO_{4} tetrahedra and the fifth equatorial vertex is an $\mathrm{H}_{2} \mathrm{O}$ group，yielding a $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ polyhedral cluster．Bond－valence analysis indi－ cates that a fifth sulfate tetrahedron，which is not part of the cluster，is an $\mathrm{SO}_{3} \mathrm{OH}$（hydrosulfate） group．The $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ clusters do not link directly to one another，but rather are connected via an extensive network of $\mathrm{Na}-\mathrm{O}$ bonds and H bonds involving eight Na sites，three other $\mathrm{H}_{2} \mathrm{O}$ sites and the $\mathrm{SO}_{3} \mathrm{OH}$ group．One Na site（Na8）and two $\mathrm{H}_{2} \mathrm{O}$ sites（OW25 and OW26）， in relatively close proximity，refined to approxi－ mately half occupancy and they were assigned
exactly half occupancy in the final structure refinement．Bond lengths and bond－valence calculations indicate that OW25 is coordinated to Na8，while OW26 takes the place of both Na8 and OW25 when those sites are not occupied．

Like the other newly described uranyl sulfates from the Blue Lizard mine，meisserite and bluelizardite and several others still under study， belakovskiite possesses a complicated 3－D frame－ work structure；however，its structure is unique among known uranyl sulfates．The $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ cluster is somewhat similar，regarding the U：S stoichiometry，to the clusters found in the synthetic Na－uranyl sulfates （Burns and Hayden，2002；Hayden and Burns， 2002a，b）；however，these contain no $\mathrm{H}_{2} \mathrm{O}$ as an equatorial ligand and contain a bidentately linked SO_{4} tetrahedron．
Table 4. Atom coordinates and displacement parameters $\left(\AA^{2}\right)$ for belakovskiite.

	x / a	y / b	z / c	$U_{\text {eq }}$	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
U	0.72620(9)	0.13824(4)	0.76828(3)	0.02036(15)	0.0252(3)	0.0147(2)	0.0209(3)	0.00376(18)	-0.00275(18)	0.00340(18)
S1	0.7486 (5)	0.1927(3)	0.97103(17)	0.0190(6)	$0.0187(15)$	0.0143(14)	$0.0228(15)$	$0.0027(12)$	-0.0009(12)	0.0010(12)
S2	0.6798(6)	0.2541(3)	0.59870(17)	$0.0221(7)$	$0.0262(17)$	0.0210 (16)	$0.0189(15)$	$0.0026(13)$	-0.0017(12)	0.0073(13)
S3	0.7264(5)	0.8436(3)	0.81019(16)	0.0177(6)	$0.0191(15)$	0.0131(14)	0.0206(15)	$0.0036(12)$	-0.0023(12)	0.0024(12)
S4	0.6868(5)	0.4643(3)	0.81836(16)	0.0168(6)	0.0168(14)	$0.0120(14)$	0.0204(15)	$0.0027(12)$	-0.0024(12)	$0.0005(11)$
S5	0.2053(6)	0.6464(3)	0.61504(18)	0.0240(7)	$0.0203(16)$	0.0240(17)	$0.0281(17)$	0.0077(14)	-0.0036(13)	0.0027(13)
Na1	0.0000	0.5000	0.0000	$0.0292(16)$	$0.031(4)$	0.034(4)	0.027(4)	0.010(3)	0.005(3)	0.015 (3)
Na2	0.1971(9)	0.9789(5)	0.9114(3)	$0.0305(12)$	0.029(3)	0.024(3)	0.033(3)	-0.004(2)	-0.003(2)	0.004(2)
Na 3	0.2080(9)	0.6594(4)	0.8272(3)	0.0293 (12)	0.025(3)	0.021(3)	0.038(3)	-0.002(2)	0.002(2)	0.006(2)
Na4	0.7221 (9)	0.7243(4)	0.9555(3)	0.0275(11)	0.032(3)	0.020(3)	0.028(3)	0.002(2)	0.003(2)	0.003(2)
Na5	0.2182(9)	0.3752(5)	0.7094(3)	$0.0298(12)$	0.029(3)	0.026(3)	0.029(3)	0.000(2)	$0.005(2)$	-0.002(2)
Na6	$0.7158(10)$	0.5679(5)	0.6773(3)	0.0342 (13)	0.041(3)	0.026(3)	0.033(3)	0.003(2)	0.007(2)	0.002(2)
Na7	0.2966 (10)	0.3584(5)	0.5166(3)	0.0371 (13)	0.039(3)	0.045(3)	0.028(3)	0.011(3)	-0.008(2)	$0.005(3)$
Na8*	0.428(3)	0.9629(14)	0.5835(9)	0.078(5)	0.106(14)	0.050(9)	0.070(10)	0.001(8)	-0.013(9)	0.010(9)
O1	0.9311(16)	0.1177(8)	0.9862(5)	0.028(2)	0.033(5)	0.035(5)	0.020(5)	0.005(4)	-0.005(4)	0.020(4)
O2	0.2278 (16)	0.6904(8)	0.9720(4)	0.028(2)	$0.039(5)$	0.021(5)	0.015(4)	-0.008(4)	0.002(4)	$0.002(4)$
O3	0.4989(15)	0.1294(8)	0.9689(5)	0.031(2)	0.017(4)	0.029(5)	0.042(6)	-0.001(4)	0.002(4)	-0.002(4)
O4	0.8013(16)	0.2181(7)	0.8963(4)	0.026(2)	0.046(6)	0.016(4)	0.012(4)	-0.001(3)	-0.010(4)	0.001(4)
O5	0.5768(18)	0.1880(9)	0.5242(5)	0.038(2)	0.051(6)	0.038(6)	0.017(5)	-0.006(4)	-0.010(4)	0.005(5)
O6	0.5566(16)	0.3650(7)	0.6248(5)	0.028(2)	$0.038(5)$	0.018(5)	0.028(5)	0.005(4)	0.000(4)	0.010(4)
O7	0.9488(15)	0.2849(9)	0.5989(5)	0.034(2)	$0.015(5)$	0.049(6)	0.035(5)	0.009(5)	-0.002(4)	0.002(4)
O8	0.6150(18)	0.1730(8)	0.6497(5)	0.034(2)	0.054(6)	0.027(5)	0.022(5)	0.006(4)	-0.015(4)	0.008(4)
O9	0.4892 (15)	0.8426(7)	0.8456(5)	0.027(2)	0.022(5)	0.019(5)	0.039(5)	0.007(4)	0.008(4)	0.002(4)
O10	$0.8985(14)$	0.7866(7)	0.8476(5)	$0.0218(19)$	0.019(4)	0.013(4)	0.037(5)	0.012(4)	-0.004(4)	0.002(3)
O11	0.6946(16)	0.7782(7)	0.7296(5)	0.026(2)	0.035(5)	0.017(4)	0.021(4)	-0.005(4)	-0.004(4)	0.004(4)
O12	0.8415 (14)	0.9725(7)	0.8144(4)	0.0191 (18)	0.021(4)	0.008(4)	0.026(4)	0.001(3)	-0.005(3)	-0.001(3)
O13	0.7148(15)	0.5072(8)	0.8998(4)	0.0246(19)	0.033(5)	0.025(5)	0.011(4)	-0.002(4)	-0.002(4)	0.001(4)
O14	0.9237(15)	0.4797(8)	0.7831(5)	0.031(2)	0.020(5)	0.025(5)	0.042(6)	-0.005(4)	0.002(4)	0.007(4)
O15	0.5115(15)	0.5331(7)	0.7901(5)	$0.0235(19)$	0.028(5)	0.012(4)	0.032(5)	0.008(4)	-0.001(4)	0.004(4)
O16	$0.5758(15)$	$0.3306(7)$	$0.7955(5)$	$0.0211(19)$	$0.025(5)$	0.007(4)	$0.035(5)$	$0.011(4)$	0.010(4)	0.006 (3)
O17	0.9743 (17)	$0.6458(10)$	0.5781(5)	0.043(3)	0.032(6)	0.061(7)	0.036(6)	0.011(5)	-0.014(4)	$0.009(5)$
O18	0.3921(17)	$0.5905(8)$	0.5664(5)	0.035(2)	$0.032(5)$	0.031(5)	0.047(6)	$0.014(5)$	$0.017(4)$	0.018(4)
O19	0.1757(17)	0.5936(9)	0.6793(5)	0.036(2)	0.040(6)	0.037(6)	0.037(6)	0.021(5)	0.001(4)	0.004(5)
OH20	0.3015 (19)	0.7862(8)	0.6472(6)	0.041(2)	0.051(7)	0.027(5)	0.045(6)	$0.010(5)$	-0.007(5)	$0.002(5)$
O21	0.0256(17)	0.2089(8)	0.7595(5)	0.031(2)	0.041(6)	0.019(5)	0.032(5)	0.006(4)	-0.002(4)	-0.002(4)
O22	$0.4308(17)$	0.0673(8)	0.7731(6)	0.036(2)	0.039(6)	0.017(5)	0.053(6)	0.016(4)	-0.014(5)	-0.014(4)
OW23	0.8171(19)	0.9655(8)	0.6618(5)	0.037(2)	0.067(7)	$0.016(5)$	0.028(5)	0.002(4)	0.010(5)	0.009(5)
OW24	0.2701(16)	0.3674(8)	$0.9376(5)$	0.033(2)	$0.027(5)$	0.037(6)	$0.037(5)$	$0.014(5)$	0.009(4)	$0.003(4)$
OW25*	0.083(6)	0.022(3)	0.5546(17)	0.072(8)	0.07(2)	0.07(2)	0.076(19)	0.022(16)	0.002(17)	$0.012(17)$
OW26*	0.208(4)	0.996(2)	0.5701(17)	0.052(8)	0.009(11)	$0.028(12)$	0.12(2)	0.015(13)	0.011(12)	0.010(9)

* Na8, OW25 and $O W 26$ sites are half occupied.
Table 5 . Selected bond distances (\AA) for belakovskiite.
Table 6. Bond-valence analysis for belakovskiite. Values are expressed in valence units.*

	O1	O2	O3	O4	O5	O6	07	08	O9	010	011	O12	O13	014	O15	016	017	018	O19	OH20	O 21	O 22	OW23	OW24	OW25	OW26	$\Sigma_{\text {c }}$
U				0.60				0.50				0.52				0.56					1.75	1.86	0.43				6.22
Na 1		$\begin{gathered} 0.12 \\ \times 2 \rightarrow \end{gathered}$												$\begin{gathered} 0.16 \\ \times 2 \rightarrow \end{gathered}$										$\begin{gathered} 0.22 \\ \times 2 \rightarrow \end{gathered}$			1.00
Na 2	$\begin{aligned} & 0.16 \\ & 0.14 \end{aligned}$		0.25						0.15	0.11		0.10															0.91
Na 3		0.10							0.19	0.22			0.19		0.22				0.09								1.01
Na4	0.14	$\begin{aligned} & 0.08 \\ & 0.05 \end{aligned}$	0.21							0.16				0.17										0.15			0.96
Na 5						0.17	0.16						0.21		0.16	0.08			0.08		0.16						1.02
Na6						0.22					0.20		0.08		0.15		0.11	0.06	0.14								0.96
Na 7					0.09	0.16	0.10										0.25	$\begin{aligned} & 0.17 \\ & 0.12 \end{aligned}$									0.89
Na8					$\begin{gathered} 0.13 \\ \times 2 \rightarrow \end{gathered}$			$\begin{gathered} 0.07 \\ \times 2 \rightarrow \end{gathered}$												$\begin{gathered} 0.05 \\ \times 2 \rightarrow \end{gathered}$			$\begin{gathered} 0.06 \\ \times 2 \rightarrow \end{gathered}$		$\begin{gathered} 0.16 \\ \times 2 \rightarrow \end{gathered}$		0.94
S1	1.59	1.57	1.56	1.41																							6.13
S2					1.55	1.52	1.52	1.44																			6.04
S3									1.60	1.55	1.48	1.39															6.01
S4													1.57	1.56	1.50	1.34											5.97
S5																	1.69	1.60	1.57	1.16							6.02
H20											0.22									0.78							1.00
H23a											0.19												0.81				1.00
H23b																							0.78		$\begin{gathered} 0.24 \\ \times 1 / 2 \rightarrow \end{gathered}$	$\begin{gathered} 0.20 \\ \times 1 / 2 \rightarrow \end{gathered}$	1.00
H24a				0.16																				0.84			1.00
H24b													0.12											0.88			1.00
H25a							$\begin{gathered} 0.04 \\ \times 2 \rightarrow \end{gathered}$																		0.92		1.00
H25b																									0.80	$\begin{gathered} 0.10 \\ \times 2 \rightarrow \end{gathered}$	1.00
H26a					$\begin{gathered} 0.10 \\ \times 2 \rightarrow \end{gathered}$																					0.80	1.00
H26b								$\begin{gathered} 0.07 \\ \times 2 \rightarrow \end{gathered}$																		0.86	1.00
$\Sigma_{\text {a }}$	2.03	1.92	2.02	2.17	1.87	2.07	1.82	2.08	1.94	2.04	2.09	2.01	2.17	1.89	2.03	1.98	2.05	1.95	1.88	1.99	1.91	1.86	2.08	2.09	2.12	1.95	

* $\mathrm{S}^{6+}-\mathrm{O}$ bond strength from Brown and Altermatt (1985); $\mathrm{Na}^{+}-\mathrm{O}$ bond strength from Wood and Palenik (1999); $\mathrm{U}^{6+}-\mathrm{O}$ bond strength from Burns et al. (1997); H-bond strengths based on $\mathrm{O} \cdots \mathrm{O}$ bond lengths from Brown and Altermatt (1985).

A. R. KAMPF ET AL.

In the structure of belakovskiite, the $\mathrm{SO}_{3} \mathrm{OH}$ group links to the $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{6-}$ clusters via relatively weak $\mathrm{Na}-\mathrm{O}$ bonds only. The only other known uranyl mineral structure containing a protonated sulfate tetrahedron is that of meisserite (Plášil et al., 2013) and in this structure, as well, the $\mathrm{SO}_{3} \mathrm{OH}$ group is linked through relatively weak $\mathrm{Na}-\mathrm{O}$ bonds to the uranyl sulfate clusters. Protonated sulfate (hydrosulfate) tetrahedra are quite rare in mineral structures and are indicative of formation at low pH , as has been noted to be the case for the secondary uranyl sulfate mineral assemblages in the Blue Lizard mine.

Acknowledgements

Reviewers Stuart J. Mills and Igor V. Pekov are thanked for their constructive comments on the manuscript. Ken Krahulec of the Utah Geological Survey is thanked for providing information about the genesis of the U deposits in the area. A portion of this study was funded by the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County. JP acknowledges funding through the post-doctoral grant project 13-31276P of the Grant Agency of the Czech Republic.

References

Belakovskiy, D.I., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Mokhov, A.V. (2006) Holfertite, a new hydroxyl-hydrated uranium titanate from Starvation Canyon, Thomas Range, Utah. Mineralogical Record, 37, 311-317.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244-247.
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381-388.
Burns, P.C. and Hayden, L.A. (2002) A uranyl sulfate cluster in $\mathrm{Na}_{10}\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\right]\left(\mathrm{SO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. Acta Crystallographica, C58, i121-i123.
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters and polymerization of polyhedra. The Canadian Mineralogist, 35, 1551-1570.
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon
mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.
Finch, R.J. and Murakami, T. (1999) Systematics and paragenesis of uranium minerals. Pp. 91-179 in: Uranium: Mineralogy, Geochemistry and the Environment (P.C. Burns and R.J. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington, DC.
Gunter, M.E., Bandli, B.R., Bloss, F.D., Evans, S.H., Su, S.C. and Weaver, R. (2004) Results from a McCrone spindle stage short course, a new version of EXCALIBR and how to build a spindle stage. The Microscope, 52, 23-39.
Hayden, L.A. and Burns, P.C. (2002a) The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa_{5} $\left[\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4}\right]\left(\mathrm{H}_{2} \mathrm{O}\right)$. The Canadian Mineralogist, 40, 211-216.
Hayden, L.A. and Burns, P.C. (2002b) A novel uranyl sulfate cluster in the structure of $\mathrm{Na}_{6}\left(\mathrm{UO}_{2}\right)$ $\left(\mathrm{SO}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. Journal of Solid State Chemistry, 163, 313-318.
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
Kasatkin, A.V., Nestola, F., Plášil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Goliáš, V. and Birch, W.D. (2013) Manganoblödite, $\mathrm{Na}_{2} \mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and cobaltoblödite, $\mathrm{Na}_{2} \mathrm{Co}\left(\mathrm{SO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$: two new members of the blödite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 367-383.
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and Crystallography of Uranium. Pp. 7-14 in: Uranium: From Cradle to Grave (P.C. Burns, and G.E. Sigmon, editors). MAC Short Course Vol. 43. Mineralogical Association of Canada, Winnipeg 2013.
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 1307-1324.
Ondruš, P., Veselovský, F., Gabašová, A., Hloušek, J. and Šrein, V. (2003) Geology and hydrothermal vein system of the Jáchymov (Joachimsthal) ore district. Journal of the Czech Geological Society, 48, 3-18.
Plášil, J., Kampf, A.R., Kasatkin, A.V., Marty, J., Škoda, R., Silva, S. and Čejka, J. (2013) Meisserite, $\mathrm{Na}_{5}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{3}\left(\mathrm{SO}_{3} \mathrm{OH}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 2975-2988.
Plášil, J., Kampf, A.R., Kasatkin, A.V. and Marty, J. (2014) Bluelizardite, $\mathrm{Na}_{7}\left(\mathrm{UO}_{2}\right)\left(\mathrm{SO}_{4}\right)_{4} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of

Geosciences, 58, http://dx.doi.org/10.3190/ jgeosci.159.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112-122.
Thaden, R.E., Trites Jr., A.F. and Finnell, T.L. (1964) Geology and ore deposits of the White Canyon area, San Juan and Garfield Counties, Utah. Bulletin, 1125, United States Geological Survey, Washington, D.C.

Tvrdý, J. and Plášil, J. (2010) Jáchymov - Reiche Erzlagerstätte und Radonbad im böhmischen Westerzgebirge. Aufschluss, 61, 277-292.
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 3926-3930.

[^0]: * E-mail: akampf@nhm.org

 DOI: 10.1180/minmag.2014.078.3.12

[^1]: * Only calculated lines with intensities $\geqslant 2$ are shown.

