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Abstract Jörgkellerite, ideally Na3Mn3+3(PO4)2(CO3)O2·
5H2O, is a new layered phosphate-carbonate from the
Oldoinyo Lengai volcano in the Gregory Rift (northern
Tanzania). The mineral occurs as spherulites, up to 200 μm
in diameter, consisting of plates up to 10 μm in thickness in
shortite-calcite and calcite carbonatites. Jörgkellerite is brown
with a vitreous lustre and has a perfect micaceous cleavage on
{001}, Mohs hardness is 3. The calculated density is 2.56 g/
cm3. Jörgkellerite is uniaxial (-), ω=1.700(2), ε=1.625(2)
(Na light, 589 nm) with distinct pleochroism: O = dark brown,
E = light brown. The empirical formula of the mineral (aver-
a g e o f 1 0 e l e c t r o n m i c r o p r o b e a n a l y s e s ) i s
(Na2.46K0.28Ca0.08Sr0.04Ba0.02)Σ2.88(Mn3+2.39Fe

3+
0.56)Σ2.95((-

PO4)1.95(SiO4)0.05))Σ2.00(CO3)(O1.84(OH)0.16)Σ2.00·5H2O.
The oxidation state of Mn has been determined by XANES.

Jörgkellerite is trigonal, space group P-3, a=11.201(2) Å,
c=10.969(2) Å, V=1191.9(7) Å3 and Z=3. The five stron-
gest powder-diffraction lines [d in Å, (I/Io), (hkl)] are: 10.970
(100) (001), 5.597 (15) (002), 4.993 (8) (111), 2.796 (14)
(220) and 2.724 (20) (004). The crystal structure is built up
of the layers composed of disordered edge-sharing [MnO6]
octahedra. Each fourth Mn site in octahedral layer is vacant
that results in appearance of ordered system of hexagonal
“holes” occupied by (CO3) groups. The overall composition
of the layer can be expressed as [Mn3O8(CO3)]. These
manganese-carbonate layers are linked in the third dimension
by (PO4) tetrahedra and Na-polyhedra. The origin of
jörgkellerite is related to low-temperature oxidative alteration
of gregoryite-nyerereite carbonatites.
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Introduction

Oldoinyo Lengai is a well-known volcano in northern
Tanzania owing to eruptions of highly alkaline gregoryite-
nyerereite carbonatites and nephelinites from northern crater
(e.g., Dawson 1962; Donaldson et al. 1987; Peterson 1989,
1990; Klaudius and Keller 2006; Keller and Zaitsev 2012).
The volcano also contains phonolites, which form the older
southern cone (Donaldson et al. 1987; Klaudius and Keller
2006), and olivine melilitites are known from several cones
and craters on the lowest slopes and in the vicinity of
Oldoinyo Lengai (Keller et al. 2006).

The carbonatites of Oldoinyo Lengai, occurring as lavas,
lapilli and dykes (e.g., Dawson 1962; Church and Jones 1994;
Keller and Zaitsev 2006; Zaitsev et al. 2009b), consist of four
major minerals. Three are water-soluble: gregoryite
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Na2(CO3), nyerereite Na2Ca(CO3)2 and sylvite KCl, while
fluorite CaF2 is the only stable carbonatitic mineral under
normal atmospheric conditions (Dawson et al. 1987; Keller
and Zaitsev 2006; Mitchell 2006b; Zaitsev and Keller 2006).

Silicate-carbonate liquid immiscibility is considered to be a
major process in the evolution of the Oldoinyo Lengai volca-
no and the formation of alkaline carbonatites and silicate rocks
(e.g., Mitchell 2009; Sharygin et al. 2012; Sekisova et al.
2015). Radiogenic and stable isotope studies point to a mantle
source for a primary carbonate-bearing silicate melt, and large
variations in radiogenic isotope ratios are explained by a
mixing of different mantle sources (Bell and Dawson 1995;
Keller and Hoefs 1995; Bell and Simonetti 1996; Keller and
Zaitsev 2006; Keller et al. 2006). A Sr-Nd-Pb isotope study of
both unaltered and altered Oldoinyo Lengai carbonatites,
including a calcite carbonatite xenolith described by Dawson
(1993) and Zaitsev et al. (2013), and a calcite carbonatite dyke
(Keller and Zaitsev 2006), suggests eruption of isotopically
different batches of carbonatite magma at Oldoinyo Lengai
(Zaitsev et al. 2009a).

Alteration of the gregoryite-nyerereite carbonatites begins
immediately after their eruption and they transform to
pirssonite and calcite carbonatites with significant loss of so-
dium, potassium, chlorine and sulphur (Zaitsev and Keller
2006). During mineralogical study of altered carbonatites, a
new mineral was found in one of the samples. It is a layered
hydrous sodium manganese phosphate-carbonate belonging
to a new structure type. The mineral was named in honour
of Prof. Dr. Jörg Keller (born 1938), Emeritus Professor of
Institut für Geo- und Umweltnaturwissenschaften, Albert-
Ludwigs-Universität, Freiburg, Germany. The name,
jörgkellerite, honours valuable contributions of Prof. Dr.
Jörg Keller to the study of the origin and evolution of alkaline
rocks and carbonatites, and particularly the Oldoinyo Lengai
volcano (e.g., Keller and Krafft 1990; Bell and Keller 1995;
Klaudius and Keller 2006; Keller et al. 2010). Both the min-
eral and its name have been approved by the Commission on
New Minerals, Nomenclature and Classification of the
International Mineralogical Association (IMA 2015-020). A
polished mount with jörgkellerite spherulites extracted from
the holotype sample OL 124 is deposited in the mineral col-
lection at Mineralogy Department, St. Petersburg State
University, St. Petersburg, Russia - catalogue number 19640/
1).

Occurrence and morphology

Jörgkellerite was found during mineralogical study of an
older, pre-1917, carbonatite platform (see Fig. 1 in Zaitsev
et al. 2008) in a highly altered carbonatite sample (sample
OL 124). This rock has been described in several publications
(Zaitsev and Keller 2006; Zaitsev et al. 2008) and it consists of

two mineral assemblages. The first is composed of relics of
the primary carbonatite minerals fluorite, khanneshite, baryte,
magnetite and rare nyerereite, and the second is composed of
secondary minerals formed during low-temperature
carbonatite alteration, such as calcite, shortite, nahcolite, tro-
na, jacobsite and barytocalcite (see Fig. 2c in Zaitsev and
Keller 2006, and Figs. 2b, 4, 6, 8–10 in Zaitsev et al. 2008).

Jörgkellerite occurs as spherulites, up to 200 μm in diam-
eter, consisting of plates up to 10 μm in thickness (Fig. 1).
Spherulites contain relics of fluorite, magnetite and
khanneshite. Macroscopically jörgkellerite is brown, with vit-
reous luster and white streak. In thin section, the mineral is
yellow to red-brown in cross-polarised light with undulose
extinction and brown in plane-polarised light. The mineral is
transparent, with perfect micaceous cleavage on {001}, Mohs
hardness is 3. Density could not be measured due to lack of
sufficiently large inclusion-free crystals; the density,

Fig. 1 Jörgkellerite spherulite (colour online), sample OL 124. a - cross-
polarised light, b - plane-polarised light, c - BSE image. Light gray grains
in shortite – calcite, white grains in jörgkellerite –magnetite-jacobsite and
khanneshite, light gray grains in jörgkellerite (similar in colour to calcite)
– fluorite
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calculated on the basis of the empirical formula, is 2.56 g/cm3.
Jörgkellerite is uniaxial (-), ω=1.700(2), ε=1.625(2) (Na
light, 589 nm) with distinct pleochroism: O = dark brown, E
= light brown. The mineral is non-fluorescent. The Gladstone-
Dale compatibility index, 1 – (Kp/Kc) calculated using 112em-
pirical formula and the unit cell parameters refined from XRD
powder data, is -0.034 (excellent).

General mineralogical characterization

Infrared spectroscopy

Infrared spectra of jörgkellerite were collected from four
spherulites mounted in epoxy resin using a Perkin Elmer
Auto IMAGE microscope and a Perkin Elmer Spectrum
FTIR spetrometer with a CsI beam splitter and a narrow-
band MCT (mercury cadmium telluride) detector (Natural
History Museum, London). The micro ATR objective has a
germanium crystal with a 100 μm diameter tip that fixes the
maximum diameter of the area sampled. The spectral resolu-
tion was set at 4 cm−1. The microscope optics and detector
restrict the wavelength range used to 4000–700 cm−1.
Atmospheric background adsorption was compensated for
by subtraction of a blank (air) spectrum from the sample
spectrum.

Tentative assignments of absorption bands in the IR spec-
trum of jörgkellerite (Fig. 2) have been made via comparison
with the IR spectra of other phosphates and carbonates, in-
cluding sidorenkite (Frost et al. 2015), shortite (Frost and
Dickfos 2008) and vivianite-group minerals (Frost et al.
2002). The spectrum of jörgkellerite (Fig. 2) is characterised
by the following absorption bands (cm−1): 821 (water libra-
tional mode); 861 (ν2 (CO3)

2− out-of-plane bending mode);
939, 1035 and 1075 (ν3 (PO4)

3− antisymmetric stretching

mode and ν1 (CO3)
2− symmetric stretching mode); 1404 and

1443 (ν3 (CO3)
2− antisymmetric stretchingmode; 1629 (water

HOH bending mode) and 3260–3300 (hydroxyl stretching
vibrations) (not shown on the picture).

Chemical analysis

The chemical composition of jörgkellerite was studied by
electron probe X-ray microanalysis techniques (wavelength
dispersive X-ray and energy dispersive X-ray spectrometries
- WDS and EDS, respectively). The EDS analyses were per-
formed using a JEOL 5900LV SEM equipped with an Oxford
Instruments X-sight Si(Li) detector (Natural History Museum,
London). Spectra were acquired for 50 s (live time) with an
accelerating voltage of 20 kV and a beam current of 2 nA
determined in a Faraday cup. For calibration, we used well-
characterized mineral standards, with optimization of gain and
current on a Co standard. A defocused beam, 5–8 μm in di-
ameter, was used for analyses. The spectra were processed
with the extended Pouchou and Pichoir (XPP) model in the
INCA Oxford Instruments software package. To confirm the
presence of carbon and to determine element content, the min-
eral was also studied using a JEOL 8900 Superprobe operated
in WDS mode (Tübingen University). The carbon peak is
clearly visible on a qualitative spectrum recorded by a LDE2
crystal spectrometer (Online Resource 1). The WDS analyses
(15 kV, 7.5 nA and 2 μm beam diameter, sidorenkite as C
standard, gold coating) gave 12.5–16.0 CO2 wt.% (6 analy-
ses). These values are much higher than the calculated CO2

content (7.34 wt.%) probably due to mineral instability under
the electron beam, uneven grain surfaces and microporosity;
because of this, these values were not used in discussion of the
analytical results. Determination of water content by means of
conventional thermogravimetric analysis was not possible due
to lack of sufficiently large inclusion-free crystals, but the
presence of water was confirmed by spatially resolved IR
spectroscopy (see the previous section) and X-ray single-crys-
tal structure analysis.

The composition of jörgkellerite (average, standard devia-
tion and range from 10 analyses) is given in Table 1. The
oxidation state of manganese has been determined by means
of X-ray near-edge absorption spectroscopy (XANES) at the
Mn-K edge (Fig. 3). XANES spectra of jörgkellerite, MnCO3

and Mn2O3 were recorded in transmission mode on the
beamline A1, DORIS III ring, DESY, Hamburg. It is well
known that XANES spectra of manganese are valence-sensi-
tive: the position of white line at Mn K-edge allows to distin-
guish between Mn2+, Mn3+ and Mn4+ (e.g., Manceau et al.
1992; Soldati et al. 2010). Our data (Fig. 3) are consistent with
Mn being predominantly in the 3+ oxidation state in
jörgkellerite, therefore microprobe data were recalculated
based on Mn3+. All iron was also assumed to be ferric as the
oxidation potential of Fe3+ is lower than that of Mn3+.

Fig. 2 IR absorption spectrum of jörgkellerite (a) in the region 2000–
700 cm−1. IR spectra of (b) sidorenkite Na3Mn2+(PO4)(CO3) and (c)
shortite Na2Ca2(CO3)3 are given for comparison purposes
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Back-scattered electron images (Fig. 4) show that
jörgkellerite spherulites are typically quite heterogeneous in
composition. The heterogeneity of the mineral is revealed by
the presence of spotty and cloudy areas within spherulites
(light gray areas in Fig. 4). These areas are enriched in Na,
Ca, Sr and Ba, evidence for the presence of micron-size inclu-
sions of shortite, fluorite and strontium-barium carbonates

intimately intergrown with jörgkellerite platelets. The analy-
ses with high content of these elements, were not used for
calculation of average composition.

Jörgkellerite is a complex hydrated phosphate-carbonate
mineral with Na and Mn as major cations and subordinate
Fe, K, Ca, Sr and Ba (Table 1). The analytical total, with
calculated CO2 and H2O contents, somewhat exceeds
100 wt.% that can be accounted for partial loss of hydrate
water under electron beam or insignificant amount of Mn2+

in the chemical composition. The empirical mineral formula,
c a l c u l a t e d f o r ( P + S i ) = 2 a n d O = 1 8 , i s
(Na2.46K0.28Ca0.08Sr0.04Ba0.02)Σ2.88(Mn3+2.39Fe

3+
0.56)Σ2.95((-

PO4)1.95(SiO4)0.05))Σ2.00(CO3)(O1.84(OH)0.16)Σ2.00·5H2O.
The CO2 and H2O contents (Table 1) were assumed to be one
(CO3)

2− and five H2O per formula unit, on the basis of results
of X-ray structure analysis (see below). The simplified formu-
la can be expressed as (Na,□)3Mn3+3(PO4)2(CO3)(O,OH)2·
5H2O or ideally Na3Mn3+3(PO4)2(CO3)O2·5H2O.

X-ray powder diffraction and description of the crystal
structure

The spherulites of jörgkellerite are always contaminated with
the microinclusions of various minerals (Fig. 4); therefore, the
clear platelets suitable for X-ray powder diffraction study have
been cautiously selected in the immersion liquid. A small
micro-batch of disintegrated platelets has been pinned up onto
glass fiber for powder data acquisition. X-ray powder diffrac-
tion pattern (Table 2) has been obtained by means of Stoe
IPDS II image plate diffractometer (Gandolfi geometry,
MoKα-radiation, 50 kV, 40 mA, d = 200 mm, exposure
30 min).

In spite of relatively large size of jörgkellerite spherulites,
the severely curved habit of the platelets (Fig. 1) imposed
substantial difficulties for selection of the crystals appropriate
for X-ray structural study. Despite these issues, a relatively
small crystal of the mineral did provide data sufficient for
the structure solution and subsequent refinement that has been
carried out using SHELX-97 software via Olex2 v.2.1 graph-
ical user interface (Sheldrick 2008; Dolomanov et al. 2009).
The details of data collection routine, structure solution and
refinement are summarized in Table 3; fractional atomic co-
ordinates and selected interatomic bond distances are given in
Tables 4 and 5, respectively. The listing of anisotropic dis-
placement parameters can be obtained from the supplementa-
ry CIF file (Online Resource 2). The relatively high values of
R1 and wR2 (Table 3) are accounted for the imperfectness of
the even best crystal which could be selected for the study.

Jörgkellerite represents the only known example of a
phosphate-carbonate having layered architecture (Fig. 5).
The basic unit of its structure is an infinite [Mn3O8(CO3)]
layer: a two-dimensional lattice composed of triplets of disor-
dered [MnO6] octahedra (Fig. 5) arranged so that pseudo-

Fig. 3 Mn-K edge XANES spectra of (a) jörgkellerite, (b) synthetic
Mn2O3 (Mn3+) and (c) synthetic MnCO3 (Mn2+). The position of white
line in jörgkellerite spectrum (6557 eV) coincide with that of Mn2O3

evidencing that manganese is represented by Mn3+

Table 1 Composition of jörgkellerite

Component wt% Range Stand. Dev. Probe standard

Na2O 12.71 11.15–13.90 1.00 Sidorenkite

SiO2 0.51 0.35–0.74 0.12 Orthoclase

P2O5 23.07 21.18–23.95 1.08 Apatite

K2O 2.17 1.67–2.83 0.44 Orthoclase

CaO 0.76 0.40–1.35 0.33 Apatite

Mn2O3
a 31.46 28.61–33.11 1.57 Manganese

Fe2O3
a 7.52 6.52–9.00 0.74 Iron

SrO 0.76 0.40–1.04 0.21 Celestite

BaO 0.47 0.37–0.75 0.15 Baryte

CO2
b 7.34

H2O
c 15.22

Total 102.03

a all Mn and Fe were calculated as Mn3+ and Fe3+

b calculated assuming one (CO3)
2− group in the formula

c calculated assuming 5 H2O groups and 2(O,OH) positions

376 A.N. Zaitsev et al.



fourfold axis of each octahedron is directed outwards of the
layer (Fig. 6). Each pair of symmetrically independent octa-
hedra share common oxygen atom O3 (Fig. 6, Tables 4 and 5)
whereas oxygen sites lying in equatorial positions are half-
occupied (O12) or asymmetrically split between two mutually
exclusive sites O13 and O14 (Table 4, Fig. 6). [MnO6] octa-
hedra are somewhat compressed along Z axis due to Jahn-
Teller effect (Table 5). Such compressive distortion rather than
elongation of [MnO6] octahedra, albeit rare, is known both in
mineral structures (Moore 1967; Armbruster et al. 1993;
Hawthorne et al. 1995) and inorganic Mn(III) compounds
(Tregenna-Piggott 2008). Each fourth Mn site in the layer is
vacant; the latter results in appearance of ordered hexagonal
“holes” (Fig. 4) occupied by (CO3) groups. The resulting
[Mn3O8(CO3)] layers are arranged into 3D structure via the
slabs composed of corner or edge sharing (PO4) tetrahedra and
Na polyhedra (Fig. 5b, Table 4). Note that all Na polyhedra are
partially occupied (Table 5) and we suggest that the Na site
occupation may vary from crystal to crystal and even inside
the same crystal. That could result in some differences in the
chemical composition observed for different crystals.

The unique layered structure of jörgkellerite and occur-
rence of redox-sensitive component (manganese) in its com-
position makes this mineral promising prototype for further
studies of sodium ions mobility. Recently, the library of per-
spective phosphate cathode materials suitable for Na-ion bat-
teries (Yabuuchi et al. 2014; Kim et al. 2016) have been ex-
panded with synthetic analogue of the mineral sidorenkite
Na3Mn(PO4)(CO3) (Chen et al. 2013; Hassanzadeh et al.
2014). The studies aimed at the synthesis of synthetic ana-
logue of jörgkellerite could result in discovery of new phos-
phate matrices for sodium-ion batteries.

Discussion of the formation of jörgkellerite

Jörgkellerite is a rare mineral at Oldoinyo Lengai; it occurs in
two samples of highly altered carbonatites including shortite-

Fig. 4 Back-scattered electron
images of jörgkellerite sperulite
showing heterogeneous
composition of the mineral and
inclusions of khanneshite (white),
calcite and fluorite (gray)

Table 2 X-ray powder diffraction data for jörgkellerite

Iobs dobs Icalc dcalc h k l

100 10.970 100 10.969 0 0 1
15 5.597 5 5.601 1 1 0

15 5.485 0 0 2
8 4.993 5 4.988 1 1 1
4 3.659 4 3.656 0 0 3
6 3.234 6 3.234 0 3 0

2 3.102 3 0 1
2 3.060 1 3.062 1 1 3
14 2.796 6 2.800 2 2 0

6 2.785 3 0 2
20 2.724 8 2.742 0 0 4

8 2.713 2 2 1
4 2.496 1 2.494 2 2 2

1 2.463 1 1 4
5 2.189 5 2.194 0 0 5
3 2.120 2 2.117 4 1 0
4 2.080 2 2.078 4 1 1
2 1.837 1 1.840 3 3 1
2 1.828 1 1.828 0 0 6
2 1.768 1 1.767 3 3 2
3 1.729 1 1.727 2 2 5
4 1.616 5 1.617 0 6 0
2 1.597 2 1.599 6 0 1
3 1.529 2 1.531 2 2 6
1 1.478 1 1.479 6 0 3
3 1.394 2 1.393 6 0 4
2 1.358 1 1.357 4 4 2
2 1.302 2 1.302 6 0 5

Calculated data were obtained based on atomic coordinates taken from
structural refinement and lattice parameters refined from powder data
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calcite (sample OL 124) and calcite (sample OL 329)
carbonatites. The latter is from the Northern Flank and col-
lected about 50 m below the pre-2007 eruption crater rim.
Here altered carbonatites immediately overlying the truncated
combeite-wollastonite nepelinites of Lengai IIb and they can
belong to an earliest pre-1917 carbonatite platform in the cra-
ter area. Formation of calcitic carbonatites at the Oldoinyo
Lengai volcano is a result of multi-stage alteration of
gregoryite-nyerereite carbonatites due to reactions with atmo-
sphere and meteoric water at temperatures between 8 and

43 °C with variable fugacity of CO2 and H2O and relatively
high pH values (Dawson et al. 1987; Mitchell 2006b; Zaitsev
and Keller 2006; Zaitsev et al. 2008; Perova and Zaitsev
2016). An experimental study of shortite formation shows
mineral formation via reaction pirssonite + calcite = shortite
+ H2O at temperature above 55±2 °C (P=1 atm) (Jagniecki
et al. 2013). Addition of NaCl to the system lowered equilib-
rium temperature to 52±2 °C (P=1 atm).

Although hydrothermal phosphate minerals (except
apatite-group minerals) are common in a several carbonatite

Table 3 Crystal parameters, data
collection and structure
refinement details for jörgkellerite

Structural Formula (Na2.18□0.82)3.00(Mn3+2.43Fe
3+

0.57)3.00(PO4)2(CO3) =

= [O1.18(OH)0.82]2.00(H2O)5.43

Crystal size, mm 0.02 × 0.02× 0.005

Crystal system; space group Trigonal; P3

a, Å; c, Å; V, Å3; Z 11.2021(9); 10.875(1); 1181.8(2); 3

Dx, g/cm
3 2.51

Instrument and X-ray optics Bruker Kappa APEX DUO (CCD), microfocus tube

Radiation; temperature (K) MoKα (0.71073 Å); 293

2Θ range, degrees 3.74–50.00

Total; unique; unique observed reflections 2347; 1397; 846

Rint.; Rσ 0.037; 0.059

hkl range −13< h< 10; −11 < k< 9; −8 < l< 12
R1 (|Fo| ≥ 4σF); R1 (all data); wR2; S=GooF 0.088; 0.137; 0.231; 1.184

Table 4 Fractional atomic
coordinates, site occupancies and
isotropic displacement parameters
(Uiso) in the crystal structure of
jörgkellerite

Site Occupancy x/a y/b z/c Uiso

M1 Mn0.81Fe0.19 0.33326(14) 0.17792(14) −0.00039(14) 0.0135(6)

M2 Mn0.81Fe0.19 1/2 1/2 0 0.0194(8)

Na1 Na0.84 0.3269(6) 0.3409(6) 0.2623(6) 0.042(3)

Na2 Na0.54 0 0 1/2 0.056(11)

Na3 Na0.46 1/3 2/3 −0.5066(16) 0.043(8)

P1 P1.00 0.3249(3) 0.3413(3) −0.2238(3) 0.0236(8)

C1 C1.00 2/3 1/3 −0.0223(13) 0.034(5)

C2 C1.00 0 0 0 0.044(9)

O1 O1.00 0.3417(8) 0.1476(7) 0.1739(7) 0.0287(19)

O2 O1.00 0.3252(8) 0.2102(8) −0.1774(6) 0.0247(18)

O3 O0.59(OH)0.41 0.3252(7) 0.3423(7) 0.0408(7) 0.0243(18)

O4 O1.00 0.4551(8) 0.4724(8) −0.1764(6) 0.0239(18)

O5 O1.00 0.3234(9) 0.3416(9) −0.3615(8) 0.041(2)

O6 (H2O)0.63 0.455(4) 0.334(5) 0.435(2) 0.18(3)

O7 (H2O)0.64 0.212(5) 0.195(5) 0.432(3) 0.26(4)

O8 (H2O)0.94 2/3 1/3 0.255(2) 0.061(9)

O9 (H2O)0.55 0 0 0.248(4) 0.069(17)

O10 (H2O)0.78 2/3 1/3 −0.254(5) 0.26(4)

O11 (H2O)0.69 0.664(8) 0.521(5) 0.575(5) 0.40(6)

O12 O0.50 0.1157(15) 0.1201(14) −0.0069(13) 0.021(3)

O13 O0.87 0.5501(8) 0.3358(8) −0.0101(6) 0.020(3)

O14 O0.13 0.534(8) 0.220(9) −0.0155(15) 0.06(3)
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complexes such as Kovdor massif (Britvin et al. 1990, 1991,
2002; Krivovichev et al. 2002, 2013), phosphate-carbonate
species are practically unknown in these associations.
Jörgkellerite has no similarity in both composition and struc-
ture with any of known minerals and synthetic compounds.
Only sidorenkite, Na3Mn(PO4)(CO3) (Khomyakov et al.
1 9 8 0 ; K u r o v a e t a l . 1 9 8 0 ) , a n d g i r v a s i t e
NaCa2Mg3(PO4)3(CO3)·6H2O (Britvin et al. 1990;
Krivovichev et al. 2015) show similarity in composition, but
sidorenkite is anhydrous and contains Mn2+, while girvasite
does not contain Mn. An un-named sodium phosphate-
carbonate mineral with an approximate formula “Na5-
4.5PO4(CO3,F,Cl)” has been described from altered
carbonatite lapilli at Oldoinyo Lengai (Mitchell 2006a).
Unfortunately, only compositional data have been reported
for this mineral, and lack of structural and/or spectroscopic
data does not allow for precise identification of this phase.

High sodium content (51.3–55.8 wt.% Na2O), lack of manga-
nese and presence of fluorine and chlorine (4.9–5.1 and 1.0–
1.1 wt.% respectively) clearly show that this mineral is not
jörgkellerite.

Manganese-bearing minerals are known in the Oldoinyo
Lengai carbonatites. Unaltered carbonatites contain between
0.32 and 0.87 wt.% MnO with an average value of 0.46 wt.%
(Keller and Zaitsev 2012). At low levels, Mn is present in the
major minerals nyerereite (852–1750 ppm) and gregoryite
(478–1838 ppm) (Zaitsev et al. 2009b; Mitchell and
Kamenetsky 2012). Much higher concentrations are found in
accessory magnetite (10.5–16.6 wt.% MnO), monticellite
(10.9–14.1 wt.% MnO), sphalerite (9.2–20.3 wt.% Mn) and
pyrrhotite (up to 3 wt.% Mn) (Mitchell and Belton 2004).
Accessory alabandite is the only mineral in the Oldoinyo
Lengai carbonatites that contains Mn as an essential element
(35.8–49.1 wt.% Mn) (Mitchell and Belton 2004 and
references herein).

Altered pirssonite carbonatites contain similar levels of Mn
(0.51–0.88 wt.% MnO) and calcite carbonatites show slight
enrichment in Mn with MnO content between 0.80 and
1.34 wt.% (sample OL 329 contains 1.25 wt.% MnO)
(Zaitsev and Keller 2006). While gregoryite, nyerereite and
alabandite are unstable minerals that completely dissolve

Table 5 Interatomic bond distances (Å) and coordination of cations in
the crystal structure of jörgkellerite

Site1 Site2 Distance Notes

M1 O1 1.936(8) Octahedron

O2 1.969(7) compressed along

O3 1.906(7) z-axis

O3 1.940(7)

O12 2.188(14)–2.201(13)

O13-O14 2.178(8)–2.06(8)

M2 O3 2× 1.922(7) Octahedron

O4 2 × 1.968(7) compressed along

O13-O14 2.178(8)–2.30(9) z-axis

Na1 O1 2.450(9) Polyhedron

O2 2.470(9) NaO3(H2O)4
O3 2.409(10)

O4 2.471(10)

O6 2.38(3)

O7 2.38(4)

O11 2.32(4)

Na2 O7 6× 2.40(4) Cube Na(H2O)8
O9 2 × 2.74(4)

Na3 O6 3× 2.50(3) Cube Na(H2O)8
O8 2.73(3)

O10 2.61(6)

O11 3 × 2.24(4)

P1 O1 1.564(8)

O2 1.555(7)

O4 1.551(8)

O5 1.498(9)

C1 O13 3 × 1.326(8) sof(O13) = 0.87

O14 3 × 1.39(8) sof(O14) = 0.13

C2 O12 6 × 1.323(15) sof(O12) = 1/2

Fig. 5 Crystal structure of jörgkellerite (colour online). a [Mn3O8(CO3)]
layer composed of disordered edge-sharing [MnO6] octahedra (violet)
with hexagonal “holes” inhabited by disordered slightly non-planar
(CO3) groups (grey). b [Mn3O8(CO3)] layers (violet) linked by (PO4)
tetrahedra (yellow) and Na-polyhedra (blue)
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during alteration, secondary pirssonite and calcite carbonatites
contain abundant relic magnetite, which may act as a Mn
reservoir (Keller and Zaitsev 2006; Zaitsev et al. 2008).
Other primary Mn-bearing minerals were not observed in cal-
cite carbonatites, but their possible presence could not be ex-
cluded. Jacobsite, Mn2+Fe3+2O4, a spinel-group mineral, oc-
curs in some highly altered carbonatites at Oldoinyo Lengai
and contains up to 22.4 wt.%MnO (Zaitsev et al. 2008, 2013).
However, the Mn oxidation state may vary as a result of in-
corporating Mn3+ from a hausmannite component in solid
solution. The crystallisation of Mn3+-rich jörgkellerite re-
quires specific local conditions, namely high Eh and pH
values, which are favourable for the stability of Mn3+

(Garrels and Christ 1965).
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