New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VIII. Arsenowagnerite, $Mg_2(AsO_4)F$

IGOR V. PEKOV^{1,*}, NATALIAV. ZUBKOVA¹, ATALI A. AGAKHANOV², VASILIY O. YAPASKURT¹, NIKITAV. CHUKANOV³, DMITRY I. BELAKOVSKIY², EVGENY G. SIDOROV⁴ AND DMITRY YU. PUSHCHAROVSKY¹

¹ Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia

² Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
³ Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Oblast, Russia

⁴ Institute of Volcanology and Seismology, Far Eastern Branch of Russian Academy of Sciences, Piip Boulevard 9, 683006 Petropavlovsk-Kamchatsky, Russia

[Received 4 June 2017; Accepted 24 July 2017; Associate Editor: Stuart Mills]

ABSTRACT

A new mineral arsenowagnerite, $Mg_2(AsO_4)F$, the arsenate analogue of wagnerite, was found in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated closely with johillerite, tilasite, anhydrite, hematite, fluorophlogopite, cassiterite, calciojohillerite, aphthitalite and fluoborite. Arsenowagnerite occurs as equant to tabular crystals up to 1 mm across combined in interrupted crusts up to $0.1 \text{ cm} \times 1.5 \text{ cm} \times 3 \text{ cm}$. The mineral is transparent, light yellow, lemon-yellow, greenish-yellow or colourless and has a vitreous lustre. Arsenowagnerite is brittle, with Mohs hardness of \sim 5. Cleavage is distinct, the fracture is uneven. $D_{\text{calc}} = 3.70 \text{ g cm}^{-3}$. Arsenowagnerite is optically biaxial (+), $\alpha = 1.614(2)$, $\beta = 1.615(2)$, $\gamma = 1.640(2)$ and $2V_{\text{meas}} = 25(5)^{\circ}$. Wavenumbers of the strongest absorption bands in the IR spectrum (cm⁻¹) are: 874, 861, 507, 491 and 470. The chemical composition (average of six electron-microprobe analyses, wt. %) is: MgO 38.72, CaO 0.23, MnO 0.32, CuO 0.60, ZnO 0.05, Fe₂O₃ 0.11, TiO₂ 0.03, SiO₂ 0.08, P₂O₅ 0.18, V_2O_5 0.03, As₂O₅ 54.96, SO₃ 0.10, F 8.91 and -O=F-3.75, total 100.57. The empirical formula calculated on the basis of 5 (O+F) apfu is: $(Mg_{1.98}Cu_{0.02}Mn_{0.01}Ca_{0.01})_{\Sigma 2.02}(As_{0.99}P_{0.01})_{\Sigma 1.00}O_{4.03}F_{0.97}$. Arsenowagnerite is monoclinic, $P2_1/c$, a = 9.8638(3), b = 12.9830(3), c = 12.3284(3) Å, $\beta = 109.291(3)^\circ$, V = 1490.15(7) Å³ and Z = 16. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 5.80(41)(002), 5.31(35)(120), 3.916(37)(221), 3.339(98)(221, 023), 3.155(65)(202), 3.043(100)(141), 2.940(72)(204), 2.879(34)(322) and 2.787(51)(320, 124). The crystal structure was solved from singlecrystal X-ray diffraction data, R = 0.0485. Arsenowagnerite is isostructural to wagnerite-Ma2bc. The crystal structure is built by almost regular AsO₄ tetrahedra, distorted MgO₄F₂ octahedra and distorted MgO₄F trigonal bipyramids.

KEYWORDS: arsenowagnerite, new mineral, magnesium fluoroarsenate, triplite group, wagnerite-*Ma2bc*, crystal structure, fumarole sublimate, Tolbachik volcano, Kamchatka.

Introduction

This paper continues a series of articles on new arsenate minerals from the Arsenatnaya fumarole located at the apical part of the Second scoria cone of the Northern Breakthrough of the Great

*E-mail: igorpekov@mail.ru https://doi.org/10.1180/minmag.2017.081.067

Copyright © Mineralogical Society of Great Britain and Ireland 2018

Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka Peninsula, Far-Eastern Region, Russia (55°41'N, 160°14'E, 1200 m asl). This active fumarole, discovered by us in July 2012, is described in general in the first paper devoted to yurmarinite Na₇(Fe³⁺,Mg,Cu)₄(AsO₄)₆ (Pekov et al., 2014a). In other articles the following mineral species were characterized: two polymorphs of $Cu_4O(AsO_4)_2$, ericlaxmanite and kozyrevskite (Pekov et al., 2014b), popovite $Cu_5O_2(AsO_4)_2$ (Pekov *et al.*, 2015*a*), structurally related shchurovskyite K2CaCu6O2(AsO4)4 and dmisokolovite K₃Cu₅AlO₂(AsO₄)₄ (Pekov et al., 2015b), katiarsite $KTiO(AsO_4)$ (Pekov *et al.*, 2016*a*), melanarsite $K_3Cu_7Fe^{3+}O_4(AsO_4)_4$ (Pekov et al., 2016b) and pharmazincite KZnAsO₄ (Pekov et al., 2017).

This paper is devoted to the new mineral arsenowagnerite $Mg_2(AsO_4)F$ (Cyrillic: арсеновагнерит). It is named as an arsenate analogue of wagnerite $Mg_2(PO_4)F$. Both the new mineral and its name have been approved by the IMA Commission on New Minerals, Nomenclature and Classification (IMA2014–100). The type specimen is deposited in the systematic collection of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, under the catalogue number 95000.

Occurrence and general appearance

The first specimen of the new mineral that became the holotype was found by us in July 2014. During fieldwork in 2015 and 2016 we collected more material that gave additional information on the morphology and mineral association of arsenowagnerite.

In the holotype specimen, collected at a depth of two metres below the surface, arsenowagnerite occurs as crude tabular crystals and euhedral grains up to 0.3 mm in size combined in crusts that cover coarse spherulites mainly consisting of johillerite, tilasite and anhydrite (Figs 1a and 2). These complex sulfate-arsenate aggregates overgrow basalt scoria. The crusts of the new mineral, covering botryoidal clusters of the anhydrite-tilasite-johillerite spherulites, are up to 0.5 cm x 1 cm in area and up to 0.4 mm thick. Arsenowagnerite crystals are skeletal, typically case-like, and its aggregates are open-work. Small grains (up to 0.02 mm) of arsenowagnerite are also observed inside the anhydrite-tilasitejohillerite spherulites where they form intimate intergrowths with these three minerals (Fig. 2) and sometimes also with hematite.

FIG. 1. Morphology of arsenowagnerite aggregates. (*a*) The holotype: yellowish crust covering an anhydritetilasite–johillerite spherulite and surrounded by aggregates of blue johillerite and pinkish-brownish tilasite (in the lower part of the figure); and (*b*) abundant transparent pale yellowish crystals with deep red cassiterite on ironblack hematite crystal crust. Fields of view: (*a*) 4.4 mm;

(b) 3.5 mm. Photos: I.V. Pekov and A.V. Kasatkin.

At depths of 2.5–3 m below the surface arsenowagnerite was found to be more abundant than at higher levels of the fumarole. In some areas it occurs as interrupted crusts up to 1.5 cm × 3 cm in area and up to 1 mm thick consisting of distorted, typically skeletal crystals up to 1 mm across (Figs 1b and 2). Well-shaped equant or tabular crystals (Fig. 3) up to 0.5 mm are rarer. Arsenowagnerite aggregates cover hematite and fluorophlogopite crystal crusts or directly overgrow basalt scoria. Other associated minerals there are cassiterite, calciojohillerite [NaCaMg₃(AsO₄)₃, IMA2016-068], johillerite, nickenichite, svabite, berzeliite, tilasite, anhydrite, aphthitalite, metathénardite (hexagonal Na₂SO₄, IMA2015-102), krasheninnikovite and fluoborite. Arsenowagnerite crystals commonly contain numerous inclusions of other

ARSENOWAGNERITE, A NEW MINERAL

FIG. 2. Back-scattered electron image of a polished section of the holotype specimen showing a crust of skeletal, case-like, crude crystals of arsenowagnerite (1) covering an anhydrite-tilasite-johillerite aggregate with subordinate arsenowagnerite (2-4): 2 – tilasite; 3 – intimate intergrowths of johillerite (white elongated crystals), tilasite and arsenowagnerite (both light grey); 4 – anhydrite.

arsenates, hematite, cassiterite, fluorophlogopite and particles of basalt scoria.

Temperatures measured by us using a chromelalumel thermocouple in areas with arsenowagnerite at the time of its collecting were 360–450°C. We believe that the new mineral was formed at temperatures not lower than 450°C as a result of the interaction between fumarolic gas (an obvious source of As, O and F) and basalt scoria, the most probable source of Mg which has low volatility at temperatures at least of 500°C (Symonds and Reed, 1993).

Physical properties and optical data

Arsenowagnerite is transparent with vitreous lustre. It is typically light yellow to lemon-yellow, sometimes pale greenish-yellow or colourless. Its streak is white. Arsenowagnerite demonstrates weak orangered fluorescence in short-wave ($\lambda = 245$ nm) ultraviolet (UV) light and does not fluoresce under long-wave (330 nm) UV irradiation. The mineral is brittle. One direction of distinct cleavage was observed under the microscope; by analogy with structurally related wagnerite and sarkinite, we assume that its direction is {001}. The fracture is uneven. The Mohs hardness is ~5. Density could not be measured correctly because of the cavernous, case-

FIG. 3. (*a*,*b*) Scanning electron microscopy images of crystals of arsenowagnerite.

like character of individuals of the mineral (Fig. 2) and numerous inclusions in them. Density calculated using the empirical formula is 3.698 g cm^{-3} .

In plane polarized light arsenowagnerite is colourless and non-pleochroic. It is optically biaxial (+), $\alpha = 1.614(2)$, $\beta = 1.615(2)$, $\gamma = 1.640(2)$ (589 nm), $2V_{meas} = 25(5)^{\circ}$ and $2V_{calc} = 23^{\circ}$. Dispersion of optical axes was not observed.

Infrared spectroscopy

In order to obtain the infrared (IR) absorption spectrum (Fig. 4), a powdered sample of arsenowagnerite was mixed with dried KBr, pelletized, and analysed using an ALPHA FTIR spectrometer (Bruker Optics) with a resolution of 4 cm⁻¹ and 16 scans accumulated. The IR spectrum of an analogous pellet of pure KBr was used as a reference.

Wavenumbers of absorption bands in the IR spectrum of arsenowagnerite and their assignments (cm⁻¹; s – strong band, sh – shoulder) are: 900sh, 874s, 861s, 840sh, 820sh (stretching vibrations of AsO_4^{3-} groups); 561, 525sh, 507s, 491s, 470s, 443, 417 (bending vibrations of AsO_4^{3-} groups combined with Mg–O-stretching vibrations); 375 (lattice mode, possibly involving

Mg–F-stretching vibrations). Weak shoulders at 1090 and 1140 cm^{-1} correspond to trace amounts of the sulfate anion.

Numerous bands in the ranges from 800 to 900 and from 400 to 600 cm^{-1} reflect the presence of numerous non-equivalent sites of AsO_4^{3-} groups and Mg^{2+} cations in the crystal structure of arsenowagnerite (see below). Bands corresponding to O–H, C–O and B–O bonds are absent in the IR spectrum of the mineral.

Chemical composition

Chemical composition of arsenowagnerite was determined on a Jeol JSM-6480LV scanning electron microscope equipped with an INCA-Wave 500 wavelength-dispersive spectrometer (Laboratory of Analytical Techniques of High Spatial Resolution, Dept. of Petrology, Moscow State University), with an acceleration voltage of 20 kV, a beam current of 20 nA and a 3 μ m beam diameter. The standards used are: CaWO₄ (Ca), diopside (Mg, Si), MnTiO₃ (Mn, Ti), CuFeS₂ (Cu, Fe), ZnS (Zn, S), GaP (P), V (V), FeAsS (As) and MgF₂ (F).

The chemical composition of the new mineral is consistent and only slightly varies in different

FIG. 4. The powder IR absorption spectrum of arsenowagnerite.

ARSENOWAGNERITE, A NEW MINERAL

$I_{\rm obs}$	$d_{\rm obs}$	$I_{\rm calc}^{*}$	d _{calc} **	h k l
41	5.80	24	5.818	002
14	5.65	14	5.669	021
35	5.31	21	5.325	120
7	4.65	2	4.655	200
27	4.42	14	4.415	202
37	3.916	27	3.920	221
4	3.584	3	3.604	122
98	3.339	57, 27	3.343, 3.330	221, 023
65	3.155	58	3.161	202
100	3.043	100	3.046	141
72	2.940	68	2.942	204
34	2.879	22	2.881	322
51	2.787	21, 22	2.800, 2.784	320, 124
5	2.610	3	2.615	242
30	2.540	22	2.543	143
12	2.457	9	2.459	402
5	2.407	2	2.407	324
13	2.281	3, 6, 3	2.287, 2.286, 2.272	143, 421, 322
9	2.260	6	2.264	242
11	2.225	10	2.227	423
11	2.1/5	6, 6	2.180, 2.166	343, 204
32	2.107	24	2.111	$\frac{341}{200}$
12	2.040	0, 2, 3	2.046, 2.041, 2.031	206, 421, 162
30	1.932	10, 15, 1, 4	1.939, 1.936, 1.929, 1.921	006, 162, 412, 425
8 17	1.00/	3, 4 17	1.892, 1.891	$\frac{201,440}{245}$
1/	1.848	1/	1.651	545 260
22	1.792	2 16	1.795	302 342 145
18	1.704	2, 10	1.707, 1.705	422 A22
10	1.092	10 2 1 1	1.670 1.666 1.665 1.661	$\frac{423}{543}$ $\frac{5}{5}$ $\frac{1}{5}$
9	1.616	6 1 2	1 623 1 620 1 615	$080 \ \bar{4}61 \ 362$
18	1.592	9 2 11	1 598 1 596 1 591	$\overline{463}$ $\overline{181}$ $\overline{526}$
12	1.572	14	1 576	522
12	1.560	8.5.3	1.563, 1.562, 1.551	$082, \bar{6}21, \bar{5}45$
11	1.531	9.3	1 533, 1 532	$\overline{1}47, 280$
13	1.520	1. 7. 9	1.525, 1.523, 1.520	461, 282, 347
5	1.504	6	1.506	<u>6</u> 25
10	1.482	7,6	1.484, 1.483	<u>3</u> 28, <u>1</u> 66
5	1.468	4	1.471	4 08
11	1.450	6, 4, 4	1.454, 1.453, 1.449	008, 366, 183
8	1.438	4, 4	1.440, 1.439	<u>-</u> <u>6</u> 44, 621
12	1.416	8, 2, 1, 7, 13	1.421, 1.421, 1.417, 1.417, 1.411	284, 444, 084, 564, 560
15	1.406	2, 13, 2	1.407, 1.402, 1.401	265, 364, 381
7	1.388	8, 2	1.390, 1.389	227, 602
6	1.367	5, 1, 3	1.369, 1.365, 1.364	722, 724, 463
10	1.356	5, 9, 1	1.359, 1.355, 1.355	543, 627, 482
2	1.340	2	1.340	128
3	1.316	5	1.317	385
6	1.303	6, 2	1.307, 1.305	566, 429
8	1.294	7, 3, 3, 1, 2	1.299, 1.299, 1.294, 1.292, 1.291	562, 284, 406, 726, 661
4	1.264	4, 4	1.268, 1.265	029, 741
7	1.256	2, 2, 1, 8	1.259, 1.258, 1.258, 1.255	665, 745, 349, 2.10.1
12	1.241	13, 12	1.245, 1.241	086, 149

TABLE 1. Powder X-ray diffraction data of arsenowagnerite.

(continued)

$I_{\rm obs}$	$d_{\rm obs}$	$I_{\rm calc}*$	d_{calc}^{**}	h k l
5	1.230	2, 7, 4	1.232, 1.231, 1.228	2.10.1, 0.10.3, 2.0.10
2	1.211	1, 3, 3	1.213, 1.211, 1.209	$604, \bar{8}23, \bar{4}86$
2	1.205	2	1.205	347

Table 1	. (contd.)
---------	-----	--------	---

*For the calculated pattern, only reflections with intensities ≥ 1 are given; **for the unit-cell parameters calculated from single-crystal data.

samples. The average (over six spot analyses) chemical composition of the holotype specimen (wt.%, ranges are in parentheses) is: MgO 38.72 (38.04–39.28), CaO 0.23 (0.12–0.38), MnO 0.32 (0.08–0.61), CuO 0.60 (0.23–0.85), ZnO 0.05 (0.00–0.14), Fe₂O₃ 0.11 (0.07–0.22), TiO₂ 0.03 (0.00–0.06), SiO₂ 0.08 (0.04–0.09), P₂O₅ 0.18 (0.00–0.40), V₂O₅ 0.03 (0.00–0.07), As₂O₅ 54.96 (54.27–56.29), SO₃ 0.10 (0.00–0.44), F 8.91

(8.61–9.20), -O=F –3.75, total 100.57. Admixed iron is considered as Fe³⁺ because of the extremely oxidizing conditions of mineral formation in the Arsenatnaya fumarole (Pekov *et al.*, 2014*a*). Contents of other elements with atomic numbers higher than carbon are below detection limits.

The empirical formula, calculated on the basis of 5 anions (O+F) per formula unit, is: $(Mg_{1.98}Cu_{0.02}Mn_{0.01}Ca_{0.01})_{\Sigma 2.02}(As_{0.99}P_{0.01})_{\Sigma 1.00}$

TABLE 2. Crystal data, data collection information and structure refinement details for arsenowagnerite.

Formula	$Mg_2(AsO_4)F$
Formula weight	206.54
Temperature, K	293(2)
Radiation and wavelength, Å	ΜοΚα; 0.71073
Crystal system, space group, Z	Monoclinic, $P2_1/c$; 16
Unit-cell parameters, Å,°	a = 9.8638(3)
1	b = 12.9830(3)
	c = 12.3284(3)
	$\beta = 109.291(3)$
V, Å ³	1490.15(7)
Absorption coefficient μ , mm ⁻¹	9.375
Food	1568
Crystal size, mm	$0.09 \times 0.11 \times 0.15$
Diffractometer	Xcalibur S CCD
θ range for data collection, °	2.69–28.28
Index ranges	$-13 \le h \le 13, -17 \le k \le 17, -16 \le l \le 16$
Reflections collected	24,837
Independent reflections	$3696 (R_{int} = 0.0543)$
Independent reflections with $I > 2\sigma(I)$	2554
Data reduction	<i>CrysAlisPro</i> , Agilent Technologies, Version 1.171.37.34 (Agilent Technologies, 2014)
Absorption correction	Analytical numeric absorption correction using a multifaceted crystal model
	based on expressions derived by Clark and Reid (1995); Empirical absorption
	correction using spherical harmonics, implemented in SCALE3 ABSPACK
	scaling algorithm.
Structure solution	direct methods
Refinement method	full-matrix least-squares on F^2
Extinction coefficient	0.00029(3)
Number of refined parameters	285
Final R1 $[I > 2\sigma(I)]$	0.0485
wR2 for all data	0.0694
Goof	1.138
Largest diff. peak and hole, $e/Å^3$	0.70 and -0.55

 $O_{4.03}F_{0.97}$. The idealized formula is Mg₂(AsO₄)F, which requires MgO 39.03, As₂O₅ 55.64, F 9.20, -O=F - 3.87, total 100.00 wt.%.

The Gladstone-Dale compatibility index $1 - (K_p/K_c) = -0.018$, superior (Mandarino, 2007).

X-ray crystallography and crystal structure

Powder X-ray diffraction data of arsenowagnerite (Table 1) were obtained using a camera RKU-114.6 (Debye-Scherrer geometry, d = 114.6 mm, FeK α -radiation). Monoclinic unit-cell parameters calculated from the powder data are: a = 9.858(2), b = 12.964(2), c = 12.332(3) Å, $\beta = 109.32(2)^{\circ}$ and V = 1487.2(8) Å³.

Single-crystal X-ray studies of the new mineral were carried out using an Xcalibur S diffractometer equipped with a CCD detector. A full sphere of three-dimensional data was collected. Data reduction was performed using *CrysAlisPro* Version 1.171.37.34 (Agilent Technologies, 2014). The data were corrected for Lorentz and polarization effects. The crystal structure of arsenowagnerite was solved by direct methods and refined with the use of the *SHELX-97* software package (Sheldrick, 2008) to R = 0.0485. The unit-cell parameters and the experimental details are presented in Table 2, atom coordinates and equivalent displacement parameters in Table 3, selected interatomic distances in Table 4 and bond-valence calculations in

TABLE 3. Coordinates and equivalent displacement parameters ($U_{\rm eq}$, in Å²) of atoms for arsenowagnerite.

Atom	x	У	Z	U_{eq}
As(1)	0.11375(6)	0.07510(5)	0.42636(5)	0.00441(14)
As(2)	0.87998(6)	0.07035(5)	0.07600(5)	0.00491(14)
As(3)	0.38374(6)	0.17752(5)	0.07630(5)	0.00394(14)
As(4)	0.62083(6)	0.17912(5)	0.42463(5)	0.00366(14)
Mg(1)	0.5446(2)	0.06925(16)	0.91088(16)	0.0054(4)
Mg(2)	0.4733(2)	0.06726(16)	0.60219(16)	0.0064(4)
Mg(3)	0.0408(2)	0.18451(16)	0.91921(16)	0.0044(4)
Mg(4)	0.9739(2)	0.18007(16)	0.61160(16)	0.0060(4)
Mg(5)	0.1964(2)	0.01925(16)	0.19150(16)	0.0055(4)
Mg(6)	0.7806(2)	0.00347(15)	0.30548(16)	0.0055(4)
Mg(7)	0.3000(2)	0.23150(16)	0.31362(16)	0.0058(4)
Mg(8)	0.7153(2)	0.24569(16)	0.19503(16)	0.0065(4)
F(1)	0.4251(3)	0.0434(3)	0.7528(3)	0.0101(7)
F(2)	0.6779(3)	0.0831(3)	0.7124(3)	0.0114(7)
F(3)	0.1802(3)	0.1616(3)	0.7199(3)	0.0129(7)
F(4)	0.9219(3)	0.2085(2)	0.7583(3)	0.0096(7)
O(1)	0.1753(4)	0.1106(3)	0.3191(3)	0.0073(8)
O(2)	0.7934(4)	0.0917(3)	0.1687(3)	0.0067(8)
O(3)	0.3177(4)	0.1434(3)	0.1796(3)	0.0085(9)
O(4)	0.6961(4)	0.1530(3)	0.3246(3)	0.0091(9)
O(5)	0.2514(4)	0.0424(3)	0.5417(3)	0.0097(9)
O(6)	0.7585(4)	0.0524(3)	0.9452(3)	0.0100(9)
O(7)	0.2520(4)	0.2073(3)	0.9523(3)	0.0078(9)
O(8)	0.7509(4)	0.2081(3)	0.5489(3)	0.0063(9)
O(9)	0.9984(4)	0.0232(3)	0.6220(3)	0.0087(9)
O(10)	0.0119(4)	0.0327(3)	0.8835(3)	0.0064(8)*
O(11)	0.4969(4)	0.2233(3)	0.6219(3)	0.0063(8)
O(12)	0.5066(4)	0.2194(3)	0.8786(3)	0.0069(9)
O(13)	0.4757(4)	0.0801(3)	0.0476(3)	0.0096(9)
O(14)	0.5115(4)	0.0854(3)	0.4407(3)	0.0089(9)
O(15)	0.0185(4)	0.1701(3)	0.4585(3)	0.0073(8)
O(16)	0.9935(4)	0.1653(3)	0.0697(3)	0.0060(8)

 $*U_{iso}$.

Table 5. The crystallographic information file has been deposited with the Principal Editor of *Mineralogical Magazine* and is available as Supplementary material (see below).

In the crystal structure of arsenowagnerite (Fig. 5) almost regular AsO₄ tetrahedra, distorted MgO₄F₂ octahedra and distorted MgO₄F trigonal bipyramids share either edges or vertices to build up a complex three-dimensional network. The new mineral belongs to the wagnerite-*Ma2bc* structure type (Lazic *et al.*,

2014; Chopin *et al.*, 2014). Its structure is close to those described for wagnerite, ideally $Mg_2(PO_4)F$ (Coda *et al.*, 1967), its OH-dominant analogue hydroxylwagnerite $Mg_2(PO_4)(OH,F)$ (Chopin *et al.*, 2014), synthetic β -Mg_2(PO_4)OH (Raade and Rømming, 1986), sarkinite, ideally $Mn_2^{2+}(AsO_4)$ (OH) (Dal Negro *et al.*, 1974), and its synthetic analogue (Stock *et al.*, 2002).

Similarly to synthetic β -Mg₂(PO₄)(OH), some deficiency in the valence sums for Mg(6) and Mg(8)

$\begin{array}{l} As(1)-O(5) \\ As(1)-O(9) \\ As(1)-O(15) \\ As(1)-O(1) \\ \end{array}$	1.664(4)	As(3)–O(13)	1.661(4)
	1.666(4)	As(3)–O(3)	1.671(4)
	1.676(4)	As(3)–O(11)	1.675(4)
	1.692(4)	As(3)–O(7)	1.692(4)
	1.675	<as(3)–o></as(3)–o>	1.675
As(2)–O(2)	1.661(4)	As(4)-O(4)	1.670(4)
As(2)–O(6)	1.677(4)	As(4)-O(14)	1.681(4)
As(2)–O(10)	1.680(4)	As(4)-O(8)	1.684(4)
As(2)–O(16)	1.685(4)	As(4)-O(12)	1.705(4)
<as(2)–o></as(2)–o>	1.676	<as(4)-o></as(4)-o>	1.685
$\begin{array}{l} Mg(1)-F(1) \\ Mg(1)-O(12) \\ Mg(1)-O(13) \\ Mg(1)-O(6) \\ Mg(1)-O(13) \\ < Mg(1)-\phi *> \end{array}$	1.945(4)	Mg(5)-F(2)	1.933(4)
	2.000(5)	Mg(5)-O(1)	2.034(4)
	2.020(4)	Mg(5)-O(3)	2.041(4)
	2.022(4)	Mg(5)-O(10)	2.068(4)
	2.032(5)	Mg(5)-O(6)	2.098(4)
	2.004	<mg(5)-\phi></mg(5)-\phi>	2.035
Mg(2)-F(2)	2.037(4)	Mg(6)-F(1)	2.010(4)
Mg(2)-O(11)	2.045(5)	Mg(6)-O(2)	2.076(4)
Mg(2)-O(14)	2.069(5)	Mg(6)-O(9)	2.093(4)
Mg(2)-F(1)	2.086(4)	Mg(6)-O(5)	2.097(4)
Mg(2)-O(5)	2.092(4)	Mg(6)-O(4)	2.156(5)
Mg(2)-O(14)	2.158(4)	Mg(6)-F(3)	2.217(4)
<mg(2)-\phi></mg(2)-\phi>	2.081	<mg(6)-\$\$< td=""><td>2.108</td></mg(6)-\$\$<>	2.108
Mg(3)–F(4)	1.967(4)	Mg(7)–F(3)	1.938(4)
Mg(3)–O(15)	1.979(5)	Mg(7)–O(1)	2.009(4)
Mg(3)–O(7)	2.008(4)	Mg(7)–O(12)	2.030(4)
Mg(3)–O(10)	2.019(5)	Mg(7)–O(3)	2.064(4)
Mg(3)–O(16)	2.072(4)	Mg(7)–O(7)	2.077(4)
<mg(3)–<math>\phi></mg(3)–<math>	2.009	<mg(7)–\$< td=""><td>2.024</td></mg(7)–\$<>	2.024
$\begin{array}{l} Mg(4)-F(3) \\ Mg(4)-O(9) \\ Mg(4)-F(4) \\ Mg(4)-O(15) \\ Mg(4)-O(16) \\ Mg(4)-O(8) \\ < Mg(4)-\phi > \end{array}$	2.046(4)	Mg(8)–F(4)	2.016(4)
	2.049(5)	Mg(8)–O(8)	2.037(4)
	2.070(4)	Mg(8)–O(4)	2.059(4)
	2.079(4)	Mg(8)–O(11)	2.082(4)
	2.097(5)	Mg(8)–O(2)	2.205(4)
	2.108(4)	Mg(8)–F(2)	2.275(4)
	2.075	<mg(8)–\phi></mg(8)–\phi>	2.112

TABLE 4. Selected interatomic distances (Å) in the structure of arsenowagnerite.

* ϕ = unspecified ligand.

	As(1)	As(2)	As(3)	As(4)	Mg(1)	Mg(2)	Mg(3)	Mg(4)	Mg(5)	Mg(6)	Mg(7)	Mg(8)	Σ
F(1)					0.37	0.25				0.31			0.93
F(2)						0.29			0.39			0.15	0.83
F(3)								0.28		0.18	0.38		0.84
F(4)							0.35	0.27				0.31	0.93
O(1)	1.22								0.40		0.43		2.05
O(2)		1.33								0.35		0.25	1.93
O(3)			1.30						0.39		0.37		2.06
O(4)				1.30						0.29		0.37	1.96
O(5)	1.32					0.34				0.34			2.00
O(6)		1.27			0.41				0.33				2.01
O(7)			1.22				0.43				0.35		2.00
O(8)				1.25				0.33				0.39	1.97
O(9)	1.31							0.38		0.34			2.03
O(10)		1.26					0.41		0.36				2.03
O(11)			1.28			0.39						0.35	2.02
O(12)				1.18	0.44						0.40		2.02
O(13)			1.33		0.41								2.14
					0.40								
O(14)				1.26		0.36							1.90
						0.28							
O(15)	1.28						0.46	0.35					2.09
O(16)		1.25					0.36	0.34					1.95
Σ	5.13	5.11	5.13	4.99	2.03	1.91	2.01	1.95	1.87	1.81	1.93	1.82	

TABLE 5. Bond-valence calculations* for arsenowagnerite.

*Bond-valence parameters were taken from Brese and O'Keeffe (1991).

ARSENOWAGNERITE, A NEW MINERAL

was revealed (Table 5). According to Raade and Rømming (1986), it is related to a higher degree of distortion of these two pseudo-octahedra with the two longest Mg–O distances in the structure (Table 4): Mg(6)–O(4) = 2.156 and Mg(8)–O(2) = 2.205 Å.

Discussion

Arsenowagnerite $Mg_2(AsO_4)F$ is a member of the triplite group belonging to the triplite–triploidite supergroup (Chopin *et al.*, 2014). It is an arsenate analogue of wagnerite $Mg_2(PO_4)F$ and a magnesium and fluorine analogue of sarkinite $Mn_2^{2+}(AsO_4)OH$. Comparative data for these three minerals are given in Table 6.

Wagnerite is represented in nature by several polytype modifications (Lazic *et al.*, 2014, and references therein). Their diversity is caused by partial substitutions of Fe^{2+} , Mn^{2+} , Ca^{2+} , Ti^{4+} or Fe^{3+} for Mg^{2+} and of OH^- or O^{2-} for F^- which causes significant variations in bond lengths. As a result of this, individual coordination polyhedra around cation sites are locally modified with regards

to coordination number and geometry, and this may affect the geometry of the whole structure (Lazic et al., 2014). The structural relationship between wagnerite and triplite, ideally $Mn_2^{2+}(PO_4)F$, with $b \approx 6.45$ Å (Waldrop, 1969) led to the proposal to consider wagnerite as a polytypic series based on the smallest, triplite-type unit cell. In the crystal structure and unit-cell dimensions, arsenowagnerite is close to the polytype modification of wagnerite with $b \approx 13$ Å (~2b of triplite) now considered as wagnerite-Ma2bc (Lazic et al., 2014; Chopin et al., 2014). It should be noted that this polytype is the only known for wagnerite samples chemically close to the end-member $Mg_2(PO_4)F$ (Lazic *et al.*, 2014). We do not exclude the same correspondence between chemical composition and structure for arsenowagnerite.

No data on synthetic $Mg_2(AsO_4)F$ were found by us in the literature and databases. The crystal structures of synthetic $Fe_2^{2+}(AsO_4)F$ (Berrocal *et al.*, 2006) and $Cd_2(AsO_4)F$ (Engel, 1989) are generally close to that of triplite (Waldrop, 1969) and synthetic $Mn_2(PO_4)F$ (Rea and Kostiner, 1972). Thus, arsenowagnerite is the first fluoroarsenate belonging to the wagnerite-*Ma2bc*

FIG. 5. The crystal structure of arsenowagnerite. Mg-centred polyhedra are blue, red tetrahedra are AsO_4 groups and green circles are F atoms. The numbers of Mg polyhedra correspond to those in Tables 3–5. The unit cell is outlined.

ARSENOWAGNERITE, A NEW MINERAL

Mineral	Arsenowagnerite	Wagnerite*	Sarkinite
Crystal data			
Formula	$Mg_2(AsO_4)F$	$Mg_2(PO_4)F$	Mn ₂ ²⁺ (AsO ₄)OH
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	$P2_{1}/c^{**}$
Unit-cell data			
<i>a</i> , Å	9.864	9.64-9.70	10.208
<i>b</i> , Å	12.983	12.68–12.74	13.596
<i>c</i> , Å	12.328	11.94–11.99	12.779
β, °	109.29	108.3-108.6	108.88
<i>V</i> , Å ³	1490	<i>ca.</i> 1390	1678
Ζ	16	16	16
Strongest lines in	the XRD pattern		
$d, \mathrm{\AA}(I)$	5.80 (41)	3.297 (65)	6.0 (30)
	3.916 (37)	3.123 (63)	3.48 (80)
	3.339 (98)	2.985 (100)	3.29 (90)
	3.155 (65)	2.854 (59)	3.18 (100)
	3.043 (100)	2.758 (25)	3.04 (100)
	2.940 (72)	2.710 (22)	2.90 (70)
	2.787 (51)	1.584 (15)	2.65 (60)
Optical data			
α	1.614	1.568-1.588	1.790-1.793
β	1.615	1.572-1.589	1.794-1.807
γ	1.640	1.582-1.598	1.798-1.809
optical sign, 2V	(+), 25°	(+), 25–35°	(−), 83°
$D, g \text{ cm}^{-3}$	3.70 (calc.)	3.15	4.08-4.20
Sources	This work	Waldrop (1969); Anthony et al.	Dal Negro et al.,
		(2000); Lazic et al. (2014);	(1974); Anthony
		Chopin et al. (2014)	<i>et al.</i> (2000)

TABLE 6. Comparative data of arsenowagnerite, wagnerite and sarkinite.

*Wagnerite-*Ma2bc* (Lazic *et al.*, 2014; Chopin *et al.*, 2014). **In the original paper (Dal Negro *et al.*, 1974), the space group $P2_1/a$ was given; we have changed the setting for better comparison with wagnerite and arsenowagnerite.

structure type. In accordance with the nomenclature of polytypes of triplite-group members (Chopin *et al.*, 2014), the new mineral could be considered as arsenowagnerite-*Ma2bc*.

Acknowledgements

We thank Evgeny Galuskin, Peter Leverett and an anonymous referee for valuable comments. This study was supported by the Russian Foundation for Basic Research, grant no. 17-05-00179.

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1180/minmag.2017. 081.067

References

- Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.34. Agilent Technologies UK Ltd, Oxford, UK.
- Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2000) Handbook of Mineralogy. IV. Arsenates, Phosphates, Vanadates. Mineral Data Publishing, Tucson, USA.
- Berrocal, T., Mesa, J.L., Pizarro, J.L., Urtiaga, M.K., Arriortua, M.I. and Rojo, T. (2006) Fe₂(AsO₄)F: A new three-dimensional condensed fluoro-arsenate iron (II) compound with antiferromagnetic interactions. *Journal of Solid State Chemistry*, **179**, 1659–1667.
- Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. *Acta Crystallographica B*, 47, 192–197.
- Chopin, C., Armbruster, T., Grew, E.S., Baronnet, A., Leyx, C. and Medenbach, O. (2014) The triplite-

triploidite supergroup: structural modulation in wagnerite, discreditation of magniotriplite, and the new mineral hydroxylwagnerite. *European Journal of Mineralogy*, **26**, 553–565

- Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals *Acta Crystallographica A*, **51**, 887–897.
- Coda, A., Giuseppetti, G., Tadini, C. and Carobbi, S.G. (1967) The crystal structure of wagnerite. *Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali*, **43**, 212–224.
- Dal Negro, A., Giuseppetti, G. and Pozas, J.M.M. (1974) The crystal structure of sarkinite, Mn₂AsO₄(OH). *Tschermaks Mineralogische und Petrographische Mitteilungen*, 21, 246–260.
- Engel, G. (1989): Die Kristallstruktur von Cd₂AsO₄F und ihre Beziehung zu einer Reihe von Oxidsilicaten und Oxidgermanaten der Seltenen Erden. *Journal of the Less-Common Metals*, **154**, 367–374.
- Lazic, B., Armbruster, T., Chopin, C., Grew, E.S., Baronnet, A. and Palatinus, L. (2014) Superspace description of wagnerite-group minerals (Mg,Fe, Mn)₂(PO₄)(F,OH). *Acta Crystallographica*, **B70**, 243–258.
- Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. *Canadian Mineralgist*, **45**, 1307–1324.
- Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Lykova, I.S., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2014*a*) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na₇(Fe³⁺,Mg,Cu)₄(AsO₄)₆. *Mineralogical Magazine*, **78**, 905–917.
- Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D. I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D. Yu. (2014b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. II. Ericlaxmanite and kozyrevskite, two natural modifications of Cu₄O(AsO₄)₂. *Mineralogical Magazine*, **78**, 1527–1543.
- Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Yu. (2015*a*) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. III. Popovite, Cu₅O₂(AsO₄)₂. *Mineralogical Magazine*, **79**, 133–143.

- Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Yapaskurt, V. O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D. Yu. (2015b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. IV. Shchurovskyite, K₂CaCu₆O₂(AsO₄)₄ and dmisokolovite, K₃Cu₅AlO₂(AsO₄)₄. *Mineralogical Magazine*, **79**, 1737–1753.
- Pekov, I.V., Yapaskurt, V.O., Britvin, S.N., Zubkova, N.V., Vigasina, M.F. and Sidorov, E.G. (2016a) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. V. Katiarsite, KTiO(AsO₄). *Mineralogical Magazine*, **80**, 639–646.
- Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., Polekhovsky, Yu.S., Vigasina, M.F., Belakovskiy, D.I., Britvin, S.N., Sidorov, E.G. and Pushcharovsky, D.Yu. (2016b) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VI. Melanarsite, K₃Cu₇Fe³⁺O₄(AsO₄)₄. *Mineralogical Magazine*, **80**, 855–867.
- Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V. and Sidorov, E.G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO₄. *Mineralogical Magazine*, **81**, 1001–1008.
- Raade, G. and Rømming, C. (1986) The crystal structure of β -Mg₂PO₄OH, a synthetic hydroxyl analogue of wagnerite. *Zeitschrift für Kristallographie*, **177**, 15–26.
- Rea, J.R. and Kostiner, E. (1972) The crystal structure of manganese fluorophosphate, Mn₂(PO₄)F. Acta Crystallographica, B28, 2525–2529.
- Sheldrick, G.M. (2008) A short history of *SHELX. Acta Crystallographica*, **A64**, 112–122.
- Stock, N., Stucky, G.D. and Cheetham, A.K. (2002) Synthesis and characterization of the synthetic minerals villyaellenite and sarkinite, Mn₅(AsO₄)₂ (HAsO₄)₂·4H₂O and Mn₂(AsO₄)(OH). Zeitschrift für Anorganische und Allgemeine Chemie, **628**, 357–362.
- Symonds, R.B. and Reed, M.H. (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. *American Journal of Science*, 293, 758–864.
- Waldrop, L. (1969) The crystal structure of triplite, (Mn, Fe)₂FPO₄. Zeitschrift für Kristallographie, **130**, 1–14.