УДҚ 549.74/75(470.21)

С. Н. Бритвин, Я. А. Пахомовский, А. Н. Богданова, Е. В. Соколова

Гирвасит — новый карбонат-фосфат натрия, кальция и магния из карбонатитов Ковдорского массива (Кольский полуостров)*

Обнаружен в доломитовых карбонатитах Ковдорского массива (Кольский п-ов). Образует сферолиты до 1,5 мм в диаметре, состоящие из призматических индивидов, удлиненных по [100]. Находится в ассоциации с доломитом, бобьеритом, пиритом. Цвет в агрегате кремово-белый, кристаллы бесцветные. Блеск стеклянный, в агрегате шелковистый. Твердость 3,5. Спайность совершенная по (001). Кристаллы очень хрупкие. Плотность 2,46 г/см³. Оптически двуосный, отрицательный. $2V = 60^{\circ}$, $n_p = 1,541$, $n_m = 1,557$, $n_g = 1,565$. Оптическа двуосный, отрицательный. $2V = 60^{\circ}$, $n_p = 1,541$, $n_m = -1,557$, $n_g = 1,565$. Оптическа ориентировка: $N_m = b$, $< aN_g = 31^{\circ}$. Химический состав, мас. %: 5,0 — Na₂O, 16,7 — CaO, 18,5 — MgO, 0,1 — MnO, 1,2 — FeO, 32,6 — P₂O₅, 7,4 — CO₂, 18,0 — H₂O, сумма — 99,5. Моноклинный, $P2_1/c = C^5_{2h}$, $a_0 = 0,6507$, $b_0 = 1,2267$, $c_0 = 2,1403$ мм, $\beta = 90,37^{\circ}$, V = 1,708 мм³, Z = 4. Кристаллиеская структура решена на основе 830 независимых отражений с R = 4,9 %. Идеальная формула: NaCa₂Mg₃× × (PO₄)₂ [PO₂(OH)₂] (CO₈) (OH)₂·4H₂O. Назван по озеру Гирвас, расположенному в районе массива.

Присутствие магнийсодержащих фосфатов в карбонатитах Ковдорского массива впервые отмечено в работе А. А. Кухаренко и др. [2]. Коллинсит и бобьерит широко распространены в доломитовых карбонатитах, как и ковдорскит, описанный позднее [1, 3]. Кроме этих минералов для данной ассоциации характерны карбонат — фторапатит, гидроталькит, барит и пирит.

Гирвасит (girvasite), новый карбонат-фосфат натрия, кальция и магния, обнаружен в Ковдоре в сходной ассоциации, в мелких пустотах растворения массивного доломитового карбонатита. Назван по озеру Гирвас, расположенному в районе массива.

В виде агрегата отдельных плотно сросшихся сферолитов до 1,5 мм в диаметре в срастании с крупными пластинчатыми кристаллами голубоватого бобьерита минерал выполняет практически все свободное пространство полостей, стенки которых инкрустированы ромбоэдрическими кристаллами доломита сантиметрового размера. Среди гирвасита и бобьерита наблюдается редкая вкрапленность мелких кристаллов пирита. В некоторых участках по границе с доломитом отмечаются пустоты, в которых отдельные индивиды гирвасита, составляющие сферолиты, имеют вид призматических кристаллов, вытянутых по [100], длиной до 1 мм и до 0,07 мм в сечении (рис. 1).

Минерал в агрегате кремово-белого цвета. Отдельные индивиды бесцветны и прозрачны. Цвет черты белый. Блеск кристаллов стеклянный, в агрегате шелковистый. Флюоресценцией не обладает. Твердость 3,5. Кристаллы очень хрупкие. Спайность совершенная по (001). Плотность, измеренная в растворах ксилол-бромоформ — 2,46(2), вычисленная на эмпирическую формулу — 2,529(5), по правилу Гладстоуна — Дэйла — 2,52 г/см³.

Гирвасит в иммерсионных препаратах бесцветный, без плеохроизма; двойникования не наблюдалось. Двуосный, отрицательный, $2V_{\rm HSM} = 60\,(5)^\circ$, $2V_{\rm BMV} = 71^\circ$. $n_p = = 1,541\,(2), n_m = 1,557\,(2), n_g = 1,565\,(2)$ для света с длиной волны 589 нм. Оптическая ориентировка: $N_m = b$, $< aN_g = 31^\circ$.

Минерал легко растворяется в холодной 10 %-ной соляной кислоте с выделением CO₂.

На ИК-спектре гирвасита (рис. 2) хорошо проявлены полосы с максимумами 3450 н 3200 см⁻¹, характеризующие валентные колебания связей О—Н, 1640 (деформационные колебания молекулярной H₂O), 1520 н 1435 (валентные колебания в анионных комплексах CO²⁻₃), 1110, 1035 и 980 см⁻¹ (валентные колебания в анионах PO³⁻₄). Полосы поглощения в области 880—560 см⁻¹ отвечают деформационным колебаниям

© С. Н. Бритвин, Я. А. Пахомовский, А. Н. Богданова, Е. В. Соколова, 1990

ISSN 0204—3548. Минерал. журн. — 1990.—12, № 3.

^{*} Минерал рассмотрен и утвержден Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 16 мая 1988 г. и Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 29 декабря 1988 г.

анионов РО³⁻⁴ и СО²⁻³. Наличие полосы с резким максимумом 3450 см⁻¹ свидетельствует о присутствии в минерале групп ОН⁻.

Термическое исследование гирвасита включало кулонометрический и термогравиметрический методы с параллельным изучением ИК-спектров продуктов прокаливания. При нагревании до 300 °С минерал теряет около 2 % массы. При этом на дифференци-

Рис. 1. Характер агрегатов (а) и морфология отдельных индивидов (б) гирвасита. РЭМ фото.

альной кривой нагревания не заметно никаких термических эффектов, однако, по данным рентгенофазового анализа, в данном интервале происходит разрушение структуры гирвасита с переходом в новую фазу или смесь фаз. ИК-спектр образующегося продук-

та приведен на рис. 2, б. При дальнейшем нагревании на кривой ДТА фиксируется сильный эндотермический эффект с максимумом при 370 °С и слабый экзотермический эффект при 580 °С. На кривой потери массы фиксируются соответственно две ступени: в интервалах 350—400 и 700—750 °С. По данным кулонометрического анализа, при этих значениях температуры выделяется H₂O. По данным ИК-спектроскопии, CO₂ выделяется постепенно в интервале 400— 1000 °С. Вещество, прокаленное до 1000 °С, не содержит CO₂ и H₂O. ИК-

Рис. 2. ИК-спектры гирвасита (а) и продуктов его прокаливания при 300 °С (б), 500 (в), 700 (г) и 1000 °С (д).

спектр продукта прокаливания близок к ИК-спектрам соединений со структурой витлокита. Общая потеря массы, по результатам ТГА, составляет 25,4 %.

Химический состав минерала приведен в табл. 1. Другие элементы с атомным номером больше 11, кроме указанных в таблице, не обнаружены. Отсутствие лития подтверджено методом пламенной фотометрии, фтора — с помощью химического анализа, бериллия и бора — лазерпым микроспектральным анализом. В пробе с реактивом Несслера выявлено отсутствие иона NH⁺₄. Содержание воды определено кулонометрическим и термогравиметрическим методами; количество CO₂ приведено по разности общей потери массы и содержания H₂O. По данным табл. 1, химический состав кристаллов гирвасита, слагающих сплошной агрегат, отличается от состава кристаллов крае-

ISSN 0204—3548. Минерал. жирн. — 1990.—12, № 3.

вой части сферолитов присутствием стронция, однако это различие не влияет на физические свойства минерала, а также на его ИК-спектр и рентгеновские характеристики.

Из расчета химического состава для ан. 1 на основе (PO₄) = 3 следует эмпирическая формула Na_{1,05}Ca_{1,95} (Mg_{3,00}Fe²⁺_{0,01}) $\Sigma_{3,12}$ (CO₃)_{1,10} (PO₄)_{3,00}6,53 H₂O.

Монокристальным рентгеновским исследованием определена моноклинная симметрия гирвасита, пространственная группа $P2_1/c = C_{2h}^c$, a = 0.65, $b_0 = 1.22$, $c_0 = 2.15$ нм, $\beta \approx 90^\circ$. Индицирование порошкограммы (табл. 2) и уточнение на ее основе параметров элементарной ячейки привело к следующим значениям: $a_0 = 0.6507(6)$, $b_0 = 1.2267(5)$, $c_0 = 2.1403(8)$ нм, $\beta = 90.37(6)^\circ$, V = 1.708(3) нм³, Z = 4.

Кристаллическая структура гирвасита решена при помощи автоматического монокристального дифрактометра P1 «Синтекс» с выполнением расчетов на специализированной вычислительной системе E-XT1 «Синтекс» на основе 830 независимых ненулевых отражений; R = 4,9 % в анизотропном приближении. Как показало исследование, основой структуры являются плотные слои (001), состоящие из зигзагообразных цепочек Са-восьмивершинников (искаженных томсоновских кубов). К Са-полиэдрам, связанным в цепочках через общие ребра, крепятся магниевые и натриевые октаэдры, PO-тетраэдры и CO_3 -группы. В самом слое можно выделить своеобразные сетки из магниевых октаэдров и PO₄-тетраэдров. CO_3 -группы располагаются на внешней стороне слоев, так же, как и OH-группы и молекулы H₂O, входящие в координационную сферу катионов. Обращенные в межслоевое пространство, OH-группы и молекулы H₂O формируют сильные водородные связи, за счет которых обеспечивается соединение слоев между собой. Указанными особенностями кристаллической структуры объясняется наличие у минерала совершенной спайности по (001).

В соответствии со структурой, в составе гирвасита наряду с РО₄-тетраэдрами присутствуют тетраэдры [PO₂(OH)₂], однако на ИК-спектре не установлено полос поглощения в интервале 1200—1300 см⁻¹, соответствующих анионным комплексам [PO₂(OH)₂]⁻. С учетом данных по решению кристаллической структуры идеальная формула минерала имеет вид NaCa₂Mg₃(PO₄)₂[PO₂(OH)₂] (CO₈) (OH)₂ 4H₂O.

Среди известных природных и синтетических соединений нами не найдено прямых аналогов гирвасита по химическому составу и кристаллической структуре. Наиболее близкими по составу являются фосфат-карбонаты: хенеуит CaMg₅(CO₃) (PO₄)₃(OH) [7] и минералы ряда брэдлиит Na₃Mg (CO₃) (PO₄) — сидоренкит Na₃Mn (CO₃) (PO₄) — бонштедтит Na₃Fe (CO₃) (PO₄) [4—6]. Бонштедтит известен в Ковдоре, однако ассоциация, в которой он найден [5], резко отличается от ассоциации гирвасита. В табл. З приведена сравнительная характеристика гирвасита, хенеуита и брэдлиита.

	1			3	
Компонент	Mac. %	Φ _K (PO₄)=3	Mac. %	Φ _K (PO ₄)=3	Mac. %
Na ₂ O CaO SrO MgO MnO FeO P_2O_5 CO ₂ H_2O C у м м а	5,0 16,7 18,5 0,1 1,2 32,6 7,4 18,0 99,5	1,05 1,95 3,00 0,01 0,11 3,00 1,10 13,05	5,0 $13,9$ $3,5$ $17,2$ $0,3$ $1,5$ $32,5$ $(6,7) *$ $(16,6) *$ $(97,2)$	1,06 1,62 0,22 2,80 0,03 0,14 3,00 (1,00) * (12,00) *	4,93 17,83 19,22

Таблица 1. Химический состав гирвасита

Примечания. 1 — кристаллы из пустот (среднее по трем анализам); 2 — кристаллы, слагающие агрегат сферолитов (среднее по пяти анализам); 3 — теоретический состав для $NaCa_2Mg_3(PO_4)_2[PO_2(OH)_2] \cdot (CO_3)(OH)_2 \cdot 4H_2O$. Состав катионов определен на электронно-зондовом микроанализаторе «Саписса» MS-46 при ускоряющем напряжении 20 кВ (для Sr — 30 кВ), ток зонда 10—20 нА. Эталоны: лоренценит (Na), диопсид (Ca), целестин (Sr), пироп (Mg), синтетический $MnCO_3$ (Mn, гематит (Fe), фторапатит (P). Содержание CO_2 — по данным $T\GammaA$, H_2O — по данным $T\GammaA$ и кулонометрического анализа. * Рассчитано на (PO_4) = 3.

ISSN 0204—3548. Минерал. журн. — 1990.—12, № 3.

 $6^{1}/_{2} - 0.196$

новые минералы

.

Таблица	2.	Межплос	костные	расстояния	гирвасита

Ι	d _{ИЗМ} , нм	d _{выч} , нм	hkl	Ι	d _{ИЗМ} , нм	d _{выч} , нм	hkl
100	1 072	1 0701	002	4	0.2660	0.2661	044
10	0.805	0.8064	012	- II	0,2000	0.2661	223
2	0.649	0.6507	100	14	0,2613	0,2614	018
20	0,613	0,6134	020	3	0,2582		
3	0,574	0,5748	110	4	0,2529		
3	0,554	0,5544	102	14	0,2489		
		0,5544	111	24	0,2449		
7	0,532	0,5321	022	1	0,2400		
4	0,490	0,4904	014	1	0,2360		
4	0,465	0,4651	023	$\frac{1}{2}$	0,2330		
3	0,446	0,4464	113	7	0,2282		
0	0.110	0,4463	120	8	0,2187		
9	0,412	0,4120	104		0,2138		
15	0,403	0,4032	024	32	0,2108		
10	0,002	0,3020	032		0,2008		
00	0,007	0,0007	000	25	0,2002		
20	0,542	0,0420	115	1	0,2010		
3	0 3 9 0	0,3424	132	1	0,1963		
4	0,325	0.3249	034	4	0 1950		
32	0,308	0,3083	026	3	0,1927		
0.2	0,000	0.3082	125	3	0,1907		
5	0.304	0,2030	116	ž	0.1883		
0	0,004	0,3036	041	10	0,1836		
22	0 2948	0,0000	042	1	0,1755		
7	0,2903	0,2902	134	2	0,1722		
26	0.2817	0,2818	043	2	0,1707		
8	0.2771	0.2772	204	2	0,1691		
-	0,2112	0.2772	222	2	0,1648		
1	0,2734	0,2736	027	1	0,1609		
6	0.2710	0.2706	117	3	0,1526		
15	0.2687	0.2688	036	1	0,1502		
	0,200.	0.2687	135				
		0.2687	142				

Примечание. Условия съемки: дифрактометр, СиК_а-излучение, монохроматор.

Tat	лица	3. C	Сравнительная	характеристика	гирвасита,	хенеуита	И	брэдлиита
-----	------	------	---------------	----------------	------------	----------	---	-----------

Параметры	Гирвасит	Хенсуит	Брэдлиит
Сингония	Моноклинная	Триклинная	Моноклинная
Пространственная группа	$P2_{1}/c$	P1	$P2_{1}/m$
a (HM)	0,0007	0,63069	0,885
с (нм)	2,1403	0.86736	0,005
a	2,1100	95.013	0,010
β	90,37	93,412	90,42
Ϋ́		101,039	_
\mathcal{L}	4	2	2 700
Плотноств, г/см-	2,40	3,016	2,720
	Оптические свойс	тва	
Знак	()	()	()
2V	60` ´	5Ĝ ´	49
n _p	1,541	1,586	1,487
n _m	1,557	1,620	1,546
ng	1.565	1,630	1,560
$n_g - n_p$	0.024	0.044	0,073
Ориентировка	N=b	-,	$N_{a}=b$
	$< aN_g = 31^{\circ}$		$< cN_m = 7^0$

 $\label{eq:constraint} \begin{array}{|c|c|c|c|c|c|c|c|} \hline Γ ирвасит NaCa_2Mg_3(PO_4)_2[PO_2(OH)_2](CO_3)(OH)_2 \cdot 4H_2O. \\ X енеуит CaMg_5(CO_3)(PO_4)_3(OH). \\ $Брэдлинт Na_3Mg(CO_3)(PO_4). \\ \hline \end{tabular}$

Судя по составу, данным термического исследования, а также по его тесной ассощиации с бобьеритом, гирвасит — низкотемпературный гидротермальный минерал, образующийся из фосфатных растворов при 100-250 °С.

В заключение авторы выражают благодарность сотрудникам Геологического института Кольского научного центра АН СССР С. П. Атамановой, Н. А. Елиной, В. А. Чепкаленко и О. Г. Шерстенниковой за помощь в процессе исследования.

Образцы гирвасита переданы на хранение в Минералогический музей им. А. Е. Ферсмана АН СССР (Москва) и Горный музей Ленинградского Горного института.

- 1. Капустин Ю. Л., Быкова А. В., Пудовкина З. В. Ковдорскит новый минерал // Зап. Всесоюз. минерал. о-ва. — 1980. ч. — Ч. 109, вып. 3. — С. 341—347. 2. Кухаренко А. А., Орлова М. П., Булах А. Г. и др. Каледонский комплекс ультра-
- основных, щелочных пород и карбонатитов Кольского полуострова и Северной Карелин.— Л.: Недра, 1965.— 550 с. 3. Овчинников В. Е., Соловьева Л. П., Пудовкина З. В. и др. Кристаллическая струк-
- тура ковдорскита Mg₂(PO₄) (OH) · 3H₂O // Докл. АН СССР.— 1980.— 255, вып. 2.— С. 351—354.
- 4. Хомяков А. П. Семенов Е. И., Казакова М. Е., Шумяцкая Н. Г. Сидоренкит Na₃Mn(PO₄) (CO₃) — новый минерал // Зап. Всесоюз. минерал. о-ва. — 1979. — Ч. 108,
- 1. 1. С. 36—59.
 5. Хомяков А. П., Александров В. Б., Краснова Н. И. и др. Бонштедтит Na₃Fe(PO₄) × (CO₃) новый минерал // Зап. Всесоюз. минерал. о-ва. 1982. Ч. 111, вып. 4. C. 486—490.
- 6. Fahey J. J., Tunell G. Bradleyite, a new mineral, sodium phosphate magnesium car-
- bonte // Amer. Miner.— 1941.— 26.— P. 646—650.
 7. Raade G., Mladeck M. H., Din V. K., Heneuite, Ca/Mg₅ (CO₃) (PO₄)₃ (OH), a new mineral from Modum, Norway // N. Jb. Miner. Mh.— 1986.— H. 8.— S. 343—350.

Геол. ин-т Кол. науч. центра АН СССР, Апатиты Моск. ун-т

Поступила 18.04.89

SUMMARY. Girvasite is found in dolomite carbonatites of the Kovdorian massif (the Kola peninsula). It forms spherolites 1.5 mm across consisting of prismatic individuals extended in [100]. The mineral is associated with dolomite, bobierrite, pyrite. Its colour in aggregate is cream-white, crystals are colourless. Vitreous lustre, in aggregate — silky lustre. Hardness 3.5. Perfect cleavage in [001]. Very brittle crystals. Density 2.46 g/cm³. Optically biaxial, negative. $2V=60^\circ$, $n_p=11.541$, $n_m=1.557$, $n_g=1.565$. Optic orientation: $N_m = b$, $\langle aN_g = 31^\circ$. Chemical composition, weight %: 5.0 - Na₂O, 16.7 - CaO, $18.5 - MgO, \ 01. - MnO, \ 1.2 - FeO, \ 32.6 - P_2O_5, \ 7.4 - CO_2, \ 18.0 - H_2O, \ sum - 99.5.$ Monoclinic, $P2_{1/c} = C_{2h}^{5}$, $a_{0} = 0.6507$, $b_{0} = 1.2267$, $c_{0} = 2.1403$ nm, $\beta = 90.37^{\circ}$, V = 1.708 nm³, Z=4. Crystal structure is solved on the basis of 830 independent reflections with R==4.9 %. Ideal formula: NaCa₂Mg₃(PO₄)₂[PO₂ \times (OH)₂](CO₃)(OH)₂·4H₂O. The mineral .is named after Lake Grivas located in the region of massif.

ISSN 0204—3548. Минерал. журн. — 1990.—12, № 3.

83

6*

