ЛАПТЕВИТ–(Ce) NaFe²⁺(*REE*₇Ca₅Y₃)(SiO₄)₄(Si₃B₂PO₁₈)(BO₃)F₁₁– НОВЫЙ МИНЕРАЛ¹ ИЗ ГРУППЫ ВИКАНИТА ИЗ ЩЕЛОЧНОГО МАССИВА ДАРАИ–ПИЁЗ, ТАДЖИКИСТАН

А.А. Агаханов

Минералогический музей им. А.Е. Ферсмана, РАН, Москва, atali99@mai.ru

Л.А. Паутов

Минералогический музей им. А.Е. Ферсмана, РАН, Москва, pla58@mail.ru

Ю.А. Уварова

Государственное объединение научных и прикладных исследований (CSIRO), Кенсингтон, Австралия, yulia.uvarova@csiro.au

Е.В. Соколова

Геологический факультет Университета Манитоба, Винипег, Канада, Elena.Sokolova@umanitoba.ca

Ф.К. Хоторн

Геологический факультет Университета Манитоба, Винипег, Канада, Frank.Hawthorne@umanitoba.ca

В.Ю. Карпенко

Минералогический музей им. А.Е. Ферсмана, РАН, Москва, mineralab@mail.ru

Лаптевит-(Ce) — новый минерал из группы виканита обнаружен в породе кальцит-бафертисит-эгиринмикроклинового состава в ассоциации со стиллуэллитом-(Се), калькибеборосилитом-(Y), флюоритом, полилитионитом и другими минералами на морене ледника Дараи-Пиёз (Таджикистан). Минерал темнокоричневого цвета, в тонких сколах прозрачный. Блеск стеклянный. Встречен в плохо образованных кристаллах размером до 1 см. Твердость по Моосу 4.5-5. D_{измер} = 4.61(2) г/см³ D_{выч} = 4.619 г/см³. Оптически одноосный отрицательный, no = 1.741(3), ne = 1.720(3). Частично метамиктный. Кристаллическая структура уточнена с R = 3.61%. Сингония гексагональная, пр. гр. *R*3*m*, *a* = 10.804(2)Å; *b* = 10.804(2)Å; *c* = 27.726(6)Å; V = 2802.7(2)Å³ Z = 3. Главные линии ренттеновской порошкограммы [d, (l), (hkl)]: 7.70 (19) (012); 4.41 (29) (202); 3.13 (26) (214); 3.03 (100) (027); 2.982 (85) (125); 2.954 (60) (033); 2.689 (40) (-240); 1.979 (31) (330); 1.770 (21) (-555). ИК-спектр (сильные полосы поглощения, см⁻¹) 1623, 1437, 1300, 945, 930, 877, 758, 637, 570, 531. Химический состав (микрозондовый анализ, мас.%): SiO $_2$ – 15.67, TiO $_2$ – 0.28, ZrO $_2$ – 0.01, ThO $_2$ – 0.38, UO₂ - 0.65, FeO - 1.48, CaO - 11.64, MnO - 1.02, SrO - 0.95, Y₂O₃ - 11.30, La₂O₃ - 14.51, Ce₂O₃ - 16.93, $Pr_2O_3 = 2.76, Nd_2O_3 = 5.16, Sm_2O_3 = 0.98, Eu_2O_3 = 0.10, Gd_2O_3 = 1.56, Tb_2O_3 = 0.29, Dy_2O_3 = 1.37, Tm_2O_3 = 0.29, Tm_2O_3 = 0.$ 1.1_{2} слов 1.0_{2} слов 1.0ловны Лаптевой (1928 — 2011), советского геолога-петрографа, внесшей большой вклад в геологическую изученность Средней Азии.

В статье 3 таблицы, 4 рисунка, список литературы из 13 названий.

Ключевые слова: лаптевит-(Се), группа виканита, Дараи-Пиёзский щелочной массив.

Лаптевит-(Се) встречен в глыбе фенитизированной породы, размером 1 × 0.8 × 0.4 метра, из Верхнего Дараи-Пиёзского щелочного массива, найденной в моренных отложениях ледника Дараи-Пиёз (Таджикистан). Массив Дараи-Пиёз имеет изометричную форму и расположен на стыке Зеравшанского, Алайского и Туркестанского хребтов в верховьях одноименной реки. Значительная часть массива перекрыта ледником, а коренные выходы массива труднодоступны. В связи с этим основные исследования минералогии и петрографии верхнего Дараи-Пиёзского щелочного массива выполнены на материале из моренных отложений. Геологии и минералогии этого щелочного массива посвящено большое количество публикаций (Москвин, 1937; Дусматов и др., 1963; Дусматов, 1968; 1971; Семенов и др., 1963; Belakowski, 1991; и др.). Минералогия Верхнего Дараи-Пиёзского щелочного массива, как и большинства щелочных массивов, крайне разнообразна и во многом уникальна. Как правило, почти все щелочные массивы имеют свои характерные геохимические отличительные черты. Для Верхнего Дараи-Пиёзского щелочного массива одной из геохимических особенностей является большое видовое разнообразие минералов В и *REE*: стиллуэллит-(Се), таджикит-(Се), таджикит-(Y), капицаит-(Y),

¹ — Рассмотрен и рекомендован к опубликованию Комиссией по новым минералам и названиям минералов РМО и утвержден Комиссией по новым минералам, номенклатуре и классификации Международной минералогической ассоциации (КНМНК ММА) 2 декабря 2011 г.

калькибеборосилит-(Y), византиевит. При этом, почти все эти минералы, кроме стиллуэллита-(Ce), впервые встречены и описаны из пород данного массива.

Порода лейкократового облика, в которой был обнаружен лаптевит-(Се), имеет кальцитбафертисит-эгирин-микроклиновый состав, неравномернозернистую структуру, от мелко- до крупнозернистой, часто пятнистую текстуру. Пятнистая текстура обусловлена неравномерным распределением скоплений микроклина, эгирина, кальцита, бафертисита, кварца, калькибеборосилита-(Y), стиллуэллита-(Се) и лаптевита-(Се). Микроклин представлен крупными идиоморфными зернами размером 1-6 см, сероватого, желтовато-белого цвета. Эгирин образует призматические, часто деформированные, длиною до 3 см, черные кристаллы. Кварц присутствует в виде льдистых, полупрозрачных, светло-серых, крупнозернистых агрегатов, размером 2-3 см. Одной из характерных черт этой ассоциации является наличие крупнопластинчатых выделений коричнево-красного бафертисита, тетрагональных, плохо образованных кристаллов калькибеборосилита-(Y), до 2 см, темно-серого цвета, и изометричных выделений стиллуэллита-(Се), до 3 см, без видимой огранки, светло-розового цвета. Второстепенными минералами являются флюорит, полилитионит, альбит. Чаще всего лаптевит-(Се) срастается с бафертиситом, калькибеборосилитом-(Ү) и стиллуэллитом-(Се).

Физические свойства

Лаптевит-(Се) образует плохо оформленные кристаллы до 1 см (рис. 1), центральная часть которых, как правило, метамиктна. Цвет минерала коричневый, при этом цен-

Рис. 1. Кристалл лаптевита-(Се) коричневого цвета и выделения бафертисита в кальците с микроклином. Косое освещение. Ширина поля зрения 5 см.

тральная часть кристаллов имеет желто-коричневый цвет. В тонких сколах прозрачный. Блеск стеклянный, часто жирный, излом неровный, спайности нет. Твердость по шкале Мооса - 4-4.5. Твердость микровдавливания 453 кгс/мм² (среднее значение по 15 измерениям при разбросе единичных замеров от 443 до 485 кгс/мм²). Измерения проводились на приборе ПМТ-3, градуированном по NaCl, при нагрузке 50 г. Измеренная плотность — 4.61(2) г/см³, определена уравновешиванием зёрен в водном растворе жидкости Клеричи. Вычисленная плотность — 4.619 г/см³ Показатели преломления лаптевита-(Се) измерены иммерсионным методом (при 589 нм): $n_0 = 1.741(3)$, $n_e = 1.720(3)$, минерал оптически отрицательный, одноосный. Лаптевит-(Се) нерастворим в воде, но слабо растворим в HCl (1:1) при комнатной температуре. Инфракрасный спектр получен на ИК-Фурье спектрометре Avatar (Thermo Nicolet) из микротаблетки минерала в бромиде калия (рис. 2). Лаптевит-(Се) имеет следующие наиболее сильные полосы поглощения (см⁻¹): 1623, 1437, 1300, 945, 930, 877пл, 758, 637, 570, 531.

Химический состав

Химический состав лаптевита-(Се) изучался в двух лабораториях: Минералогического музея им. А.Е. Ферсмана РАН, Москва и кафедры наук о Земле Университета Манитоба, Виннипег, Канада. В основном изучение состава проводилось электронно-зондовым методом, как на волнодисперсионных, так и на энергодисперсионных спектрометрах. Было изучено 8 зерен лаптевита-(Се) и получено 42 анализа. В Минералогическом музее им. А.Е. Ферсмана анализы выполнены на электронном микрозонде JCXA-733 фирмы JEOL,

Рис. 2. ИК-спектр наливкинита. Препарат — таблетка минерала с КВг. Спектр получен на ИК-Фурье спектрометре Avatar (Thermo Nicolet).

Рис. 3. Срастание зональных кристаллов лаптевита-(Се) с альбитом и кальцитом: а-изображение прозрачно-полированного шлифа в проходящем свете (николи скрещены); b – тот же фрагмент в режиме контраста по среднему атомному номеру (BSE). Ширина поля зрения 2,6 мм.

с помощью (Si-Li) энергодисперсионного спектрометра и системой анализа INCA, при ускоряющем напряжении — 20 кВ, токе зонда - 2 нА и диаметре зонда - 1 мкм. Использовались следующие стандарты: микроклин USNM 143966 (Si), анортит USNM 137041 (Ca), ильменит USNM 96189 (Ti, Fe), Mn (Mn), $SrTiO_3(Sr)$, $YPO_4(Y)$, $LaPO_4(La, P)$, $CePO_4(Ce), PrPO_4(Pr), NdPO_4(Nd), SmPO_4(Sm),$ $EuPO_4$ (Eu), $GdPO_4$ (Gd), $TbPO_4$ (Tb), $DyPO_4$ (Dy), TmPO₄(Tm), YbPO₄(Yb), омфацит USNM 110607 (Na), MgF₂(F). В Университете Манитобы анализы были выполнены на электронном микрозонде Сатеса SX-100, с помощью волнодисперсионных спектрометров, при ускоряющем напряжении – 15 кВ, токе зонда — 20 нА и диаметре зонда — 5 мкм. В качестве стандартов использовались диопсид (Si, Ca), титанит (Ti), циркон (Zr), ThO₂(Th), $UO_2(U)$, пироп (Fe), спессартин (Mn), стронцианит (Sr), YPO₄ (Y), LaPO₄ (La, P), CePO₄ (Ce), $PrPO_4(Pr)$, $NdPO_4(Nd)$, $SmPO_4(Sm)$, $EuPO_4(Eu)$, $GdPO_4(Gd)$, $TbPO_4(Tb)$, $DyPO_4(Dy)$, $TmPO_4(Tm)$, YbPO₄ (Yb), датолит (B), жадеит (Na), флюорит (F).

Кроме этого, для определения содержаний B, Li, Be и группы REE было выполнено три анализа методом ICP-OES. Для этого зерна лаптевита-(Се), предварительно проверенные по составу с помощью ЭДС, разлагались в полипропиленовых флаконах в 40% HF с добавлением HNO3 и упаривались до влажных солей. После этого к пробе повторно добавлялась HNO₃ и упаривалась до сухого остатка для полного удаления всех фторидов. Далее сухой остаток разводился в 2% HNO₃, и полученный раствор анализировася на приборе VISTA Pro фирмы Varian. Концентрация Be, Li, измеренная методом ICP-OES, в новом минерале не превышает следовые содержания. Полученные данные о содержании В и REE методом ICP-OES хорошо коррелируют с данными, полученными электроннозондовым методом.

Таблица 1. Химический состав лаптевита-(Се) (мас.%)

17		2	
Компонент -	Среднее		
SiO_2	15.67	14.54 - 15.98	15.58
TiO ₂	0.28	0.18 - 0.53	0.30
ZrO_2	0.01	0.00 - 0.05	0.10
ThO_2	0.38	0.17 - 0.56	0.43
UO_2	0.65	0.44 - 0.71	0.70
FeO	1.48	1.31 - 1.66	1.59
CaO	11.64	11.12 - 12.01	11.83
MnO	1.02	0.82 - 1.07	0.84
SrO	0.95	0.81 - 1.60	1.46
Y_2O_3	11.30	11.07 - 11.73	11.21
La_2O_3	14.51	13.20 - 15.01	13.86
Ce_2O_3	16.93	16.20 - 17.92	17.58
Pr ₂ O ₃	2.76	2.43 - 3.97	2.90
Nd_2O_3	5.16	4.37 - 5.58	5.10
Sm_2O_3	0.98	0.77 - 1.26	1.03
Eu_3O_3	0.10	0.04 - 0.34	0.16
Gd_2O_3	1.56	1.19 - 1.69	1.40
Tb_2O_3	0.29	0.16 - 0.25	0.21
Dy_2O_3	1.37	1.24 - 1.67	1.47
Tm_2O_3	0.17	0.09 - 0.26	0.13
Yb_2O_3	0.28	0.20 - 0.39	0.35
B_2O_3	4.98	3.79 - 5.40	4.71
P_2O_5	1.51	1.35 - 1.58	1.47
Na ₂ O	1.05	0.86 - 1.26	0.98
F	8.53	8.05 - 9.47	8.44
Сумма	103.56		103.83
$-O = F_2$	-3.59		- 3.55

Примечание. 1 — среднее и пределы вариации по 42 микрозондовым анализам 8 зерен выполнены с помощью энергодисперсионного спектрометра INCA, смонтированного на JCXA-733, U=20 кВ, I=2 нА, диаметр зонда — 1 мкм, 10 анализов выполнено на волновых спектрометрах Сатеса SX-100, U=15 кВ, I=20 нА, диаметр зонда — 5 мкм, 3 анализа по определению B_2O_3 — методом ICP OES, аналитики А.А. Агаханов, Л.А. Паутов, Panseok Yang. 2 — анализ зерна, на котором была решена кристаллическая структура минерала (из того же образца). Основные компоненты определены на электронном микрозонде Сатеса SX-100 U=15 кВ, I=20 нА, диаметр зонда — 5 мкм (Uvarova et al., 2013).

Na Ka1 2

.....

YLat

Si Ka1

Рис. 4. Фрагмент кристалла лаптевита-(Ce) (Lap) в срастании с альбитом (Alb). Изображение в режиме контраста по среднему атомному номеру (BSE) и рентгеновские карты распределения указанных элементов.

Кристаллы лаптевита-(Се) часто трещиноватые с вростками других фаз (рис. 3, 4) и имеют хорошо проявленную зональность, в основном связанную с изоморфными замещениями La, Се и Y (рис. 4).

Усредненный состав проанализированных электронно-зондовым и ICP-OES методами зерен (табл. 1, ан. 1) пересчитывается, исходя из суммы анионов (O + F) = 48 а.ф., на эмпирическую формулу ($Na_{0.88}REE_{0.12}$)_{21.00} ($Fe_{0.54}Mn_{0.37}Ti_{0.09}$)_{21.00}($REE_{6.79}Ca_{5.40}Y_{2.60}Sr_{0.24}U_{0.06}$ $Th_{0.04}$)_{215.13}(SiO₄)₄(Si_{2.78}B_{2.68}P_{0.55}O_{17.33}F_{0.67}) (B_{1.05}O₃)F₁₁. При этом $REE = Ce_{2.68}La_{2.32}Nd_{0.80}$ Pr_{0.44}Gd_{0.22}Dy_{0.19}Sm_{0.15}Yb_{0.04}Tb_{0.04}Tm_{0.02}Eu_{0.01}.

Упрощенная формула лаптевита-(Ce) NaFe²⁺ (*REE*₇Ca₅Y₃)(SiO₄)₄(Si₃B₂PO₁₈)(BO₃)F₁₁. Анализ фрагмента зерна, на котором была изучена кристаллическая структура минерала, также приведен в таблице 1 (ан. 2). Индекс сходимости свойств ($1 - K_p/K_c$) = 0.004, что соответствует его высшей степени (superior).

Рентгеновские данные

На начальном этапе изучения нового минерала была получена рентгеновская порошкограмма данной фазы. После этого были отобраны зерна для монокристальных исследований, но зерна оказались метамиктными. В дальнейшем из пяти образцов были выделены монофракции исследуемого минерала и сделаны попытки получить для них рентгеновские порошкограммы. К сожалению, материал этих фракций также оказался метамиктным. В связи с этим, было принято решение прокалить данный минерал. Отобранные для прокалки фрагменты кристаллов содержали желто-коричневую, более прозрачную центральную зону и внешнюю, более темную и трещиноватую зону. Состав обоих зон в отобранных обломках кристаллов был проверен с помощью ЭДС анализа и оказался идентичным. Прокалка

Изме	ренная	Расч	етная		Изме	ренная	Расч	етная	
Ι		Ι	<i>d</i> , Å	hkl	I		Ι	<i>d</i> , Å	hkl
	0.04	7	0.010	0.0.2					0 -1 13
5	9.24	1	9.216	003	2	2.079	4	2.080	1013
10	7 70	17	7 766	012					-1113
19	7.70	17	1.155	1-12					324
				-102	11	2.049	11	2.050	-2 -3 4
2	5.38	3	5.394	210					2 -5 4
				-210					-2 -2 9
6	4.73	4	4.767	1-15	13	2.030	12	2.031	229
				202					-249
29	4 41	38	4 428	-2.2.2					407
20	1.11	00	1. 120	0-22	10	2.012	6	2.012	-447
				107					0 -4 7
4	3.62	7	3.650	-117					235
				20.5	8	2.003	17	2.002	3 -5 5
13	3.59	5	3.579	025					-525
10	0.00	0	0.070	-225				1.994	413
7	3.53	7	3.513	-1 -1 6	14	1.990	16		-153
4	3.48	2	3.508	211					5-13
6	3.41	3	3.427	-132	-				-408
5	3.20	3	3.249	018	3	1.942	6	1.940	048
-		-		214					4 - 4 8
26	3.13	37	3.149	3 - 1 4			_		-537
				-234	4	1.885	5	1.887	-357
				-330					327
19	3.11	14	3.123	030	8	1.869	6	1.868	146
				300		1.000		1.000	416
4	3.08	11	3.081	009	18	1.845	23	1.855	0312
				027					-528
100	3.03	100	3.023	-207	13	1.822	16	1.824	3 - 5 8
				2 - 2 7					238
				125		4 505	10	4 004	330
85	2.982	41	2.980	-135	31	1.797	19	1.801	-360
				3 - 2 5					-630
				033		4 550	4.5	1 770	-555
60	2.954	51	2.955	303	21	1.770	15	1.773	505
				-333	-	4 700	0	4 600	0-55
10	2.750	15	2.782	208	5	1.700	8	1.698	3210
				-240	7	1.683	3	1.685	-645
40	2.689	38	2.701	-420	0	1.000	0	1 60 4	425
				220	3	1.622	3	1.624	0216
10	0.0101	10	2.638	217	8	1.598	4	1.590	0315
13	2.610h	2	2.593	223	5	1.548	4	1.548	517
6	2.553	8	2.550	312	8	1.540	5	1.539	2017
3	2.430	4	2.431	3 - 4 4	C	1 500	C	1 500	0018
		F	0.010	404	0	1.529	0	1.529	1412
8	2.202h	12	2.210	039	7	1 5 1 4	4	1.513	3213
		15	2.191	309	r	1.314	4		130
				3 - 4 7	2	1 500	2	1 501	0414
11	2.171	9	2.172	-417	2	1.300	ა ე	1.301	-744
				-3 -1 7	5	1.491	2	1.491	2410
				4 - 4 5	1.4	1 477	0	1 470	-100
15	2.154	9	2.155	045	14	1.477	IJ	1.479	223
				-405	0	1 494	n	1 495	2-13
3	2.142	2	2.140	321	Z	1.424	2	1.423	7-30
				232	Примечани	ие. Дифракт	эметр ДР	ОН-2, Си ан	од, графито-
13	2.117	10	2.121	-252	вый монох	поматор ск	пость си	етчика 1 гр	аа/мин вну-

5-32

Таблица 2. Результаты расчета рентгенограммы лаптевита-(Се)

вый монохроматор, скорость счетчика 1 град/мин., внутренний стандарт кварц. Аналитик А.А. Агаханов.

проводилась в трубчатой печи при 800°С в токе аргона. Центральные части кристаллов лаптевита-(Се) превратились в белое фарфоровидное рентгеноаморфное вещество, а внешняя кайма кристаллов осталась без видимых изменений и дала рентгеновскую порошкограмму, совпадающую с дифрактограммой, полученной в самом начале для непрокаленного вещества. Все дальнейшие исследования проводились на прокаленном материале.

Рентгеновская порошкограмма лаптевита-(Се) (табл. 2) была получена на приборе ДРОН-2 с графитовым монохромато-

Характеристика минерала	Лаптевит-(Се)	Виканит-(Се)	Оканоганит-(Y)	Хундхолменит-(Ү)	Прощенкоит-(Ү)
Формула	$\begin{array}{l} Na(Fe^{2+},Mn^{2+})\\ (\textit{REE}_7Ca_5Y_3)_{15}\\ (SiO_4)_4(Si_3B_2PO_{18})\\ (BO_3)F_{11} \end{array}$	$\begin{array}{l} (Ca, \textit{REE}, Th)_{15}Fe^{3+} \\ [SiO_4]_3 [Si_3B_3O_{18}] \\ [BO_3](As^{5+}O_4) \\ (As^{3+}O_3)_x (NaF_3)_{1-x}F_7 \\ (H_2O)_{0.2'} x = 0.4 \end{array}$	$(Na,Ca)_3(Y,Ce)_{12}$ $B_2Si_6O_{27}F_{14}$	$\begin{array}{c}(Y,REE,Ca,Na)_{15}\\(Al,Fe^{3+})Ca_{x}As^{3+}{}_{1\cdot x}\\(Si,As^{5+})Si_{6}B_{3}\\(O,F)_{48}\end{array}$	$\begin{array}{l} (Y,\!REE,\!Ca,\!Na,\!Mn)_{15} \\ (Fe^{2+},\!Mn)Ca(P,\!Si) \\ Si_6B_3O_{34}F_{14} \end{array}$
Пространст- венная группа	R3m	R3m	R3m	R3m	R3m
a, Å c Z	10.804(2) 27.726(6) 3	10.8112(2) 27.3296(12) 3	10.7108(5) 27.0398(11) 3	10.675(6) 27.02(2) 3	10.7527(7) 27.4002(18) 3
	7.70 (19)	7.70 (50)			
	4.41 (29)	4.42 (50)	4.38(41)	4.38 (33)	4.441 (36)
	3.13 (26)	3.13 (50)	3.11(48)	3.114 (43)	3.144 (77)
Сильные линии рентгеновской порошко- граммы, D _{изм.} (I)	3.03 (100)	2.993 (100)	2.970(100)	2.972 (100)	3.028 (45)
	2.982 (85)	2.950 (70)	2.939(95)	2.947 (76)	2.968 (100)
	2.954 (60)	2.698 (50)	2.926(50)	2.924 (66)	
	2.689 (40)	1.839 (50)	2.676(32)	2.681 (36)	
	1.979 (31)	1.802(50)	1.978(35)	1.978 (37)	
	1.770 (21)		1.822(32)		
			1.784(43)		1.782 (32)
					1.713 (32)
Цвет	Коричневый, желто-коричневый	Желто- зеленый	Рыжевато- коричневый, бледно-розовый	Бледно-серовато- коричневый до серовато- коричневого	
Блеск	Стеклянный	Стеклянный		Стеклянный, алмазный	
<i>D</i> _{изм.} , г/см ³	4.61(2)	> 4.2	4.35(4)	> 4.2	4.72
D _{выч.} , г/см ³	4.619	4.73	4.96	5.206	4.955
Твердость (Mooca)	4.5-5	5-6	4	5-6	Около 5
Оптические свойства (оп- тический знак)	Одноосный (—)	Одноосный (-)	Одноосный (—)	Одноосный (-)	Одноосный (—)
n _o	1.741(3)	1.757(2)	1.753(2)	1.7578(5)	1.734(2)
n _e	1.720(3)	1.722(2)	1.740(2)	1.7487(5)	1.728(2)
	Наши данные	Maras <i>et al.,</i> 1995; Ballirano <i>et al.,</i> 1991	Boggs, 1980	Raade et al., 2008	Raade <i>et al.</i> , 2008

Таблица 3. Сравнительная характеристика минералов: лаптевит-(Се), виканит-(Се), оканоганит-(Y), хундхолменит-(Y) и прощенкоит-(Y)

ром на CuKa излучении. В качестве внутреннего стандарта применялся кварц. Порошкограмма минерала хорошо индицируется в параметрах гексагональной ячейки, с пространственной группой R3m: $a = 10.779(2), c = 27.864(4)\text{\AA}, V = 2803.6(3)\text{\AA}^3$ Z = 3. Параметры элементарной ячейки и порошкограмма лаптевита-(Се) весьма близки минералам группы виканита (табл. 3). Структура лаптевита была уточнена по 924 независимым отражениям с R-фактором = 3.87%. Минерал гексагональный, с пространственной группой *R3m*, *Z* = 3. Параметры ячейки: a = 10.804(2), c = 27.726(6)Å, V = 2802.6(2)Å³ (дифрактометр Bruker P4 с CCD детектором, Мо*К*а излучение) (Uvarova *et al.*, 2013).

Структура нового минерала несет основные черты, присущие структурам минералов группы виканита (Ballirano et al., 2002; Bioiocchi et al., 2004; Raade et al., 2007; 2008; Uvarova et al., 2013). Основными элементами этих структур являются слои A ($z \sim 0$), B ($z \sim 0.13$) и C ($z \sim 0.23$), объединенные в сложный гетерополиздрический каркас. Структура нового минерала заключает в себе 4 тетраэдрические позиции (T1-T4), заселенные Si, B, P и координированные кислородом, одну треугольную позицию *Т*5, заселенную В и координированную кислородом и фтором, октаэдрическую позицию $M6 = (Fe^{2+}, Mn, Ti),$ координированную атомами кислорода, и 6 позиций с координацией от 7 до 10: позиции М1-М5, заселенные Са

и *REE*, и *M*7, заселенная Na и *REE*. Позиции *M*1—*M*6 координированы преимущественно кислородом, в меньшей степени фтором.

В слое А содержатся тетраэдры Т1 и Т4, которые объединены в характерный для минералов группы комплексный анион, имеющий в лаптевите-(Ce) состав $(Si_3B_2PO_{18})^{-17}$, в отличие от остальных минералов группы, у которых состав этого аниона $(Si_3B_3O_{18})^{-15}$. Другой строительной единицей слоя А является кластер, образованный октаэдром Мб, соединенный вершинами с кремнекислородными тетраэдрами (T1, T2) и полиэдром [^{9]}M(1) = (*REE*, Ca).

Слой В в лаптевите состоит из изолированных Si-O тетраэдров T3, треугольников ($B_{0.84}\square_{0.16}$), а также полиэдров $^{[10]}M2 = (REE, Ca)$ и $^{[8]}M4 = (Ca, REE, U, Th). Борные треугольные группировки присутствуют еще в одном минерале группы — виканите-(Ce). В остальных минералах эта позиция вакантна.$

Слой С в минерале образован полиэдрами M3 = (Ca, Sr, *REE*), M5 = (Y, *REE*) и M7 = (Na, *REE*). Тетраэдры и полиэдры всех слоев, соединяясь друг с другом, формируют единую каркасную постройку. Структурная формула лаптевита-(Ce) имеет следующий вид (при пересчете на O + F = 48 a.ф.): (Fe_{0.58}Mn_{0.31}Ti_{0.10}Zr_{0.02})_{Σ1.01}[(Ce_{2.80}La_{2.22}Nd_{0.79} Pr_{0.46}Dy_{0.21}Gd_{0.20}Sm_{0.15}Yb_{0.05}Tb_{0.03}Eu_{0.02} Tm_{0.02})_{Σ6.95}Ca_{5.52}Y_{2.60}Na_{0.83}Sr_{0.37}U_{0.07}Th_{0.04}]_{Σ16.38} Si_{6.78}B_{3.54}P_{0.54}O_{36.39}F_{11.61}, идеальная формула NaFe²⁺ (*REE*₇Ca₅Y₃)(SiO₄)₄(Si₃B₂PO₁₈)(BO₃)F₁₁.

Заселенность большинства из 14 позиций в структурах лаптевита-(Се) и других минералов из группы виканита одинакова. Поэтому трудно сказать, какой из минералов группы имеет наибольшее сходство или различие с лаптевитом-(Се) (Uvarova *et al.*, 2013). Структурно лаптевит-(Се) наиболее близок к виканиту-(Се), благодаря присутствию в них борных треугольников, которые отсутствуют в других минералах группы, хотя при этом между виканитом-(Се) и лаптевитом-Се) наблюдаются наибольшие отличия в составе: в виканите-(Ce) полиэдр М5 заселен торием, тетраэдр Т3 — мышьяком, а анионная позиция, заселенная в лаптевите-(Се) фтором, вообще вакантна (Ballirano et al., 2002).

Образец с лаптевитом-(Се) хранится в Минералогическом музее имени А.Е. Ферсмана РАН (г. Москва), регистрационный номер 4195/1.

Благодарности

Авторы благодарят А.Р. Файзиева и Р.У. Сабирову за помощь в полевых работах на массиве Дараи-Пиёз, а также И.В. Пекова и Д.И. Белаковского за ценные советы и помощь в написании данной работы.

Литература

- Дусматов В.Д. К минералогии одного из массивов щелочных пород // Щелочные породы Киргизии и Казахстана. Фрунзе: Илым. **1968.** С. 134—135.
- Дусматов В.Д. Минералогия щелочного массива Дараи-Пиёз (Южный Тянь-Шань). Автореферат кандидатской диссертации. М. **1971**. 18 с.
- Дусматов В.Д., Ефимов А.Ф., Семенов Е.И. Первые находки стилвеллита в СССР // Докл. АН СССР. **1963**. Т. 153. № 4. С. 913 – 915.
- Москвин А.В. География и геология Восточного Каратегина. Таджикско-Памирская экспедиция 1935 года. М.-Л.: АН СССР. 1937. С. 682–739.
- Семенов Е.И., Дусматов В.Д., Самсонова Н.С. Иттрий-бериллиевые минералы группы датолита // Кристаллография. **1963**. Т. 7. № 4. С. 677 – 679.
- Ballirano P., Callegari A., Caucia F., Maras A., Mazzi F., Ungaretti L. The crystal structure of vicanite-(Ce), a borosilicate showing an unusual (Si₃B₃O₁₈)¹⁵⁻ polyanion // Amer. Mineral. 2002. Vol. 87. N. 8 – 9. P. 1139 – 1143.
- Belakowski D.I. Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans // Lapis. **1991**. Jg. 16. N. 12. P. 42-48 (на нем. яз.)
- Boggs R. Okanoganite, a new rare-earth borofluorosilicate from the Golden Horn batholith, Okanogan County, Washington // Amer. Mineral. 1980. Vol. 65. N. 11–12. P. 1138– 1142.
- Boiocchi M., Callegari A., Ottolini L., Maras A. The chemistry and crystal structure of okanoganite-(Y) and comparison with vicanite-(Ce) // Amer. Mineral. 2004. Vol. 89. N. 10. P. 1540-1545.
- Maras A., Parodi G.G., della Ventura G., Ohnenstetter D. Vicanite-(Ce): A new Ca-Th-REE borosilicate from the Vico volcanic district (Latium, Italy) // Eur. J. of Mineral. **1995**. N. 7. P. 439–446.
- Raade G., Grice J.D., Erambert M., Kristiansson P., Witzke T. Proshchenkioite-(Y) from Russia – a new mineral species in the vicanite group: descriptive data and crystal structure // Mineral. Mag. 2008. Vol. 72. P. 1071–1082.
- Raade G., Johnsen O., Erambert M., Petersen O.V. Hundholmenite-(Y) from Norway – a new mineral species in the vicanite group: descriptive data and crystal structure // Mineral. Mag. 2007. Vol. 71. P. 179–192.
- Uvarova Y.A., Sokolova E.V., Hawthorne F.C., Agakhanov A.A., Karpenko V.Y., Pautov L.A. The crystal structure of laptevite-(Ce), NaFe²⁺(*REE*₇Ca₅Y₃)(SiO₄)₄(Si₃B₂PO₁₈)(BO₃) F₁₁, a new mineral species from the Darai-Pioz alkaline massif, Northern Tajikistan // Zeitschrift für Kristallographie. **2013**. B. 228 (10). (в печати).