BRIEF COMMUNICATIONS

CRYSTAL STRUCTURE OF ZnWO₄ O. S. Filipenko, E. A. Pobedimskaya, and N. V. Belov

M. V. Lomonosov Moscow State University Translated from Kristallografiya, Vol. 13, No. 1, pp. 163-165, January-February, 1968 Original article submitted August 8, 1967

I. S. Potkin (Institute of Synthesis of Mineral Raw Materials) has produced semitransparent darkred prismatic crystals of $ZnWO_4$ by hydrothermal synthesis. Euhedral specimens were measured with a GD-1 optical goniometer; Table 1 gives the results from measurements on 20 crystals, which show that the external form is pseudoorthorhombic. The true symmetry was established only by x-ray examination.

The crystal (Fig. 1) consists of a combination of the $\{100\}$ and $\{010\}$ pinakoids with the $\{120\}$, $\{110\}, \{210\}, \{310\}, \{102\}, \{011\}, \{111\}, \{111\},$ $\{121\}, \{121\}$ (pseudo)-orthorhombic prisms.

Fig. 1. Isometric projection of ZnWO₄ crystal.

TABLE 1. Goniometer Results

Fig. 2. Statistical demonstration that ZnWO₄ is centrosynometric.

 $ZnWO_4$ powder was used on Cu radiation with a Ni filter (URS-50I). Table 2 gives the interplanar distances and the indices assigned to some of the reflections by reference to the isostructural MgWO₄ [1].

The full study was based on crystals of crosssection 0.2×0.3 mm elongated on c. The monoclinic cell of ZnWO₄ was determined with a DRON-1 diffractometer and has parameters $a = 4.72 \pm 0.01$, $b = 5.70 \pm 0.005$, $c = 4.95 \pm 0.005$ Å, and $\beta = 90^{\circ}05' \pm 2'$, which agree with previous data [2]. The specific gravity of 7.8 means that the cell contains two ZnWO₄ molecules. The hk0, hk1, 0kl, h0l reflections were recorded with KFOR and Weissenberg cameras on Mo radiation (max sin $\vartheta/\lambda = 1.27$ Å⁻¹). The intensities were estimated visually on a $\sqrt[4]{2}$ scale.

The diffraction group 2/mP - /c corresponds to the space groups Pc and P2/c. Tests for the piezoelectric effect (at the Department of Crystal Physics, Moscow University) gave a negative result; goniometry and a statistical test (Fig. 2) by

Symbol	ρc	φ _C	ρin	φin	Symbol	ρc	φ _c	₽ in	φ _{in}
120 110 210 310 100 010	90° 90° 90° 90° 50° 90°	31°06' 50 22' 67°30' 74°33' 90° 0	90° 90° 90° 90° 90°	31°04' 50°25' 67°29' 74°16' 90° 0	011 102 121 121 111 111	41°04' 27°44' 63°50' 116°10' 53°50' 126°10'	0 90° 31°06′ 31°06′ 50°22′ 50°22′	41°05′ 27°50′ 63°50′ 116°10′ 53°43′ 126°17′	0°03′ 89°58′ 31°08′ 31°06′ 50°20′ 50°20′

TABLE 2

		<u>. </u>						·		
I. I.	hkl	d, À	I I,	h L I	d, À	I/Iı	54.1	d, A	$I^{\dagger}I_{1}$	hkl
$\begin{array}{c} 2\\ 22\\ 26\\ 34\\ 100\\ 98\\ 77\\ 40\\ 11\\ 16\\ 25\\ 4\\ 5\\ 6\\ 10\\ \end{array}$	010 100 011 110 111 111 111 002 020 002 021 120 200 102 112 112 211	1,8234 1,7693 1,7680 1,6980 1,6980 1,6639 1,5621 1,5624 1,4963 1,4963 1,4333 1,4333 1,3396 1,3231 1,3184	$ \begin{array}{r} 13 \\ 46 \\ 30 \\ 28 \\ 6 \\ 6 \\ 1 \\ 2 \\ 15 \\ 14 \\ 10 \\ 9 \\ 42 \\ 39 \\ 15 \\ 14 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ 15 \\ 14 \\ 15 \\ $	221,202 013 300 113 113	1,3037 1,2920 1,2663 1,2099 1,2051 1,20251 1,20251 1,1943 1,1853 1,1748 1,1748 1,1314 1,1110 1,1048 1,0854 1,0854	$2 \\ 1 \\ 3 \\ 10 \\ 5 \\ 4 \\ 18 \\ 20 \\ 10 \\ 3 \\ 2 \\ 17 \\ 5 \\ 15 \\ 14$		$\begin{array}{c} 1.0606\\ 1.0584\\ 1.0516\\ 1.0293\\ 1.0298\\ 1.0100\\ 0.9966\\ 0.9891\\ 0.9827\\ 0.9783\\ 0.9537\\ 0.9519\\ 0.9519\\ 0.95519\\ 0.95512\\ 0.95512\\ 0.95512\\ 0.95512\\ 0.9493$ \\ 0.9493	4 3 5 5 3 3 5 6 5 5 5 4 4 6	
1 10	022	1,3169	13	ł	1.0795	10	[0.9351	18	
	$\begin{array}{c} I, I_1 \\ 2\\ 22\\ 26\\ 34\\ 38\\ 100\\ 98\\ 77\\ 40\\ 11\\ 16\\ 25\\ 4\\ 4\\ 5\\ 6\\ 10\\ 10 \end{array}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 3. Atomic Coordinates in Zn Tungstate

Atom	x/a	y/b	z/c	Atom	x/a	y′b	z, c
W Zn	0.000 0.500	0.179 0.674	0.250 0.250	$\begin{array}{c} O_1 \\ O_2 \end{array}$	0.220 0.260	0.110	0.950 0.390

TABLE 4. Interatomic Distances in ZnWO₄

Zn polyhedron	W polyhedron				
Distance, Λ Zn=0 2.14 (2) $\Omega = 0$ 2.88 (1) 2.10 (2) 3.16 (2) 2.06 (2) 2.84 (2) $\Omega = 0$ 2.82 (2) 2.86 (1) $\Omega = 0$ 2.82 (2) 2.86 (1)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				

the method of [3] make group P2/c (C_{2h}^4) more probable.

Projections were used. The Patterson projections (simple and weighted) confirmed that the structure is of wolframite type [2, 4], with Zn and W on two-fold axes. The structure was refined via a series of electron-density projections. The O atoms were located from difference series. The

Fig. 3. Zigzag of Zn octahedra in ZnWO₄.

xy and xz projections were used to refine the coordinates by least squares ($R_{hk0} = 9.4\%$, $R_{h0l} = 10.8\%$).

Table 3 gives the mean coordinates, while Table 4 gives the interatomic distances calculated from these.

Figure 3 shows the characteristic zigzag of Zn octahedra in projection along the b axis.

The Zn octahedra in $ZnWO_4$ are more nearly isometric than the analogous Ni and Cd ones in NiWO₄ [5] and CdWO₄ [6]. The W octahedra (as in other representatives of the wolframite type) have four short distances and two longer ones.

LITERATURE CITED

- Standard X-Ray Diffraction Powder Patterns, NBS. C-539, 1, 84 (1953).
- E. K. Broch, Skr. Norske wid-akad. Oslo, <u>1</u>, 8 (1929).

- 3. E.R. Howells, D. C. Phillips, and D. Rogers, Acta crystallogr., <u>3</u>, 210 (1950).
- 4. E.K. Broch, Z. phys. Chem., B1, 409 (1929).
- 5. R.O. Keeling, Acta crystallogr., <u>10</u>, 209 (1957).
- A. V. Chichagov, V. V. Ilyukhin, and N. V. Belov, Dokl. Akad. Nauk SSSR, <u>166</u>, 1, 87 (1966) [Sov. Phys. - Dokl., <u>11</u>, 11 (1966)].