Melcherite, trigonal Ba₂Na₂Mg[Nb₆O₁₉]·6H₂O, the second natural hexaniobate, from Cajati, São Paulo, Brazil: Description and crystal structure

MARCELO B. ANDRADE^{1,*}, DANIEL ATENCIO², LUIZ A. D. MENEZES FILHO^{3,†} AND JOHN SPRATT⁴

- ¹ Department of Physics and Interdisciplinary Science, São Carlos Institute of Physics, University of São Paulo, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
- ² Departamento de Mineralogia e Geotectônica, Instituto de Geociências, Universidade de São Paulo, Rua do Lago 562, 05508-080 São Paulo, SP, Brazil
- ³ Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, 31270-901, MG, Brazil.
- ⁴ Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom

[Received 13 June 2016; Accepted 18 April 2017; Associate Editor: Ian Graham]

ABSTRACT

Melcherite (IMA2015-018), ideally Ba₂Na₂Mg[Nb₆O₁₉]·6H₂O, occurs as a vug mineral in the carbonatite of the Jacupiranga mine, Cajati county, São Paulo state, Brazil, associated with dolomite, calcite, magnetite, pyrrhotite, tochilinite, 'pyrochlore' and fluorapatite. This is also the type locality for zirkelite, quintinite, menezesite and pauloabibite. The mineral forms irregular, tabular crystals up to 200 µm in maximum dimension. Melcherite is transparent and displays a vitreous lustre; it is beige with a white streak. It is nonfluorescent. The mineral displays perfect cleavage on $\{001\}$. Chemical composition varies from Ba₂Na₂Mg $[Nb_6O_{19}].6H_2O$ to $(BaK)(NaCa)Mg[Nb_6O_{19}].6H_2O$. Empirical formulae for the first and the second compositions are: $(Ba_{1.75}K_{0.19})_{\Sigma_{1.94}}(Na_{1.80}Ca_{0.19})_{\Sigma_{1.99}}(Mg_{0.96}Mn_{0.02}Al_{0.02})_{\Sigma_{1.00}}Nb_{6.02}O_{19.00}\cdot 6H_2O$ and $(Ba_{0.99}K_{1.00})_{\Sigma 1.99}(Na_{1.02}Ca_{0.96})_{\Sigma 1.98}(Mg_{0.95}Mn_{0.05})_{\Sigma 1.00}Nb_{6.02}O_{19.00}$ · 6H₂O, respectively. Data for a single crystal with the second composition are: trigonal, $R\bar{3}$, a=9.0117(6) Å, c=23.3986(16) Å, V=1645.64(19) Å³ and Z=3. Calculated density for this formula is 3.733 g/cm^3 , and the calculated mean refractive index is 1.924. Melcherite is a hexaniobate that has structural layers parallel to the xy plane that stack along the c axis with simultaneous 1/3 [110] displacement so as to produce an R lattice. The melcherite structure is built by layers of $[(Ba,K)(O,H_2O)_9]$ polyhedra and the $[Nb_6O_{19}]^{8-}$ super-octahedron (Lindqvist anion) interconnected by $[(Na,Ca)O_6]$ polyhedra. Cations of Mg²⁺ are bonded to six water molecules each and are not associated with Lindqvist oxygen ions. The mineral is named in honour of Geraldo Conrado Melcher (1924-2011), a pioneer in Jacupiranga carbonatite studies.

Keywords: melcherite, new mineral, hexaniobate, crystal structure, chemical composition, Jacupiranga mine, Cajati, Brazil.

Introduction

MELCHERITE is the second natural hexaniobate. The first described was peterandresenite (Friis *et al.*,

*E-mail: mabadean@terra.com.br [†]Deceased July 2014 https://doi.org/10.1180/minmag.2017.081.026 2014) and hansesmarkite was recently discovered (Friis *et al.*, 2017). Polyoxometalates of niobium are dominated by the Linqdvist hexaniobate ion, $(Nb_6O_{19})^{8-}$, and its synthesis and stability requires alkaline conditions. The crystal structure of these compounds was first described by Lindqvist (1953). Hexaniobates are negatively charged clusters of six mutually edge-sharing NbO₆ octahedra forming a super-octahedron (Nyman, 2011).

FIG. 1. Melcherite from the Cajati mine, São Paulo, Brazil.

Possible polyoxoniobate applications include their use as reagents in the break-down of nerve agents and in the development of filter media protection against chemical warfare agents (Kinnan *et al.*, 2014). Polyoxometalates have also been investigated in coordination chemistry, leading to the development of hybrid organometallic hexametalate complexes (Abramov *et al.*, 2016), and the synthesis of new polyoxoniobates coordinated to copper complexes (Wang *et al.*, 2008).

The mineral is named in honour of Geraldo Conrado Melcher (1924–2011). He was professor at the Department of Mining Engineering at the Polytechnic School, University of São Paulo and was also a pioneer in Jacupiranga carbonatite studies (Melcher, 1966).

Both the description and name were approved by the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International

FIG. 2. Back-scattered electron image of melcherite.

Mineralogical Association (IMA2015-018). Type material is deposited in the Museu de Geociências, Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. Specimen number: DR982. Part of the cotype sample has been deposited at the University of Arizona Mineral Museum, RRUFF Project (deposition no. R130752).

Occurrence

The mineral occurs in the carbonatite of the Jacupiranga mine (24°43'47"S, 48°06'37"W), Cajati County, São Paulo, Brazil (Menezes Filho and Martins, 1984). For general information about this carbonatite see Menezes Filho et al. (2015). This is also the type locality for zirkelite (Hussak and Prior, 1895), quintinite (Chao and Gault, 1997), menezesite (Atencio et al., 2008) and pauloabibite (Menezes Filho et al., 2015). Although the joint occurrence of menezesite, pauloabibite and melcherite has not been observed, these minerals may be related genetically. Pauloabibite is trigonal NaNbO3, isostructural with ilmenite (Menezes Filho et al., 2015). The synthetic analogue of pauloabibite was reported by Kinomura et al. (1984) and Kumata et al. (1990) from a two-step synthesis method, involving the preparation of Na₈Nb₆O₁₉·13H₂O (a hexaniobate) followed by hydrothermal reaction with NaOH in a silver-lined vessel at 250°C. Menezesite is a heteropolyoxoniobate, cubic $(\Box, Ba, K)_{12}(\Box,$ $Mg_{3}Zr_{4}(BaNb_{12}O_{42}) \cdot 12H_{2}O$ (Atencio *et al.*, 2008). According to Nyman et al. (2002), the heteropolyanions of W, Mo and V are formed simply by acidification of solutions of their oxoanions. Under similar conditions, these oxoanion precursors are not available for Nb, and Nboxo chemistry is dominated by formation of the Lindquist ion $[Nb_6O_{19}]^{8-}$ (present in melcherite). However, heteropolyniobate (present in menezesite) formation is favoured in hydrothermal reactions of aqueous, alkaline precursor mixtures. A competing phase to the formation of polyoxoniobates in hydrothermal aqueous reactions involving Nb and an alkali hydroxide is NaNbO₃, avoided by using short reaction times (i.e. 24 hours or less) (Nyman et al., 2002). So melcherite could have originally formed under acid conditions, and afterwards, under basic conditions, menezesite and pauloabibite could have formed.

Quintinite, menezesite, pauloabibite and melcherite occur in the so-called 'intermediate zone', characterized by a high dolomite and slightly anomalous 'pyrochlore' content. Associated minerals are dolomite, calcite, magnetite, pyrrhotite, tochilinite, 'pyrochlore', pyrite and fluorapatite. Melcherite formed as a carbonatite vug mineral.

Habit and physical properties

Melcherite forms irregular, tabular crystals up to 200 µm in maximum dimension (Fig. 1). The mineral is transparent and displays a vitreous lustre; it is beige and the streak is white. It is nonfluorescent under both short (254 nm) and long wavelength (366 nm) ultraviolet radiation. The mineral displays perfect cleavage on {001}. Fracture was not determined. Twinning and parting were not observed. The Mohs hardness and density were not measured due to the paucity of material but the calculated density is 3.733 g/cm³ [based on the empirical formula $(Ba_{0.99}K_{1.00})_{\Sigma 1.99}(Na_{1.02}Ca_{0.96})_{\Sigma 1.98}(Mg_{0.95})_{\Sigma 1.98}(Mg_{0.$ $Mn_{0.05})_{\Sigma 1.00}Nb_{6.02}O_{19.00} \cdot 6H_2O].$ Refractive indices were not measured due to paucity of material. The mean refractive index is estimated as 1.924 using the Gladstone-Dale relationship (Mandarino, 1981).

Mineral chemistry

Melcherite crystals were embedded in epoxy resin and polished. In the back-scattered electron images, we can see that the crystals are zoned (Fig. 2). The chemical analyses (Table 1) were done by means of a Cameca SX100 electron microprobe (wavelength dispersive spectroscopy mode, 15 kV, 10 nA and 20 µm beam diameter). H₂O was inferred from the crystal structure determination. H2O was initially assumed by difference prior to the matrix correction (PAP) and then calculated by stoichiometry post matrix correction due to software limitations. Analyses from the brighter areas of the melcherite crystal, (Fig. 2 back-scattered electron image) have the following composition: $(Ba_{1.75}K_{0.19})_{\Sigma 1.94}$ $(Na_{1.80}Ca_{0.19})_{\Sigma 1.99}(Mg_{0.96}Mn_{0.02}Al_{0.02})_{\Sigma 1.00}Nb_{6.02}$ O_{19.00}·6H₂O (mean of four analytical points). Those from the darker areas correspond to $(Ba_{0.99})$ $K_{1.00}$ $\Sigma_{1.99}$ $(Na_{1.02}Ca_{0.96})_{\Sigma_{1.98}} (Mg_{0.95}Mn_{0.05})_{\Sigma_{1.00}}$ Nb_{6.02}O_{19.00}·6H₂O (mean of eight analytical points). The enrichment in Ba is coupled to the enrichment in Na and depletion of K and Ca. The analyses were obtained in points of several shades of grey observed in back-scattered electron

mine
Ξ.
ja.
'n.
\cup
the
from
erite
-5
G.
of m
composition
al
emica
R
\cup
<u> </u>
TABLE

in wt.%)

Constituent	1	Range	Standard deviation	2	Range	Standard deviation	Probe standard
K,0	0.70	0.61 - 0.89	0.13	3.88	3.71-4.07	0.14	orthoclase
Na,O	4.30	3.76 - 4.68	0.42	2.60	2.41 - 2.76	0.13	jadeite
BaÕ	20.66	20.29 - 20.92	0.27	12.44	12.13–12.91	0.29	barite
CaO	0.83	0.70 - 0.97	0.14	4.41	4.20 - 4.60	0.16	wollastonite
MgO	3.00	2.90 - 3.06	0.08	3.15	3.07 - 3.23	0.06	forsterite
MnO	0.09	0.06 - 0.13	0.03	0.28	0.22 - 0.38	0.06	pyrophanite
Al,O ₃	0.08	0.07 - 0.10	0.02	0.02	b.d.l.–0.08	0.03	corundum
Nb,O,	61.74	61.21-62.21	0.43	65.79	65.22-66.27	0.37	Nb
SiÓ,	0.02	b.d.l0.06	0.03	0.00	b.d.lb.d.l.	0.00	wollastonite
H,0	8.35			8.90			
Total	99.77			101.47			
1. (Ba,K)	ber of (NationCan	io)ei oo(MgoodMho oo	Ala and the and and a set of the Control of the Con	(n = 4)			
2. (Ba _{0.99} K _{1.00})) _{21.99} (Na _{1.02} Ca ₀	20.05.20.98(Mg _{0.95} Mn _{0.05})	$\sum_{\Sigma 1.00} Nb_{6.02} O_{19.00} \cdot 6H_2 O_{19} (n = 0.00)$				
0.d.l. = below c	letection limits.						

FIG. 3. Chemical variability in melcherite.

images distributed in different crystals. These analyses were ordered by ascending Ba atoms per formula unit, numbered from 1 to 25, and served as the basis for the construction of the graph in Fig. 3.

Chemical composition varies from Ba₂Na₂Mg $[Nb_6O_{19}] \cdot 6H_2O$ to $(BaK)(NaCa)Mg[Nb_6O_{19}] \cdot$ 6H2O. Coupled heterovalent substitutions at two sites are verified. As discussed by Hatert and Burke (2008), where a heterovalent substitution occurs at a given crystallographic site, the charge balance can also be maintained by coupling this substitution to another heterovalent substitution at a different site. At the *Ba* site, the atom Ba^{2+} is replaced progressively by K^+ , and to maintain charge balance, the atom Na^+ is replaced progressively by Ca^{2+} at the Na site. The substitution mechanism is $Ba^{2+} + K^+ \leftrightarrow Na^+ + Ca^{2+}$. The boundary site occupancies between the two members of the series is (BaK)(NaCa)Mg[Nb₆O₁₉]·6H₂O. We could imagine a solid-solution series from Ba₂Na₂Mg $[Nb_6O_{19}] \cdot 6H_2O$ to $K_2Ca_2Mg[Nb_6O_{19}] \cdot 6H_2O$, with two mineral species, but the composition varies only from the first end-member to the intermediate member. As no analyses correspond to predominant K and Ca, only one mineral species is defined.

The formula $BaCa_2Mg[Nb_6O_{19}] \cdot 6H_2O$ (Andrade *et al.*, 2015) is incorrect because Na

was not identified. The change in formula was previously approved executively by CNMNC IMA Newsletter No. 29 (Hålenius et al., 2016): "Soon after the approval of the new mineral melcherite (IMA No. 2015-018; see CNMNC Newsletter 25), the authors of the proposal have communicated results of subsequent analytical work on this mineral, which verifies essential contents of sodium. The new data were examined carefully by the CNMNC officers and were found reliable. The revised simplified formula, Ba₂Na₂Mg [Nb₆O₁₉]·6H₂O, has been approved executively." A fragment of the darker part was extracted from the polished section for crystal structure determination.

Crystal structure determination

Powder X-ray diffraction data (XRD) were obtained using a Siemens D5000 diffractometer equipped with a Göbel mirror and a position-sensitive detector using CuK α radiation and 40 kV and 40 mA at the Instituto de Geociências of the Universidade de São Paulo (Table 2). Unit-cell parameters refined from the powder data are as follows: trigonal, space group: $R\bar{3}$, a = 9.022(2) Å, c = 23.410(6) Å, V = 1650.2(8) Å³ and Z = 3.

TABLE 2. Powder X-ray diffraction data for melcherite. TABLE 2. (contd.)

d_{obs} .(Å)	I_{obs} .		d_{calc} .(Å)	$I_{calc}\!.$	h	k	l
11.337	6		11.705	0	0	0	2
7.805	100		7.803	46	0	0	3
7.410	14		7.411	100	1	0	1
6.505	7		6.499	34	0	1	2
5.906	6		5.852	0	0	0	4
			4.684	4	1	0	4
4.508	10		4.511	1	1	1	0
4.018	8		4.016	9	0	1	5
3.904	22	ſ	3.905	13	2	ī	3
		{	3.905	3	1	1	3
		l	3.902	16	0	0	6
3.852	21		3.853	33	0	2	1
3.250	33		3.249	37	0	2	4
3.074	9		3.075	9	1	0	7
			3.000	14	2	0	5
2.952	13	Ş	2.951	10	1	1	6
		l	2.951	1	2	1	6
			2.930	4	2	1	1
			2.930	2	3	1	1
2.861	8	Į	2.863	35	1	3	2
	0	l	2.863	4	1	2	2
2.740	8	,	2.740	13	0	1	8
2.637	8	ł	2.637	27	2	1	4
		l	2.637	5	3	1	4
			2.604	3	3	0	0
			2.601	1	0	0	9
			2.541	1	0 1	2	/
			2.498	4	1	3	2
			2.471	4	3	2	2
			2.4/1	2	2	5	2
			2.342	1	2	$\frac{1}{1}$	0
2 2/3	6		2.233	7	1	0	10
2.243	0		2.243	19	2	1	7
			2.214	3	2	2	3
2 165	30	ſ	2.167	32	3	0	6
2.100	20	ſ	2.166	1	0	3	6
2.160	12	Î	2.158	1	1	3	1
		ſ	2.158	1	Ī	4	1
		Ċ	2.131	1	4	ī	2
2.078	4		2.079	1	1	2	8
2.053	5	ſ	2.053	0	1	0	11
		ĺ	2.053	0	0	1	11
2.034	4		2.032	2	ī	4	4
			2.008	3	0	2	10
			1.967	5	3	1	5
			1.953	5	2	2	6
			1.869	1	2	0	11
			1.840	2	3	0	9
			1.840	1	0	3	9
1.836	4		1.835	1	3	Ī	10
			1.819	3	1	3	7
			1.791	2	2	Ī	12

d_{obs} .(Å)	I _{obs} .		d_{calc} .(Å)	I _{calc} .	h	k	l
			1.787	5	5	$\overline{2}$	1
			1.772	4	2	3	2
			1.742	6	3	1	8
			1.742	3	4	ī	8
			1.727	8	ī	3	11
1.703	5		1.705	11	1	4	0
			1.674	1	2	3	5
			1.666	4	4	1	3
			1.666	1	5	ī	3
			1.666	1	1	4	3
			1.666	1	ī	5	3
1.629	4		1.635	1	0	2	13
			1.590	2	1	3	10
			1.590	2	1	4	10
			1.580	4	5	$\overline{2}$	7
			1.580	1	3	2	7
1.562	5	ſ	1.562	3	1	5	6
		{	1.562	1	1	4	6
		l	1.562	1	5	ī	6
			1.561	8	0	3	12
			1.561	2	3	0	12
			1.561	1	0	0	15
			1.549	1	5	0	2

The strongest reflections are given in bold.

TABLE 3. Structure refinement results for melcherite.

Ideal chemical formula	Ba ₂ Na ₂ Mg[Nb ₆ O ₁₉]. 6H ₂ O
Ideal chemical formula Crystal size (mm) Space group a (Å) c (Å) V (Å ³) Z ρ_{cal} (g/cm ³) λ (Å) μ (mm ⁻¹) 20 max. for data collection(°) No. of reflections collected	$\begin{array}{r} Ba_2Na_2Mg[Nb_6O_{19}].\\ 6H_2O\\ \hline 0.07 \times 0.05 \times 0.05\\ R\bar{3}\\ 9.0117(6)\\ 23.3986(16)\\ 1645.64(19)\\ 3\\ 3.748\\ 0.71073\\ 5.46\\ \leq 66.38\\ 5316\\ \end{array}$
No. of independent reflections No. of reflections with $I > 2\sigma(I)$ No. of parameters refined R_{int} Final <i>R</i> factors $[I > 2\sigma(I)]$ Final <i>R</i> factors (all data) Goodness-of-fit Largest diff. peak and hole	1403 1319 65 0.022 $R_1 = 0.017, wR_2 = 0.042$ $R_1 = 0.019, wR_2 = 0.041$ 1.13 1.30 and -1.59 <i>e</i> Å ⁻³

Weighting scheme: $w = 1/[\sigma^2(F_o^2) + (0.0146P)^2 + 5.6144P]$, where $P = [\max(0, F_o)^2 + (2F_c)^2]/3$.

(continued)

U^{12}	0.00550(6) 0.00550(6) 0.00372(6) 0.0057(2) 0.0057(2) 0.0046(6) 0.0042(5) 0.0047(5) 0.0047(5) 0.0039(4) 0.0050(6)	TABLE 5. Select the refined r	ted bond lengths nelcherite structi	s and bond valure.	ences of
		Bond	Bond length	BV (vu)*	Σ
	(1000)	(Ba,K)–O3	2.7189(14)	0.261(x2)	0.522
G	000000000000000000000000000000000000000	(Ba,K)–O3	2.7190(14)	0.261	0.261
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(Ba,K)–OW5	2.9923(18)	0.125(x3)	0.375
	0 00 1	(Ba.K)-O2	3.0875(15)	0.096(x3)	0.288
		(20,12) 02	010070(10)	Sum	1.446
	00 00 00 00 00 00 00 00 00	Nb_01	2 0154(13)	0.754	0 754
		Nh O1	2.0154(13) 2.0161(13)	0.753	0.753
		Nb O2	1.7006(14)	1 285	1 2 8 5
		ND-O2 Nb O2	1.7900(14) 1.0601(12)	1.365	0.955
		NU-O3	1.9091(13) 1.0721(12)	0.835	0.035
	61202020200000	ND-O3	1.9/31(13)	0.845	0.845
	27(5) 27(5) 20(03) 21(5)	Nb-04	2.36/8(2)	0.291	0.291
	018 00.000.000 010.000.000 0.000.000 0.000.00			Sum	4.883
	0.0000000000000000000000000000000000000	(Na,Ca)–O2	2.3501(15)	0.286(x3)	0.858
		(Na,Ca)-O1	2.4476(15)	0.2203(x3)	0.660
	9(1) 9(1) 9(1) 9(1) 1(6) 1(6) 1(6) 1(6) 1(7) 9(7) 1(6) 1(7) 1(6) 1(7) 1(6) 1(7) 1(6) 1(7) 1(6) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7) 1(7			Sum	1.518
2	(0000)				
	0.0000000000000000000000000000000000000	Mg–OW5	2.0602(16)	0.371	0.371
	000	Mg–OW5	2.0603(16)	0.371(x5)	1.484
				Sum	2.226
l	99(1) 99(1) 99(1) 93(5) 93(5) 93(5) 93(5) 93(5) 93(5) 93(5) 93(5) 93(5) 93(5) 114(6) 1	O1–Nh	2 0154(16)	0 754	0 754
		O1–Nb	2.0161(16)	0.753	0.753
	0.0000000000000000000000000000000000000	O1 (Na Ca)	2.0101(10) 2.4476(15)	0.735	0.755
		OI-(Na,Ca)	2.4470(13)	Sum	1.727
			1 700 ((1.4)	1 205	1 205
5	03 3 84 40 00 00 00 00 00 00 00 00 00 00 00 00	O2–Nb	1.7906(14)	1.385	1.385
		O2–(Na,Ca)	2.3501(15)	0.286	0.286
	0.00000000000000000000000000000000000	O2–(Ba,K)	3.0875(15)	0.080	0.096
				Sum	1.767
	5(1) 4(1) (10) (10)	O3–Nb	1.9691(13)	0.855	0.855
1	32. 67. 543	O3–Nb	1.9731(13)	0.845	0.845
).5).4 0.∠ 0.2	O_{3} –(Ba K)	2.7189(14)	0.261	0.261
		(20,12)		Sum	1.961
	$ \begin{array}{c} 6(14) \\ 6(14) \\ 6(14) \\ 6(14) \\ 6(14) \\ 6(12) $	O4 Nb	2 2678(2)	0.201(x6)	1 746
	125 125 125 125 125 125 125 125 125 125	OW5 M	2.30/8(2)	0.291(X0)	1./40
	$\begin{array}{c} 72^{2} \\ 72^{2$	OW 3-Mg	2.0003(10)	0.3/1	0.3/1
1	0.1.	0w5–(Ba,K)	2.9923(18)	0.125	0.125
				Sum	0.496
	$\begin{array}{c} 2(2) \\ (11) \\ (11) \\ (2$	*D 1 1	:		
	11/3 11/3 11/3 11/3 11/3 11/3 11/3 11/3	"Bond valence	in valence units.		
	58 80(523 523 523 523 523 523 523 500 .115 0.115				
	0 0.0.0	A single	e-crystal X-ray	study was car	ried-out
	(2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	using a Bru	iker APEX II CO	CD diffractome	eter with
	$\begin{array}{c} 33\\ 33\\ 5(2)\\ 5(2$	graphite-mo	onochromated N	ΛοKα ($\lambda = 0.7$	1073 Å)
5	222001222222222222222222222222222222222	radiation a	nd gave the fol	llowing data: 1	trigonal,
	0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57	space group	$: R\bar{3}, a = 9.0117(6)$	5) Å, c = 23.398	6(16) Å,
		V = 1645.64	$4(19) Å^3 and Z =$	= 3. The X-ray	absorp-
	551 551 551 551 551 551 551 551 551 551	tion correct	tion was applied	to intensity da	ta using
	ăyzüzzoööööiii	the program	n SADARS from	Bruker	

TABLE 4. Final fractional coordinates and displacement parameters of atoms in melcherite.

the program SADABS from Bruker.

MARCELO B. ANDRADE ETAL.

TABLE 5. Selected bond lengths and bond valences of

MELCHERITE, A NATURAL HEXANIOBATE, FROM BRAZIL

FIG. 4. Crystal structure of melcherite. (Ba,K) = yellow; (Na,Ca) = pink; Mg = green; Nb = blue; O = red and OW = grey.

FIG. 5. Lindquist polyanions $[Nb_6O_{19}]^{8-}$ stacking sequence in the crystal structure of melcherite.

TABLE 6. Selected interatomic bond lengths (Å) and octahedral distortion indices for melcherite $(Ba_2Na_2MgNb_6O_{19}\cdot 6H_2O)$, peterandresenite $(Mn_4Nb_6O_{19}\cdot 14H_2O)$ and hansesmarkite $(Ca_2Mn_2Nb_6O_{19}\cdot 20H_2O)$.

Melcherite	(This work)	Peterandresen 20	ite (Friis <i>et al.</i> , 14)	Hansesmark 20	ite (Friis <i>et al</i> ., 017)
Nb-O1 Nb-O1 Nb-O2 Nb-O3	2.0154(13) 2.0161(13) 1.7906(14) 1.9691(13)	Nb1-O1 Nb1-O2 Nb1-O3 Nb1-O4	2.3982(1) 1.7685(8) 1.9767(8) 1.9799(6)	Nb1-O1 Nb1-O2 Nb1-O3 Nb1-O4	2.3990(6) 1.780(1) 1.962(1) 1.973(1)
(Nb-O) Nb-O4 (Nb-O) OV* OAV OQE	1.9731(13) 2.3678(2) 2.022 10.513 113.650 1.040	Nb1-OS Nb1-O6 (Nb1-O) OV OAV OQE	2.0080(6) 2.0290(8) 2.027 10.506 132.281 1.046	Nb1-O5 Nb1-O6 (Nb1-O) OV OAV OQE	2.020(1) 2.034(1) 2.028 10.723 119.622 1.042
Mg–OW5 Mg–OW5 (Mg–OW) OV OAV OQE (Na,Ca)–O2 (Na,Ca)–O1 OV OAV OQE	$\begin{array}{c} 2.0602(16)\\ 2.0603(16)\\ 2.060\\ 11.603\\ 12.285\\ 1.003\\ \hline 2.3501(15)\\ 2.4476(15)\\ 15.689\\ 354.100\\ 1.113\\ \end{array}$	Nb2-O1 Nb2-O3 Nb2-O6 Nb2-O6 Nb2-O7 (Nb2-O) OV OAV OQE Mn1-O2 Mn1-O2 Mn1-O5 Mn1-O6 Mn1-O6 Mn1-O6 Mn1-O8 (Mn1-O) OV OAV	$\begin{array}{c} 2.3679(1)\\ 1.9716(8)\\ 1.9716(8)\\ 2.0208(8)\\ 2.0208(8)\\ 1.777(1)\\ 2.021\\ 10.522\\ 110.055\\ 1.039\\ \hline\\ 2.0645\\ 2.0645\\ 2.220\\ 2.3250\\ 2.3250\\ 2.3250\\ 2.253(2)\\ 2.208\\ 13.518\\ 146.530\\ 1.044\\ \end{array}$	Nb2-O1 Nb2-O4 Nb2-O5 Nb2-O7 Nb2-O8 Nb2-O9 (Nb2-O) OV OAV OQE Nb3-O1 Nb3-O3 Nb3-O6 Nb3-O8 Nb3-O9 Nb3-O9 Nb3-10 (Nb3-O) OV OAV OOF	$\begin{array}{c} 2.3576(6)\\ 1.977(1)\\ 2.029(1)\\ 1.766(1)\\ 1.982(1)\\ 2.019(1)\\ 2.019(1)\\ 2.021\\ 10.714\\ 108.276\\ 1.039\\ \hline 2.3764(6)\\ 1.956(1)\\ 2.033(1)\\ 1.979(1)\\ 2.010(1)\\ 1.785(1)\\ 2.023\\ 10.691\\ 121.348\\ 1.044\\ \end{array}$
		Mn2–O7 Mn2–O9 Mn2–O10 Mn2–O10 Mn2–O11 Mn2–O11 (Mn2–O) OV OAV OQE	$\begin{array}{c} 2.088(1)\\ 2.106(2)\\ 2.237(1)\\ 2.237(1)\\ 2.240(1)\\ 2.240(1)\\ 2.191\\ 13.992\\ 4.489\\ 1.003\end{array}$	Mn-O5 Mn-O6 Mn-O7 Mn-O9 Mn-O11 Mn-O12 (Mn-O) OV OAV OQE	$\begin{array}{c} 2.230(1)\\ 2.208(1)\\ 2.050(1)\\ 2.254(1)\\ 2.149(2)\\ 2.180(2)\\ 2.178\\ 13.417\\ 104.704\\ 1.030\end{array}$

*OV = octahedral volume (Å3), OAV = octahedral angle variance ($^{\circ 2}$), and OQE = octahedral quadratic elongation (Robinson *et al.* 1971).

The SHELXL-97 package (Sheldrick, 2008) was used for the direct methods structure solution and its subsequent refinement. The *Ba* and *Na* sites were refined assuming full but joint occupation by Ba/K and Na/Ca respectively, which yielded occupancy values close to those indicated by the empirical formula based on the electron microprobe analysis. A final difference-Fourier synthesis

MELCHERITE, A NATURAL HEXANIOBATE, FROM BRAZIL

	Chemical formula	Unit-cell parameters (Å)		
Melcherite*	$\begin{array}{l} Ba_{2}Na_{2}Mg[Nb_{6}O_{19}].6H_{2}O\\ Cs_{6}Na_{2}(Nb_{6}O_{19})\cdot18H_{2}O\\ Rb_{6}(H_{2}Nb_{6}O_{19})\cdot19H_{2}O \end{array}$	a = 9.0117(6)	c = 23.3986(16)	
Synthetic [†]		a = 12.609(2)	c = 22.745(5)	
Synthetic [†]		a = 12.271(2)	c = 20.686(3)	

TABLE 7. Comparative data for melcherite and synthetic compounds (all trigonal, $R\bar{3}$).

*This work.

[†]Nyman *et al.* (2006).

TABLE 8. Comparison of melcherite with other naturally-occurring hexaniobates.

Name Formula	melcherite Ba ₂ Na ₂ MgNb ₆ O ₁₉ ·6H ₂ O	peterandresenite ¹ Mn ₄ Nb ₆ O ₁₉ ·14H ₂ O	$\frac{hansesmarkite^2}{Ca_2Mn_2Nb_6O_{19}\cdot 20H_2O}$
Space group	RĪ	<i>C</i> 2/ <i>m</i>	PĪ
a(Å)	9.0117(6)	15.3444(3)	9.081(4)
$b(\mathbf{A})$	9.0117(6)	9.4158(2)	9.982(8)
c(Å)	23.3986(16)	11.2858(4)	10.60(1)
α (°)	90	90	111.07(8)
ß (°)	90	118.632(1)	101.15(6)
γ (°)	120	90	99.39(5)
Z	3	2	1
$V(Å^3)$	1645.64(19)	1431.18(7)	851.5(13)
Strongest PXRD lines $d(I)$	7.805 (100); 3.250 (33); 2.165 (30)	2.9260 (100); 9.8977 (82); 7.1026 (63)	8.610 (100); 9.282 (36); 3.257 (30)
Optics	Uniaxial (?)	Biaxial (–)	Biaxial (+)

1: Friis et al. (2014); 2: Friis et al. (2017)

allowed the H atom positions of the water molecule to be located, which were then refined with soft restraints of 0.86 Å on the O-H distances and 1.40 Å on the H–H distance, and with U_{iso} values fixed at ~1.5 times that of the O atom. Refinement of this final model converged to an R_1 of 0.017 and the crystal chemical formula obtained is (Ba1.06K0.94) $(Na_{1.09}Ca_{0.91})Nb_6Mg[O_{18.98}(OH)_{0.02}]_{\Sigma 19.00} \cdot 6H_2O,$ where a small fraction of the oxygen atoms in the hexaniobate polyanion is assumed to be replaced by OH groups in order to balance the slight positive charge deficiency associated with the Ba/K and Na/ Ca sites. Details of the data collection and structure refinement are given in Tables 3 and 4. Selected bond distances and associated bond-valence sum calculations, using the parameters of Brese and O'Keefe (1991), are given in Table 5.

Melcherite is a hexaniobate that has structural layers parallel to the xy plane that stack along the c axis with simultaneous 1/3 [1 $\overline{1}$ 0] displacement so as to produce an R lattice. The melcherite structure (Figs 4 and 5) is built by layers of [(Ba,K)(O,H₂O)₉] polyhedra and the [Nb₆O₁₉]⁸⁻ super-octahedron (Lindqvist anion) interconnected by [(Na,Ca)O₆] polyhedra. There is a significant distortion present in the Nb-O octahedron forming the hexaniobate polyanion, as measured by the octahedral angle variance (OAV), = $113.650^{\circ 2}$, and quadratic elongation (OQE), = 1.040 indices (Robinson et al., 1971). The results are comparable to the NbO₆ octahedra present in the crystal structure of peterandresenite and hansesmarkite (Table 6). Ba/K is coordinated by six oxygens and three water molecules. Na/Ca is coordinated by six oxygen atoms in a distorted octahedron and the OAV and OQE values are 354.100°² and 1.113, respectively. Mg²⁺ cations are bonded to six water molecules each and are not associated with Lindqvist oxygen ions. The comparison with MnO₆ in peterandresenite and hansesmarkite shows that the octahedral coordination of the Mg cation is relatively undistorted, as indicated by the values of OAV = $12.285^{\circ 2}$ and OQE = 1.003 (Table 6).

The mineral is similar structurally to the synthetic compounds $Cs_6Na_2(Nb_6O_{19})$ ·18H₂O

and $Rb_6(H_2Nb_6O_{19}).19H_2O$, studied by Nyman *et al.* (2006) (Table 7). They have the same space group as melcherite, $R\bar{3}$. The unit-cell dimensions and arrangement of the Lindqvist ion $[Nb_6O_{19}]^{8-}$ are very similar. The crystallographic parameters of melcherite are compared with those of the other hexaniobate minerals in Table 8.

Acknowledgements

We acknowledge the Sao Paulo Research Foundation for financial support (Grants: 2011/22407-0 and 2013/ 03487-8); the Principal Editor: Peter Williams, reviewers Robert T. Downs, Hexiong Yang (University of Arizona) and Peter Leverett, and the members of the Commission on New Minerals and Mineral Names of the International Mineralogical Association (CNMNC-IMA) for their helpful suggestions and comments.

References

- Abramov, P.A., Vicent, C., Kompankov, N.B., Gushchin, A. L. and Sokolov, M.N. (2016) Coordination of {C₅Me₅Ir}²⁺ to [M₆O₁₉]⁸⁻ (M=Nb, Ta) – Analogies and differences between Rh and Ir, Nb and Ta. *European Journal of Inorganic Chemistry*, 1, 154–160.
- Andrade, M.B., Atencio, D. and Menezes Filho, L.A.D. (2015) Melcherite, IMA 2015-018. CNMNC Newsletter No. 25, June 2015, page 547; *Mineralogical Magazine*, **79**, 541–547.
- Atencio, D., Coutinho, J.M.V., Doriguetto, A.C., Mascarenhas, Y.P., Ellena, J.A. and Ferrari, V.C. (2008) Menezesite, the first natural heteropolyniobate, from Cajati, São Paulo, Brazil: Description and crystal structure. *American Mineralogist*, **93**, 81–87.
- Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. *Acta Crystallographica Section B: Structural Science*, 47(2), 192–197.
- Chao, G.Y. and Gault, R.A. (1997) Quintinite-2H, quintinite-3T, charmarite-2H, charmarite-3T and caresite-3T, a new group of carbonate minerals related to the hydrotalcite-manasseite group. *Canadian Mineralogist*, **35**, 1541–1549.
- Friis, H., Larsen, A.O., Kampf, A.R., Evans, R.J., Selbekk, R.S., Sánchez, A.A. and Kihle, J. (2014) Peterandresenite, Mn₄Nb₆O₁₉·14H₂O, a new mineral containing the Lindqvist ion from a syenite pegmatite of the Larvik Plutonic Complex, southern Norway. *European Journal of Mineralogy*, **26**, 567–576.
- Friis, H., Weller, M.T. and Kampf, A.R. (2017) Hansesmarkite, Ca₂Mn₂Nb₆O₁₉·20H₂O, a new hexaniobate from a syenite pegmatite in the Larvik Plutonic Complex, southern Norway. *Mineralogical Magazine*, 81, 543–554.
- Hålenius, U., Hatert, F., Pasero, M. and Mills, S.J. (2016) New minerals and nomenclature modifications

approved in 2015 and 2016. CNMNC Newsletter 29. *Mineralogical Magazine*, **80**, 199–205,.

- Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. *Canadian Mineralogist*, 46, 717–728.
- Hussak, E. and Prior, G.T. (1895) Lewisite and zirkelite, two new Brazilian minerals. *Mineralogical Magazine*, 11, 80–88.
- Kinnan, M.K., Creasy, W.R., Fullmer, L.B., Schreuder-Gibson, H.L. and Nyman, M. (2014) Nerve agent degradation with polyoxoniobates. *European Journal* of Inorganic Chemistry, 2014(14), 2361–2367.
- Kinomura, N., Kumata, N. and Muto, F. (1984) A new allotropic form with ilmenite-type structure of NaNbO₃. *Materials Research Bulletin*, **19**, 299–304.
- Kumata, N., Kinomura, N. and Muto, F. (1990) Crystal structure of ilmenite-type LiNbO₃ and NaNbO₃. *Journal of the Ceramic Society of Japan*, 98, 384–388.
- Lindqvist, I. (1953) The structure of the hexaniobate ion in 7Na₂O·6Nb₂O₅·32H₂O. Arkiv for Kemi, 5(3), 247–250.
- Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. *Canadian Mineralogist*, **19**, 441–450.
- Melcher, G.C. (1966) The carbonatites of Jacupiranga, São Paulo, Brazil. Pp. 169–181 in: *Carbonatites* (O.F. Tuttle and J. Gittins, editors). John Wiley and Sons, New York.
- Menezes Filho, L.A.D. and Martins, J.M. (1984) The Jacupiranga mine, São Paulo, Brazil. *Mineralogical Record*, 15, 261–270.
- Menezes Filho, L.A.D., Atencio, D., Andrade, M.B., Downs, R.T., Chaves, M.L.S.C., Romano, A.W., Scholz, R. and Persiano, A.I.C. (2015) Pauloabibite, trigonal NaNbO₃, isostructural with ilmenite, from the Jacupiranga carbonatite, Cajati, São Paulo, Brazil. *American Mineralogist*, **100**, 442–446.
- Nyman, M. (2011) Polyoxoniobate chemistry in the 21st century. *Dalton Transactions*, 40(32), 8049–8058.
- Nyman, M., Bonhomme, F., Alam, T.M., Rodriguez, M. A., Cherry, B.R., Krumhansl, J.L., Nenoff, T.M., and Sattler, A.M. (2002) A general synthetic procedure for heteropolyniobates. *Science*, **297**, 996–998.
- Nyman, M., Alam, T.M., Bonhomme, F., Rodriguez, M. A., Frazer, C.S. and Welk, M.E. (2006) Solid-State structures and solution behaviour of alkali salts of the [Nb₆O₁₉]^{8–} Lindqvist Ion. *Journal of Cluster Science*, 17, 197–219.
- Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. *Science*, **172**, 567–570.
- Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
- Wang, J.P., Niu, H.Y. and Niu, J.Y. (2008) A novel Lindqvist type polyoxoniobate coordinated to four copper complex moieties: {Nb₆O₁₉[Cu(2,2'bipy)]₂[Cu(2,2'-bipy)₂]₂}·19H₂O. Inorganic Chemistry Communications, **11**(1), 63–65.