Article

Aleutite $[Cu_5O_2](AsO_4)(VO_4) \cdot (Cu_{0.5} \square_{0.5})Cl$, a new complex salt-inclusion mineral with Cu^{2+} substructure derived from a Kagome-net

Oleg I. Siidra^{1,2*} (), Evgeny V. Nazarchuk¹, Atali A. Agakhanov³ and Yury S. Polekhovsky^{4,†}

¹Department of Crystallography, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia; ²Kola Science Center, Russian Academy of Sciences, Apatity, Murmansk Region, 184200 Russia; ³Fersman Mineralogical Museum, Russian Academy of Science, Leninskii Prospect, Bldg. 18, 117071 Moscow, Russia; and ⁴Department of Mineral Deposits, St. Petersburg State University, University Embankment 7/9, 199034 St. Petersburg, Russia

Abstract

Aleutite, ideally $[Cu_5O_2](AsO_4)(VO_4) \cdot (Cu_{0.5} \square_{0.5})Cl$, was found in the Yadovitaya fumarole of the Second scoria cone of the Great Fissure Tolbachik eruption, Kamchatka Peninsula, Russia. Aleutite occurs as individual crystals in the masses of polycrystalline anhydrite. Aleutite is monoclinic, C2/m, a = 18.090(2) Å, b = 6.2284(6) Å, c = 8.2465(9) Å, $\beta = 90.597(2)^\circ$, V = 929.1(2) Å³ and Z = 4 (from single-crystal X-ray diffraction data). The empirical formula calculated on the basis of $(As + V+Mo + Fe^{3+}) = 2$ atoms per formula unit is $Cu_{5.40}Zn_{0.05}Ca_{0.01}As_{1.09}V_{0.84}Mo_{0.04}Fe_{0.03}K_{0.05}Pb_{0.02}Rb_{0.01}Cs_{0.01}O_{9.97}Cl_{1.07}$. The crystal structure was solved by direct methods and refined to an agreement index $R_1 = 0.066$. Aleutite has a new structure type. Aleutite is unique amongst natural and synthetic copper vanadates and arsenates, as it has As^{5+} and V^{5+} cations ordered over two tetrahedral sites. The topology of $\frac{1}{0}[Cu_5O_2]^{6+}$ oxocentred bands in aleutite is novel and has not been described before in minerals and synthetic materials. The structural architecture of the $\frac{1}{0}[Cu_5O_2]^{6+}$ band in aleutite can be derived from a kagome network and represents a one-dimensional slice from it. In addition, aleutite is an interesting and complex example of a natural salt-inclusion phase.

Keywords: aleutite, new minerals, copper, vanadates, arsenates, kagome nets, salt-inclusion solids, Tolbachik volcano

(Received 8 April 2019; accepted 12 June 2019; Accepted Manuscript published online: 24 June 2019; Associate Editor: G. Diego Gatta)

Introduction

Anhydrous copper vanadates are abundant minerals in active fumaroles of scoria cones related to the Great Fissure Tolbachik eruption (Pekov *et al.*, 2013; Vergasova and Filatov, 2016). Some of them contain chloride ions: averievite $Cu_5O_2(VO_4)_2 \cdot nMX$ (Vergasova *et al.*, 1998), leningradite PbCu₃(VO₄)₂Cl₂ (Siidra *et al.*, 2007); yaroshevskite $Cu_9O_2(VO_4)_4Cl_2$ (Pekov *et al.*, 2013) and dokuchaevite $Cu_8O_2(VO_4)_3Cl_3$ (Siidra *et al.*, 2019). Copper arsenate minerals are also common in high-temperature fumarolic assemblages (Pekov *et al.*, 2018).

Herein we report on the composition, structure and properties of aleutite (Cyrillic = a_{TEYTHT}). The mineral is named for the Aleuts ethnic group who are the original inhabitants living on the Commander Islands, Aleutsky District, Kamchatka Krai. Both the mineral and the mineral name were approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2018-014, Siidra *et al.*, 2018*b*). Type material is deposited at the Mineralogical Museum, St. Petersburg State University, St. Petersburg, Russia (catalogue no. 1/19689).

*Author for correspondence: Oleg I. Siidra, Email: o.siidra@spbu.ru †Deceased

Occurrence and association

Aleutite occurs as a product of fumarolic activity. It was found in the summer of 2015 in Yadovitaya ('Poisonous') fumarole at the Second scoria cone of the Northern Breakthrough of the Great Fissure Tolbachik Eruption in Kamchatka, Russia. The Second scoria cone is located ~18 km SSW of the active shield volcano Ploskiy Tolbachik (Fedotov and Markhinin, 1983). The temperature of gases at the sampling location was ~300°C. Aleutite could be deposited directly from the gas phase as a volcanic sublimate.

All the samples recovered were packed immediately and isolated to avoid any contact with atmosphere. Aleutite is very rare and closely associates with anhydrite. Other associated minerals are euchlorine, kamchatkite, langbeinite, lyonsite, pseudolyonsite, tenorite and hematite.

General appearance and physical properties

Aleutite occurs as individual crystals in masses of polycrystalline anhydrite (Fig. 1). Aleutite is dark red, with a reddish black streak and close to adamantine lustre. It is brittle with no cleavage observed. Parting was not observed and its fracture is uneven. The density could not be measured due to lack of sufficient material. The calculated density using the empirical formula derived from the analytical data given in Table 1 is 4.887 g cm^{-3} .

Despite the transparency of aleutite, its optical properties had to be investigated in reflected light because of the high values of

Cite this article: Siidra O.I., Nazarchuk E.V., Agakhanov A.A. and Polekhovsky Y.S. (2019) Aleutite $[\mathrm{Cu}_5\mathrm{O}_2](\mathrm{AsO}_4)(\mathrm{VO}_4)\cdot(\mathrm{Cu}_{0.5}\bigsqcup_{0.5})\mathrm{Cl}$, a new complex salt-inclusion mineral with Cu^{2+} substructure derived from a Kagome-net. *Mineralogical Magazine* 83, 847–853. https://doi.org/10.1180/mgm.2019.42

[©] Mineralogical Society of Great Britain and Ireland 2019

Fig. 1. Aleutite dark-red prismatic crystal associated closely with anhydrite (white) and euchlorine (green).

refractive indices, typical of arsenates and vanadates. Reflectance measurements were made using a SiC standard in air in the range 400-700 nm (Table 2). In reflected light, aleutite is grey with a yellowish tint. It is non-pleochroic, with abundant, brown-red internal reflections and a weak bireflectance. The measured anisotropy is $\Delta R_{589} = 0.35\%$.

Composition

Three crystals (60 μ m ×15 μ m ×10 μ m) of aleutite checked previously by single-crystal X-ray diffraction were mounted in epoxy resin and polished with oil suspension. Six spot analyses on the grains were obtained using a JEOL Superprobe 733 scanning electron microscope equipped with an Oxford Instruments INCA Energy Dispersive Spectrometer. The electron beam accelerating voltage was 20 kV, and electron beam current 2 nA, measured with a Faraday cup. X-ray acquisition live-time was 30 s. System calibration was performed on Ni. A defocused beam (5 µm) was used for analyses. X-ray matrix correction was carried out automatically by the Oxford Instruments INCA version of the Pouchou and Pichoir (XPP) routine. No other elements with Z > 9 other than those reported in Table 1 were detected. The empirical formula calculated on the basis of $(As + V+Mo + Fe^{3+}) = 2$ atoms per formula unit is $Cu_{5.40}Zn_{0.05}Ca_{0.01}As_{1.09}V_{0.84}Mo_{0.04}Fe_{0.03}K_{0.05}Pb_{0.02}$

 $Rb_{0.01}Cs_{0.01}O_{9.97}Cl_{1.07}$ or $(Cu_{4.94}Zn_{0.05}Ca_{0.01})_{\Sigma 5.00}O_{2.11}[(As_{0.54}V_{0.42})_{\Sigma 5.00}O_{2.11}]$ $Mo_{0.02}Fe_{0.02})_{\Sigma 1.00}O_{\Sigma 3.93}]_2(Cu_{0.46}K_{0.05}Pb_{0.02}Rb_{0.01}Cs_{0.01})_{\Sigma 0.55}Cl_{1.07.}$

Table 1. Composition (EPMA, wt.%) of the studied aleutite.

Constituent	Mean	Range	S.D.	Probe standard
MoO ₃	0.83	0.62-1.02	0.15	CaMoO ₄
As_2O_5	18.33	17.77-19.83	0.51	InAs
V ₂ O ₅	11.13	10.56-11.85	0.33	V metal
Fe ₂ O ₃	0.36	0.23-0.41	0.05	Omphacite USNM 110607
CuO	62.73	61.79-63.54	0.50	Cu metal
ZnO	0.60	0.39-0.77	0.11	Zn metal
PbO	0.75	0.59-0.98	0.11	PbTiO ₃
CaO	0.10	0.00-0.22	0.07	Anorthite USNM 137041
K ₂ O	0.35	0.24-0.47	0.07	Microcline USNM 143966
Cs ₂ O	0.16	0.05-0.31	0.08	Cs ₂ Nb ₄ O ₁₁
Rb ₂ O	0.18	0.09-0.27	0.05	$Rb_2Nb_4O_{11}$
Cl	5.54	5.40-5.78	0.10	Atacamite
-Cl = 0	1.25			
Total	99.81	100.02-101.83		

S.D. - standard deviation

Table 2. Reflectance values for aleutite (SiC standard in air).

λ (nm)	R _{max} (%)	R _{min} (%)	λ (nm)	R _{max} (%)	R _{min} (%)
400	15.10	14.71	560	13.06	12.69
420	14.80	14.45	580	12.81	12.47
440	14.51	14.14	589	12.70	12.35
460	14.25	13.92	600	12.58	12.22
470	14.30	13.79	620	12.36	12.00
480	14.00	13.65	640	12.13	11.80
500	13.74	13.41	650	12.03	11.70
520	13.54	13.18	660	11.92	11.59
540	13.28	12.94	680	11.70	11.38
546	13.23	12.88	700	11.47	11.15

The reference wavelengths required by the Commission on Ore Mineralogy are given in bold.

Taking into account structural data, the simplified formula is $[Cu_5O_2](AsO_4)(VO_4) \cdot (Cu_0 \prod_{0} 5)Cl$. Aleutite is soluble in hot H₂O.

X-ray crystallography

Experiment

Powder X-ray diffraction data were collected using a Rigaku R-AXIS Rapid II single-crystal diffractometer equipped with a cylindrical image plate detector using Debye-Sherrer geometry (with d = 127.4 mm) (CoK α radiation) at the Department of Crystallography, St. Petersburg State University, Russia after crushing the crystal fragments used for the single-crystal analysis. Data (in Å) are given in Table 3. Unit-cell parameters refined from the powder data are as follows: monoclinic, space

Table 3. Powder X-ray diffraction data (d in Å) for aleutite.

I _{meas}	I _{calc}	$d_{\rm meas}$	d_{calc}	h k l
25	45	5.8759	5.8891	110
46	9	4.7957	4.7847	111
9	58	4.5360	4.5223	400
4	14	4.3215	4.3322	310
7	2	3.3808	3.3829	<u>1</u> 12
29	33	3.3960	3.3722	112
48	39	2.9848	3.1284	510
4	3	2.9798	2.9755	30 1 2
74	62	2.9337	2.9337	511
31	9	2.9134	2.9134	021
36	84	2.8251	2.8221	601
20	100	2.7459	2.7487	003
30	42	2.5674	2.5649	420
5	2	2.4929	2.4940	113
9	20	2.4948	2.4814	512
100	24	2.4490	2.4458	602
8	36	2.3941	2.3924	222
4	10	2.3546	2.3598	4 03
16	4	2.3366	2.3381	403
1	10	2.0576	2.0572	712
23	3	2.0174	2.0208	603
25	10	2.0139	2.0127	223
2	5	1.9869	1.9914	302
6	6	1.9468	1.9478	$\overline{1}$ 1 4
3	8	1.8549	1.8561	314
3	3	1.7385	1.7374	803
3	1	1.7209	1.7190	024
7	10	1.6835	1.6862	224
6	3	1.6621	1.6672	822
2	3	1.6616	1.6629	<u>10</u> 0 2
3	1	1.6257	1.6255	205
6	5	1.5886	1.5901	731
24	4	1.5665	1.5677	714

Table 4. Crystallographic	data and refinement	parameters for aleutite
---------------------------	---------------------	-------------------------

Crystal data			
Ideal formula	[Cu ₅ O ₂](AsO ₄)(VO ₄)·(Cu _{0.5} □ _{0.5})Cl		
Crystal size (mm)	0.07 × 0.07 × 0.20		
Crystal system, space group	Monoclinic, C2/m		
Temperature (K)	296		
a, b, c (Å)	18.090(2), 6.2284(6), 8.2465(9)		
β (°)	90.597(2)		
V (Å ³)	929.1(2)		
Ζ	4		
Calculated density (g·cm ⁻³)	4.774		
μ (mm ⁻¹)	16.131		
Data collection			
Instrument	Bruker Apex 2 Duo		
Radiation type, wavelength (Å)	ΜοΚα, 0.71073		
θ range (°)	2.252-27.982		
No. of measured, independent and	2642, 826, 618		
observed $[F_o \ge 4s_F]$ reflections			
R _{int}	0.051		
Range of h, k, l	$-23 \le h \le 23, -8 \le k \le 6,$		
-	$-10 \leq l \leq 10$		
Refinement			
$R_1 [F > 4\sigma(F)], wR_2 [F > 4\sigma(F)]$	0.066, 0.163		
R_1 all, wR_2 all	0.082, 0.172		
GoF	1.046		
Weighting coefficients a, b	0.10000, 0.000		
No. refined parameters	111		
No. of restraints	12		
Largest diff. peak and hole (e [–] Å ^{–3})	3.388, -1.908		

group *C2/m*, a = 18.0788(9) Å, b = 6.2270(5) Å, c = 8.2445(3) Å, $\beta = 90.56(4)^{\circ}$, V = 928.09(7) Å³ and Z = 4.

A dark-red prismatic crystal fragment of aleutite was mounted on a thin glass fibre for X-ray diffraction analysis using a Bruker APEX II DUO X-ray diffractometer with a micro-focus X-ray tube operated with MoK α radiation at 50 kV and 40 mA. The data were integrated and corrected for absorption using a multi scan type model implemented in the Bruker programs *APEX* and *SADABS* (Bruker-AXS, 2014). More than a hemisphere of X-ray diffraction data was collected. The structure was solved by direct methods and successfully refined with the use of the *SHELX* software package (Sheldrick, 2015). The refinement in the *C2/m* space group converged to $R_1 = 0.066$ (Table 4). The structure was refined as a 2-component twin (twin ratio 0.955:0.045). The final atomic coordinates and anisotropic displacement parameters are given in Table 5, and selected interatomic distances in Table 6. The crystallographic information files have been deposited with the Principal Editor of *Mineralogical Magazine* and are available as Supplementary material (see below).

Cation coordination

The crystal structure of aleutite contains four symmetrically independent Cu sites occupied by Cu²⁺ cations with different coordination environments (Fig. 2). The Cu1 site is coordinated by four O atoms to form an almost planar CuO₄ square that is complemented by an apical Cl⁻ anion and one O²⁻ anion. As a result, an elongated CuO₄OCl octahedron is formed. The Cu2, Cu3 and Cu4 sites are coordinated by five oxygen atoms each and as a result Cu2O₅ regular trigonal bipyramid and strongly distorted Cu3O₅ and Cu4O₅ tetragonal pyramids are formed.

There are two tetrahedral sites coordinated by four O anions each (Fig. 2, Table 6). The As1 site is occupied predominantly by As⁵⁺ cations, whereas the V1 site is occupied mostly by V⁵⁺ cations (Table 5). The <As1–O> distance of 1.693 Å correlates well with the <As⁵⁺–O> value of 1.685 Å reported in Majzlan *et al.* (2014). The <V1–O> distance in the structure of aleutite demonstrates value of 1.716 Å, which is in a good agreement with the <V⁵⁺–O> distance of 1.721 Å reported for vanadates by Gopal and Calvo (1973). Note, AsO₄ tetrahedra in the structure of aleutite are very regular and undistorted, whereas VO₄ show a significant degree of distortion. The Baur (1974) distortion index in aleutite for AsO₄ is 0.0015 and 0.025 for VO₄.

There is one mixed and partially occupied M1 site in the structure of aleutite. The occupancy of this site refined using the atomic scattering factors of Cu is 0.45(1). The M1-site coordination is strongly distorted (Fig. 2) with four M1-O bonds and two M1-Cl bonds demonstrating similar bond-length values. Chemical analysis reveals a number of additional monovalent (K, Rb and Cs) and divalent (Pb) cations in aleutite, probably concentrated in the M1 site. The similar substitutions were reported previously in averievite (Vergasova *et al.*, 1998; Krivovichev *et al.*, 2015). On the final stages of the crystal structure refinement occupancy of the M1 site was fixed in agreement with microprobe data. The M1-M1 short distance of 2.67 Å along

Table 5. Coordinates, isotropic and anisotropic displacement parameters (Å²) of atoms in aleutite.

Atom	Site	X	у	Ζ	$U_{\rm eq}$	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
As1*	4i	0.1296(1)	1/2	-0.0155(3)	0.0101(8)	0.012(1)	0.011(1)	0.006(1)	0	-0.0029(7)	0
V1**	4 <i>i</i>	0.1790(2)	0	0.6612(4)	0.010(1)	0.015(2)	0.011(2)	0.004(1)	0	-0.002(1)	0
Cu1	8j	0.1191(1)	0.2577(3)	0.3537(2)	0.0121(5)	0.017(9)	0.013(9)	0.007(9)	0.0002(6)	-0.0033(7)	0.0057(6)
Cu2	4 <i>i</i>	0.3201(2)	1/2	-0.0851(3)	0.0161(7)	0.024(1)	0.021(2)	0.003(1)	0	-0.0054(9)	0
Cu3	4 <i>i</i>	0.0483(2)	1/2	-0.3692(4)	0.062(2)	0.008(1)	0.173(5)	0.004(1)	0	-0.004(1)	0
Cu4	4 <i>i</i>	0.2183(1)	1/2	-0.3664(3)	0.0193(7)	0.009(1)	0.044(2)	0.005(1)	0	-0.0050(8)	0
01	4 <i>i</i>	0.0577(7)	1/2	0.398(2)	0.010(3)	0.007(4)	0.018(5)	0.004(4)	0	-0.002(4)	0
02	4 <i>i</i>	0.1762(7)	0	0.320(2)	0.008(3)	0.013(6)	0.006(6)	0.006(6)	0	0.000(5)	0
03	8j	0.1387(6)	0.242(2)	0.595(1)	0.011(2)	0.017(5)	0.011(5)	0.006(4)	-0.002(4)	-0.003(4)	0.000(3)
04	4 <i>i</i>	0.0531(9)	1/2	-0.137(2)	0.041(6)	0.015(8)	0.102(2)	0.007(8)	0	0.000(7)	0
05	4 <i>i</i>	0.2310(7)	1/2	0.400(2)	0.011(3)	0.010(4)	0.013(5)	0.009(5)	0	-0.005(4)	0
06	4 <i>i</i>	0.2058(8)	1/2	-0.132(2)	0.016(3)	0.015(7)	0.031(9)	0.002(6)	0	-0.004(5)	0
07	4 <i>i</i>	0.3161(9)	1/2	0.141(2)	0.020(3)	0.032(9)	0.013(8)	0.017(8)	0	-0.011(6)	0
08	8j	0.1269(8)	0.285(2)	0.110(1)	0.022(3)	0.036(7)	0.016(5)	0.015(5)	0.000(5)	0.003(5)	0.012(5)
Cl1	4 <i>i</i>	-0.0009(5)	0	0.734(3)	0.142(9)	0.024(4)	0.031(4)	0.37(3)	0	0.058(1)	0
M1***	4g	0	0.214(2)	0	0.070(3)	0.028(4)	0.141(10)	0.042(5)	0	0.004(4)	0

 $\label{eq:asymptotic} ^{*}As_{0.82(3)}V_{0.18(3)}; \ ^{**}V_{0.81(3)}As_{0.19(3)}, \ ^{***}fixed \ in \ agreement \ with \ microprobe \ data \ Cu_{0.46}Pb_{0.02}(K,Rb,Cs)_{0.04}.$

Table 6. Selected interatomic distances (Å) in aleutite.

As1-08	1.69(1) ×2	Cu3-04	1.92(2)
As1-06	1.69(1)	Cu3-01	1.93(1)
As1-04	1.70(2)	Cu3-01	1.93(1)
<as1-0></as1-0>	1.69	Cu3-03	2.31(1) ×2
V1-07	1.64(2)	Cu4-05	1.94(1)
V1-05	1.71(1)	Cu4-02	1.94(1)
V1-03	1.76(1) ×2	Cu4-06	1.95(1)
<v1-0></v1-0>	1.72	Cu4-03	2.18(1) ×2
Cu1-01	1.911(8)	<i>M</i> 1–O4	2.32(1) ×2
Cu1-02	1.930(7)	<i>M</i> 1–08	2.50(1) ×2
Cu1-03	2.02(1)	M1-Cl1	2.56(2) ×2
Cu1-08	2.02(1)		
Cu1-05	2.55(1)	01-Cu1	1.911(8) ×2
Cu1-Cl1	2.76(1)	01–Cu3	1.93(1)
		01–Cu3	1.93(1)
Cu2-07	1.86(1)	<01-Cu>	1.920
Cu2-02	1.94(1)		
Cu2-08	2.03(1) ×2	02-Cu1	1.930(7) ×2
Cu2-06	2.10(2)	02-Cu2	1.94(1)
		02-Cu4	1.94(1)
		<02-Cu>	1.937

[010] is in agreement with the partial occupancy of the M1 site. We note large U^{22} values for the M1, Cu3 and O4 atoms indicating positional disorder along [010] and an even larger U^{33} value for Cl1 suggesting significant disorder of this atom along [001]. There is a possibility of significant ionic mobility with increasing temperature in the voids of the metal oxide framework, which might act as an 'electron reservoir'.

Oxygen atoms O3, O4, O5, O6, O7 and O8 are strongly bonded in tetrahedral AsO₄³⁻ and VO₄³⁻ groups. We may term them as O_t. 'Additional' oxygen atoms O1 and O2 are bonded exclusively to Cu²⁺ cations and can be designated as O_a. Cu²⁺–O_a bonds are in the range of 1.911(8)–1.94(1) Å, whereas Cu²⁺–O_t range from 1.86(2) to 2.55(1) Å (Table 6). Because of the variability of the coordination polyhedra around Cu^{2+} cations and the strength of the Cu–O_a bonds compared to the weaker Cu–O_t and especially Cu–Cl bonds, one can describe the Cu-oxide substructure of aleutite in terms of oxocentred OCu_4^{2+} tetrahedra.

Structure description

O1Cu₄ and O2Cu₄ tetrahedra have shared Cu-Cu edges and corners thus forming $\frac{1}{\infty}$ [Cu₅O₂]⁶⁺ bands (Fig. 3*a*). These bands grow parallel to the b axis. In order to describe the linkage of oxocentred tetrahedra with each other, connectivity diagrams (Siidra et al., 2008) depicted in Fig. 3a can be used. Each diagram represents a view from above onto a regular tetrahedron resting on one of its triangular faces. The following graphical indicators are used: (1) a corner shared with an adjacent tetrahedron is designated by a circle; (2) a shared edge is designated by a bold line. Identical or chiral diagrams are called equivalent. Thus the topology of ${}^1_\infty$ [Cu₅O₂]⁶⁺ bands is novel and has not been described before in minerals and synthetic materials. $_{\infty}^{1}$ [Cu₉Pb₂O₄]¹⁴⁺ bands described previously in the structures of complex synthetic oxyhalide selenites (Kovrugin et al., 2015; Siidra et al., 2018a) contain only corner sharing between the neighbouring OCu₄ tetrahedra. However, ${}_{\infty}^{1}[Cu_5O_2]^{6+}$ bands in aleutite can be cut from the ${}_{\infty}^{2}[Cu_6Pb_3O_4]^{10+}$ layers described in $[Cu_{6}^{2+}Pb_{3}O_{4}](Cu^{+}Pb_{1,27}Br_{3,54})(SeO_{3})_{4}Br_{2}$ (Siidra *et al.*, 2018*a*).

The structural architecture of the oxocentred $\frac{1}{\infty}[Cu_5O_2]^{6+}$ band in aleutite can be derived from a kagome (Mekata, 2003) network and represents a one-dimensional (Fig. 3*b*) slice from it (Fig. 3*c*). The kagome fragment in aleutite is formed by Cu1– Cu1–Cu2 and Cu1–Cu1–Cu3 triangles. Cu2–Cu2–Cu3 triangles are capped by additional Cu4 atoms above or below triangular faces, whereas Cu1–Cu1–Cu3 triangles are complemented by additional Cu3 atoms. It is of interest to consider the Cu…Cu distances of tetrahedral edges in Cu₄ tetrahedra depicted in Fig. 3*d*.

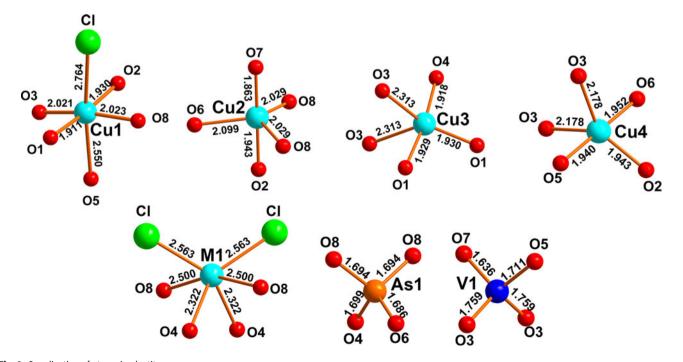
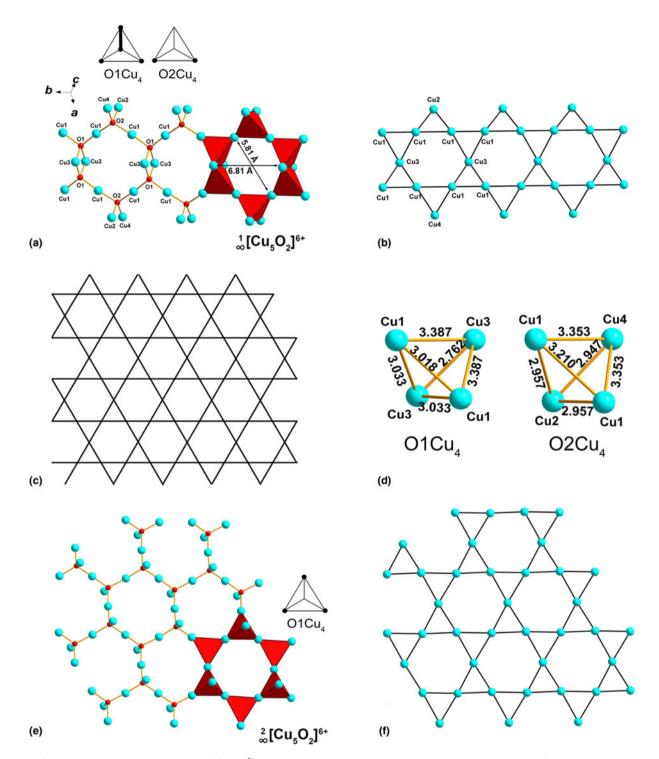



Fig. 2. Coordination of atoms in aleutite.

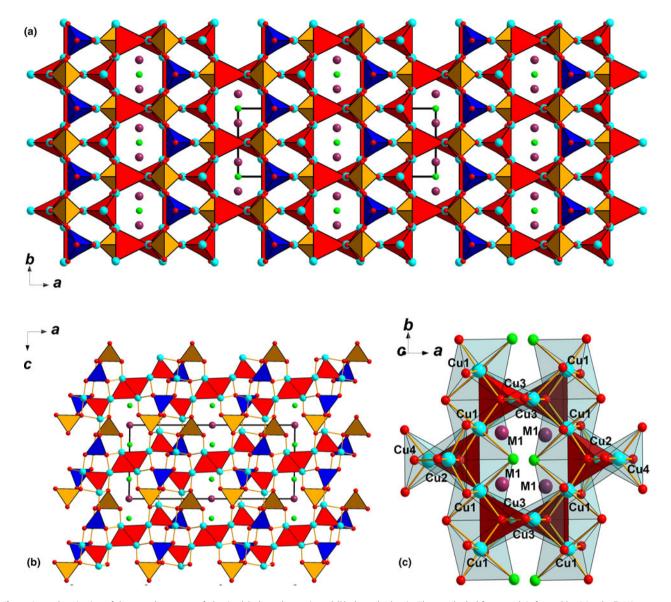


Fig. 3. (*a*) Ball-and-stick and polyhedral representation of $[Cu_5O_2]^{6^+}$ oxocentred bands elongated along the *b* axis and connectivity diagrams for $O1Cu_4$ and $O2Cu_4$ oxocentred tetrahedra. (*b*) One-dimensional kagome-like fragment in aleutite, formed by Cu1–Cu2–Cu2 and Cu1–Cu1–Cu3 triangles. Cu2–Cu2–Cu3 triangles are complemented by additional Cu4 atoms above or below triangular faces, whereas Cu1–Cu1–Cu3 triangles are complemented by additional Cu3 atoms. (*c*) An ideal kagome network. (*d*) Cu–Cu distances in two symmetrically independent OCu₄ tetrahedra. (*e*) $[Cu_5O_2]^{6^+}$ layers in the structure of averievite and connectivity diagrams for $O1Cu_4$ tetrahedra. (*f*) Kagome sheets in averievite.

The Cu₃···Cu₃ edge in the O1Cu₄ tetrahedron has a length of 2.762 Å, whereas two Cu₃···Cu₁ and one Cu₁···Cu₁ have almost identical edges of \sim 3 Å. The two other Cu₃···Cu₁ edges have significantly longer but identical values of 3.387 Å. The similar distribution of Cu···Cu distances is observed for O2Cu₄ tetrahedron. Cu₄···Cu₂ and two Cu₂···Cu₁ edges are \sim 3 Å long. The

Cu1…Cu1 edge is 3.210 Å and two Cu1…Cu4 are each 3.353 Å long.

AsO₄ and VO₄ tetrahedra are attached to OCu₄ tetrahedra in face-to-face fashion (Krivovichev *et al.*, 2013) thus providing the assemblage of the bands into a porous $\{^3_{\infty}$ [Cu₅O₂](AsO₄)(VO₄) $\}^0$ electroneutral framework shown in Fig. 4*a*,*b*. A two-dimensional

Fig. 4. General projection of the crystal structure of aleutite (*a*) along the *c* axis and (*b*) along the *b* axis. The tetrahedral framework is formed by OCu₄ (red), VO₄ (blue) and AsO₄ (orange) tetrahedra. Channels (~5.81 Å × 6.81 Å) in the framework are filled by the different metals occupying the mixed *M*1 site (violet balls) and chloride ions (green balls). (*c*) A segment of the crystal structure of aleutite showing the complex arrangement of Cu-centred polyhedra (light blue) and six-membered rings formed by the corner and edge-sharing OCu₄ tetrahedra (red).

system of channels with dimensions \sim 5.81 \times 6.81 Å is occupied by metal-chloride species. Thus aleutite can be classified as a new mesoporous material.

Discussion

Aleutite is a new structure type. Chemically aleutite is an As, V-analogue of averievite (Table 7). Aleutite is also chemically related to coparsite (Starova *et al.*, 1998). No synthetic compounds directly related to aleutite are known to date.

The structure of aleutite is completely different from averievite (Starova *et al.*, 1997; Vergasova *et al.*, 1998; Krivovichev *et al.*, 2015). Six-membered rings in aleutite (Fig. 4*c*) are formed by both corner-sharing and edge-sharing OCu₄ tetrahedra. OCu₄ oxocentred tetrahedra via common corners only form $^{2}_{\infty}$ [Cu₅O₂]⁶⁺ layers in averievite (Fig. 3*e*). Kagome-net derived layers (Fig. 3*f*) in synthetic averievite have outstanding magnetic properties described recently (Botana *et al.*, 2018).

It is common for copper vanadate minerals of fumarolic origin to have a significant amount of arsenic substitution. Aleutite is unique amongst copper vanadates, as it has As^{5+} and V^{5+} cations ordered over two tetrahedral sites. Vasilseverginite $Cu_9O_4(AsO_4)_2(SO_4)_2$ (Pekov *et al.*, 2015) is the only other known example of arsenates of fumarolic origin with segregation of tetrahedrally coordinated As^{5+} and S^{6+} cations.

The framework in aleutite has large elliptical channels occupied by the complex mixed cationic M sites and Cl⁻ anions. This type of structural architecture in aleutite is similar to that observed in leningradite PbCu₃(VO₄)₂Cl₂ (Siidra *et al.*, 2007). The composition of mixed and partially occupied M sites in aleutite is somewhat similar to averievite (Vergasova *et al.*, 1998). However, the amount of alkali metals is significantly less in aleutite. The strong distortion of the M sites coordination environments in aleutite in comparison with averievite can be probably explained by the presence of Pb²⁺ cations with a stereochemically active lone electron pair in the former. A similar phenomenon is observed in the alunite-supergroup

Table 7. Crystal chemical data of aleutite, averievite (Krivovichev *et al.*, 2015) and coparsite (Starova *et al.*, 1998).

Mineral	Aleutite	Averievite	Coparsite
Formula	[Cu ₅ O ₂]	[Cu ₅ O ₂]	[Cu ₄ O ₂]
	(AsO ₄)(VO ₄)	$(VO_4) \cdot nMCl_x$	((As,V)O ₄)Cl
	(Cu _{0.5} □ _{0.5})Cl		
Crystal system	Monoclinic	Trigonal	Orthorhombic
Space group	C2/m	P3m1	Pbcm
a (Å)	18.090(2)	6.3778(2)	5.440(1)
b (Å)	6.2284(6)		11.154(2)
c (Å)	8.2465(9)	8.3966(3)	10.333(2)
β (°)	90.597(2)		
V (Å ³)	929.1(2)	295.79(2)	627.0(3)
Ζ	4	1	4

minerals. Pb has strongly distorted coordination environments in the structure of plumbogummite because of the presence of a stereochemically active $6s^2$ lone electron pair (Mills *et al.*, 2009), but K is symmetrically coordinated in the structure of jarosite (Mills *et al.*, 2013). One symmetrically independent but disordered *M* site is observed in the structure of aleutite in contrast to two *M* sites in averievite (Krivovichev *et al.*, 2015). The 'host–guest' character of the aleutite structure may be the result of its formation from volcanic gases. The metal oxide species tend to organise in such a structure that allows inclusion of various metal chloride species into a basic oxide matrix.

Aleutite is also an interesting and complex example of a natural salt-inclusion phase. Such synthetic materials consisting of a covalent metal oxide framework containing voids filled by the simple ionic salt species have received considerable attention in the field of materials science and inorganic chemistry (Huang *et al.*, 1999; Ulutagay *et al.*, 1998; Huang *et al.*, 2001).

Acknowledgements. We are grateful to Peter Leverett and two anonymous reviewers for valuable comments. This work was supported financially by the Russian Foundation for Basic Research, grant no. 19-05–00413. Technical support by the SPbSU X-ray Diffraction Resource Centre is gratefully acknowledged.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1180/mgm.2019.42

References

- Baur W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. *Acta Crystallographica*, **B30**, 1195–1215.
- Botana A.S., Zheng H., Lapidus S.H., Mitchell J.F. and Norman M.R. (2018) Averievite: A copper oxide kagome antiferromagnet. *Physical Reviews*, B98, 054421.
- Bruker-AXS (2014) APEX2. Version 2014.11-0. Madison, Wisconsin, USA.
- Fedotov S.A. and Markhinin Y.K. (editors) (1983) *The Great Tolbachik Fissure Eruption*. Cambridge University Press, New York.
- Gopal R. and Calvo C. (1973) Crystal structure of α -Zn₂V₂O₇. Canadian Journal of Chemistry, **51**, 1004–1009.
- Huang Q., Ulutagay M., Michener P.A. and Hwu S.-J. (1999) Salt-templated open frameworks (CU-2): Novel phosphates and arsenates containing $M_3(X_2O_7)^{22-}$ (M = Mn, Cu; X = P, As) micropores 5.3 Å and 12.7 Å in diameter. *Journal of the American Chemical Society*, **121**, 10323–10326.
- Huang Q., Hwu S.-J. and Mo X. (2001) High-temperature synthesis of an open-framework compound, Na₂Cs₂Cu₃(P₂O₇)₂Cl₂ (CU-4), by molten-salt methods. *Angewandte Chemie International Edition*, **40**, 1690–1693.
- Kovrugin V.M., Colmont M., Siidra O.I., Mentré O., Al-Shuray A., Gurzhiy V.V. and Krivovichev S.V. (2015) Oxocentered Cu(II) lead selenite honeycomb lattices hosting Cu(I)Cl₂ groups obtained by chemical vapor transport reactions. *Chemical Communications*, **51**, 9563–9566.

- Krivovichev S.V., Mentré O., Siidra O.I., Colmont M. and Filatov S.K. (2013) Anion-centered tetrahedra in inorganic compounds. *Chemical Reviews*, 113, 6459–6535.
- Krivovichev S.V., Filatov S.K. and Vergasova L.P. (2015) Refinement of the crystal structure of averievite Cu₅O₂(VO₄)·nMCl_x (M = Cu, Cs, Rb, K). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 144, 101–109.
- Mekata M. (2003) Kagome: The story of the basketweave lattice. *Physics Today*, **56**, 12–13.
- Majzlan J., Drahota P. and Filippi M. (2014) Parageneses and crystal chemistry of arsenic minerals. Pp. 17–184 in: Arsenic: Environmental Geochemistry, Mineralogy, and Microbiology (R.J. Bowell, C.N. Alpers, H.E. Jamieson, D.K. Nordstrom and J. Majzlan, editors). Reviews in Mineralogy and Geochemistry, 79. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.
- Mills S.J., Kampf A.R., Raudsepp M. and Christy A.G. (2009) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. *Mineralogical Magazine*, 73, 837–845.
- Mills S.J., Nestola F., Kahlenberg V., Christy A.G., Hejny C. and Redhammer G.J. (2013) What lurks in the Martian rocks and soil? Investigations of sulfates, phosphates, and perchlorates: looking for jarosite on Mars: The low-temperature crystal structure of jarosite. *American Mineralogy*, **98**, 1966–1971.
- Pekov I.V., Zubkova N.V., Zelenski M.E., Yapaskurt V.O., Polekhovsky Yu. S., Fadeeva O.A. and Pushcharovsky D.Yu. (2013) Yaroshevskite, $Cu_9O_2(VO_4)_4Cl_2$, a new mineral from the Tolbachik volcano, Kamchatka, Russia. *Mineralogical Magazine*, **77**, 107–116.
- Pekov I.V., Britvin S.N., Yapaskurt V.O., Krivovichev S.V., Vigasina M.F. and Sidorov E.G. (2015) Vasilseverginite, IMA 2015–083. CNMNC Newsletter No. 28, December 2015, page 1864. *Mineralogical Magazine*, **79**, 1859–1864.
- Pekov I.V., Koshlyakova N.N., Zubkova N.V., Lykova I.S., Britvin S.N., Yapaskurt V.O., Agakhanov A.A., Shchipalkina N.V., Turchkova A.G. and Sidorov E.G. (2018) Fumarolic arsenates – a special type of arsenic mineralization. *European Journal of Mineralogy*, **30**, 305–322.
- Siidra O.I., Krivovichev S.V., Armbruster T., Filatov S.K. and Pekov I.V. (2007) The crystal structure of leningradite, PbCu₃(VO₄)₂Cl₂. *The Canadian Mineralogist*, **45**, 445–449.
- Siidra O.I., Krivovichev S.V. and Filatov S.K. (2008) Minerals and synthetic Pb (II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie – Crystalline Materials, 223, 114–126.
- Siidra O.I., Kozin M.S., Depmeier W., Kayukov R.A. and Kovrugin V.M. (2018a) Copper-lead selenite bromides: A new large family of compounds partly having Cu²⁺ substructures derivable from Kagome-nets. *Acta Crystallographica*, B74, 712–724.
- Siidra O.I., Nazarchuk E.V., Agakhanov A.A. and Polekhovsky Y.S. (2018b) Aleutite, IMA 2018-014. CNMNC Newsletter No 43, June 2018, page 784; *Mineralogical Magazine*, 82, 779–785.
- Siidra O.I., Nazarchuk E.V., Zaitsev A.N., Polekhovsky Yu. S., Wenzel T. and Spratt J. (2019) Dokuchaevite, Cu₈O₂(VO₄)₃Cl₃, a new mineral with remarkably diverse Cu²⁺ mixed-ligand coordination environments. *Mineralogical Magazine*, https://doi.org/10.1180/mgm.2019.41
- Starova G.L., Krivovichev S.V., Fundamenskii V.S. and Filatov S.K. (1997) The crystal structure of averievite, Cu₅O₂(VO₄)₂·nMX: comparison with related compounds. *Mineralogical Magazine*, **61**, 441–446.
- Starova G.L., Krivovichev S.V. and Filatov S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu₄O₂((As,V)O₄)Cl. Zeitschrift für Kristallographie – Crystalline Materials, 213, 650–653.
- Sheldrick G.M. (2015): New features added to the refinement program SHELXL since 2008 are described and explained. Acta Crystallographica, C71, 3–8.
- Ulutagay M., Schimek G. L., Hwu S.–J. and Taye H. (1998) Coordination intercalation of NbAsO₅ with alkali-metal chloride. Synthesis, structure, and spectroscopy of two new layered niobium(V) arsenate compounds, ANbAsO₅Cl (A = Rb, Cs). *Inorganic Chemistry*, **37**, 1507–1512.
- Vergasova L.P., Starova G.L., Filatov S.K. and Anan'ev V.V. (1998) Averievite Cu₅(VO₄)₂O₂·nMX – a new mineral of volcanic exhalations. *Doklady Akademii Nauk*, **359**, 804–807.
- Vergasova L.P. and Filatov S.K. (2016) A study of volcanogenic exhalation mineralization. Journal of Volcanology and Seismology, 10, 71–85.