THE CRYSTAL STRUCTURE OF ZIRCOPHYLLITE, K₂NaFe²⁺₇Zr₂(Si₄O₁₂)₂O₂(OH)₄F, AN ASTROPHYLLITE-SUPERGROUP MINERAL FROM MONT SAINT-HILAIRE, QUÉBEC, CANADA

ELENA SOKOLOVA[§] AND FRANK C. HAWTHORNE

Department of Geological Sciences, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba R3T 2N2 Canada

Abstract

Here we report the crystal structure of zircophyllite, ideally $K_2NaFe^{2+}_7Zr_2(Si_4O_{12})_2O_2(OH)_4F$, from Mont Saint-Hilaire, Québec, Canada. This is the first determination of the crystal structure of zircophyllite, which was originally described by Kapustin (1972). Zircophyllite is a mineral of the astrophyllite group of the astrophyllite supergroup. Chemical analysis by electron microprobe gave SiO₂ 31.89, Al₂O₃ 1.54, Na₂O 1.91, K₂O 6.13, Rb₂O 0.19, Cs₂O 0.10, CaO 0.62, SrO 0.10, MgO 0.22, ZnO 0.48, FeO 17.60, MnO 17.19, TiO₂ 4.48, ZrO₂ 8.65, Nb₂O₅ 2.07, F 1.36, (H₂O)_{calc}. 2.53, sum 96.48 wt.%; H₂O was calculated from crystal-structure analysis. The empirical formula based on 31 (O + F) *pfu* is (K_{1.85}Rb_{0.03}Cs_{0.01}Na_{0.05})_{E1.194} (Na_{0.83}Ca_{0.16}Sr_{0.01})_{E1}(Fe²⁺_{3.48}Mn_{3.44}Zn_{0.08}Mg_{0.08})_{E7.09}(Zr_{1.00}Ti_{0.80}Nb_{0.22})_{E2.02}[Si_{7.54}Al_{0.43})_{E7.97}O₂₄JO₂[O(H)_{3.98}F_{0.02}]_{E4}F, *Z* = 1, *D*_{calc}. = 3.365 g/cm³. Zircophyllite is triclinic, space group *P*I, a 5.447(2), b 11.966(5), c 11.789(4) Å, a 112.95(1), β 94.688(6), γ 103.161(7)°, *V* 676.4(7) Å³. The crystal structure has been refined from a twinned crystal to *R*₁ = 3.79% for 3657 unique (*F*₀ > 4\sigma*F*) reflections. In the crystal structure of zircophyllite, the four ^[4]*T* sites, with <T–O> = 1.626 Å, are occupied mainly by Si, with minor Al. The ^[6]*D* site is occupied by Zr_{1.00}Ti_{0.78}Nb_{0.20}, ideally Zr₂ *apfu*, with <D– ϕ > = 2.013 Å (ϕ = O, F)). The T₄O_{1.2} astrophyllite ribbons and D octahedra constitute the H (Heteropolyhedral) sheet. In the O (Octahedral) sheet, the four ^[6]*M*(1–4) sites, with <M– ϕ > = 2.173 Å (ϕ = O, OH), are occupied by (Fe²⁺_{3.48}Mn_{3.44}Zn_{0.04}Mg_{0.04}), ideally Fe²⁺₇ *apfu*. The central O sheet and two H sheets form the HOH block, and adjacent HOH blocks link *via* a common anion (X^P_D = F) of two D octahedra. In the I (Intermediate) block between adjacent HOH blocks, the two interstitial cation sites, ^[13]*A* a

Keywords: zircophyllite, astrophyllite group, astrophyllite supergroup, Mont Saint-Hilaire, Québec, Canada, electron microprobe analysis, crystal structure.

INTRODUCTION

Kapustin (1972, 1973) described zircophyllite from the Korgeredabin massif, Tuva, Russia. He called zircophyllite a *zirconium analogue of astrophyllite* and wrote its empirical formula as follows: $(K_{1.70}Na_{0.71}$ $Ca_{0.24}Mn_{0.35})_{\Sigma3}(Fe^{2+}_{3.57}Mn_{3.43})_{\Sigma7}(Zr_{1.58}Nb_{0.25}Ti_{0.17})_{\Sigma2}$ $(Si_{7.76}Ti_{0.24})_{\Sigma8}[O_{26.84}(OH)_{3.26}F_{0.90}]_{\Sigma31}(H_2O)_{0.9}$, where the composition of the O sheet is $C_7 = (Fe^{2+}_{3.57}$ $Mn_{3.43})_{\Sigma7}$, *i.e.*, $Fe^{2+} > Mn$ and Fe^{2+} is the dominant cation in the O sheet. Following the original definition of zircophyllite, Sokolova *et al.* (2017b) placed zircophyllite in the astrophyllite group of the astrophyllite supergroup. Kapustin (1972, 1973) commented on the twinning of zircophyllite crystals and hence no possibility to do any goniometry work. The crystal structure of zircophyllite has not been studied until now because of pervasive twinning.

Here we report the crystal structure and chemical analysis for zircophyllite from Mont Saint-Hilaire, Québec, Canada. The zircophyllite sample used for this work is a part of sample #183L from the mineral collection of Anatoly Kasatkin, Moscow, Russia.

ASTROPHYLLITE SUPERGROUP

According to the new classification scheme, the astrophyllite supergroup is now divided into three groups: the astrophyllite group, the kupletskite group, and the devitoite group (Sokolova *et al.* 2017b).

[§] Corresponding author e-mail address: elena_sokolova@umanitoba.ca

		<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	Space		
Mineral	Ideal formula	α (°)	β (°)	γ (°)	group	Ζ	Ref.
Astrophyllite grou	<i>Ip</i> HOH blocks connect <i>via</i> D–X ^P _D –D bridges,	Fe ²⁺ is dor	ninant at (C ₇			
Astrophyllite	K ₂ NaFe ²⁺ ₇ Ti ₂ (Si ₄ O ₁₂) ₂ O ₂ (OH) ₄ F	5.3866	11.8821	11.6794	PĪ	1	(1, 2)
		113.019	94.578	103.120			
Niobophyllite	K ₂ NaFe ²⁺ ₇ (Nb,Ti)(Si ₄ O ₁₂) ₂ O ₂ (OH) ₄ (O,F)	5.4022	11.8844	11.6717	ΡĪ	1	(3, 2)
		112.990	94.588	103.166			
Zircophyllite	K ₂ NaFe ²⁺ ₇ Zr ₂ (Si ₄ O ₁₂) ₂ O ₂ (OH) ₄ F	5.447	11.966	11.789	<i>P</i> 1	1	(4, 5)
		112.950	94.688	103.161			
Tarbagataite	(K□)CaFe ²⁺ 7Ti ₂ (Si ₄ O ₁₂) ₂ O ₂ (OH) ₅	5.3868	11.9141	11.7171	<i>P</i> 1	1	(6)
		112.978	94.641	103.189			
Nalivkinite	Li ₂ NaFe ²⁺ 7Ti ₂ (Si ₄ O ₁₂) ₂ O ₂ (OH) ₄ F(H ₂ O) ₂	5.374	11.948	11.676	<i>P</i> 1	1	(7, 8)
		113.360	94.538	103.01			
Bulgakite	Li ₂ (Ca,Na)Fe ²⁺ 7Ti ₂ (Si ₄ O ₁₂) ₂ O ₂ (OH) ₄ (O,F)	5.374	11.965	11.65	<i>P</i> 1	1	(8)
	(H ₂ O) ₂	113.457	94.533	103.08			
Kupletskite group HOH blocks connect via D- X_{D}^{P} -D bridges, Mn ²⁺ is dominant at C ₇							
Kupletskite-1A	$K_2NaMn_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$	5.3784	11.9085	11.7236	PĪ	1	(9, 10)
		112.964	94.697	103.112			(-) -/
Kupletskite-2M	K2NaMn7Ti2(Si4O12)2O2(OH)4F	5.4022	23.226	21.1782	C2/c	4	(10)
·			95.246				()
Niobokupletskite	K2NaMn7(Nb,Ti)(Si4O12)2O2(OH)4(O,F)	5.4303	11.924	11.747	PĪ	1	(11)
		112.927	94.750	103.175			()
Kupletskite-(Cs)	Cs2NaMn7Ti2(Si4O12)2O2(OH)4F	5.3850	11.9350	11.7793	PĪ	1	(12, 2)
		113.117	94.614	103.075			())
Dovitaite group HOH blocks do not connect via $D_{i} X^{P}$ D bridges							
Devitoite	Ba Ea ²⁺ Ea ³⁺ (Si O) (PO) (CO)O (OH)	53	11 6726	1/ 680	DĪ	1	(13)
Devitorie		01 227	06 757	102 222	/ 1	'	(10)
Sveinbergeite	$(H \cap) [C_{2}(H \cap)](E_{2}^{2+} E_{3}^{3+})Ti (Si \cap) = 0$	5 320	11 803	11 822	DĪ	1	(14)
Sveinbergeite	$(120)_{2}[Oa(120)](100_{6}100_{10})(120)_{2}[Oa(120)](100_{6}100_{10})(120)_{2}[Oa(120)](100_{10})(100_{$	101 1/0	08 224	102 //2	/ 1	'	(14)
Lobanovite	$K_{-}N_{2}(OH) = \frac{1}{2} M_{0} N_{2} N_{1} N_{2} N_{$	5 3327	22 1525	102.442	C^{2}/m	2	(15 16)
LODAHOVILE	12110(10 - 410192100) 112(014012)202(011)4	5.5527	20.1000	10.3775	02/111	2	(15, 10)
			59.015				

TABLE 1. IDEAL FORMULAE* AND UNIT-CELL PARAMETERS FOR THE ASTROPHYLLITE-SUPERGROUP MINERALS

* The ideal formula is of the form $A_{2p}B_rC_7D_2(T_4O_{12})_2IX^O_{D2}X^O_{A4}X^P_{Dn}W_{A2}$ (see text);

References (description of a new mineral, the latest work on the structure): (1) Weibye (1848); (2) Cámara *et al.* (2010); (3) Nickel *et al.* (1964); (4) Kapustin (1972, 1973); (5) Sokolova *et al.* (this work); (6) Stepanov *et al.* (2012); (7) Agakhanov *et al.* (2008); (8) Agakhanov *et al.* (2016); (9) Semenov (1956); (10) Piilonen *et al.* (2001); (11) Piilonen *et al.* (2000); (12) Yefimov *et al.* (1971); (13) Kampf *et al.* (2010); (14) Khomyakov *et al.* (2011); (15) Sokolova *et al.* (2017a); (16) Sokolova & Cámara (2008).

The HOH block is the main structural unit in all astrophyllite-supergroup structures; it consists of three H–O–H sheets where the T_4O_{12} astrophyllite ribbons occur in the H sheets. In each structure, HOH blocks alternate with I (Intermediate) blocks along [001]. The 12 minerals of the astrophyllite supergroup are divided into three groups based on: (1) the type of self-linkage of HOH blocks, *i.e.*, (a) HOH blocks link directly *via* D– X^P_D –D bridges, or (b) HOH blocks do not link directly; and (2) the dominant cation of the O sheet [the C group: $C_7 apfu$ (atoms per formula unit)]. In the astrophyllite group, HOH blocks connect *via* D– X^P_D –D bridges, Fe²⁺

is dominant at C₇; in the kupletskite group, HOH blocks connect *via* D– X^{P}_{D} –D bridges, Mn²⁺ is dominant at C₇; in the devitoite group, HOH blocks do not connect *via* D– X^{P}_{D} –D bridges. The 12 minerals of the astrophyllite supergroup are listed in Table 1.

The general formula for the astrophyllite-supergroup minerals is of the form $A_{2p}B_rC_7D_2(T_4O_{12})_2$ $IX^O{}_{D2}X^O{}_{A4}X^P{}_{Dn}W_{A2}$, where C [cations at the M(1-4)sites in the O sheet] = Fe²⁺, Mn, Na, Mg, Zn, Fe³⁺, Ca, Zr, Li; D (cations in the H sheets) = ^[6,5]Ti, Nb, Zr, Sn⁴⁺, ^[5]Fe³⁺, Mg, Al; T = Si, minor Al; $A_{2p}B_rIW_{A2}$ (I block) where p = 1, 2; r = 1, 2; A = K, Cs, Ba, H₂O, Li,

	V	vt.%		apfu	1
Constituent	This work ¹	Kapustin (1972) ²		This work ¹	Kapustin (1972) ²
Nb ₂ O ₅	2.07	2.30	Si	7.54	7.76
ZrO ₂	8.65	13.61	AI	0.43	0
TiO ₂	4.48	2.30	Ti	0	0.24
SiO ₂	31.89	32.64	ΣΤ	7.97	8.00
Al_2O_3	1.54	n.d.			
SrO	0.10	n.d.	Fe ²⁺	3.48	3.57
ZnO	0.48	0.23	Mn	3.44	3.43
FeO	17.60	18.06	Zn	0.08	0
MnO	17.19	18.83	Mg	0.08	0
CaO	0.62	0.94	ΣΜ	7.09	7.00
MgO	0.22	n.d.			
Rb ₂ O	0.19	n.d.	Zr	1.00	1.58
Cs ₂ O	0.10	0.93	Ti	0.80	0.17
K₂O	6.13	5.61	Nb	0.22	0.25
Na ₂ O	1.91	1.55	ΣD	2.02	2.00
H ₂ O	2.53*	3.20			
F	1.36	1.20	Na	0.83	0.71
F=O	-0.57	-0.49	Ca	0.16	0.24
Total	96.48	99.75	Sr	0.01	0
			Mn	0	0.35
			ΣB	1.00	1.30
			к	1.85	1.70
			Rb	0.03	0
			Cs	0.01	0
			Na	0.05	0
			ΣΑ	1.94	1.70
			$\Sigma A{+}B$	2.94	3.00
			F	1.02	0.90
			OH	3.98	3.26
			H ₂ O	0	0.90

TABLE 2. CHEMICAL COMPOSITION AND UNIT FORMULA FOR ZIRCOPHYLLITE

¹ Locality: Mont Saint-Hilaire, Québec, Canada; formula unit calculated on 31 (O + F) *pfu*;

² Locality: Korgeredabin massif, Tuva, Russia; formula unit taken from Kapustin (1972);

n.d. = not detected;

* Calculated from crystal-structure analysis.

Rb, Pb²⁺, Na, \Box ; B = Na, Ca, Ba, H₂O, \Box ; I represents the composition of the central part of the I block, excluding peripheral layers of the form A_{2p}B_rW_{A2}, *e.g.*, (PO₄)₂(CO₃) (devitoite); anions: X^O = anions of the O sheet not bonded to Si; X^O_D = anions at the common vertices of 3M and D polyhedra; X^O_A = anions at the common vertices of 3M polyhedra; X^P_D = apical anions of D cations at the periphery of the HOH block; X^O_D = O; X^O_A = OH, F; X^P_D = F, O, OH, H₂O, \Box , where *n* = 0, 1, 2 for (X^P_D)_{*n*}; W_A = H₂O, \Box (Sokolova *et al.* 2016b).

SAMPLE DESCRIPTION

We studied several grains from the zircophyllite sample which is a part of sample #183Ц (Ц – a cyrillic letter) from the mineral collection of Antoly Kasatkin, Moscow, Russia. This sample comes from the Poudrette Quarry, Mont Saint-Hilaire, Québec, Canada. We were told that the sample probably contains four minerals: zircophyllite, its Mn-analogue, kupletskite, and astrophyllite. We used SEM to determine the chemical composition of several grains; grain #9 gave the highest content of Fe²⁺ > Mn. A part of grain #9 was cut out and used as a crystal for the X-ray data collection and subsequent structure refinement; another part was analyzed by electron microprobe to accurately determine its chemical composition.

CHEMICAL COMPOSITION

Crystal #9 was analyzed with a Cameca SX-100 electron microprobe operating in wavelength-dispersive mode with an accelerating voltage of 15 kV, a specimen current of 20 nA, and a beam diameter of 10 µm. The following standards were used: Si, Ca: diopside; Na: albite; Al: andalusite; Nb: Ba₂NaNb₅ O₁₅; Zr: zircon; Ti: titanite; Fe: fayalite; Mn: spessartine; Mg: forsterite; Zn: gahnite; Rb: RbAl Si₂O₆; Sr: SrTiO₃; Cs: pollucite; K: orthoclase; F: fluoro-riebeckite. The elements Pb, Rb, Sn, and Cl were sought but not detected. The data were reduced and corrected by the PAP method of Pouchou & Pichoir (1985). The H₂O was calculated from the results of the crystal-structure analysis on the basis of F + OH = 5 apfu. Table 2 gives the chemical composition of zircophyllite from Canada compared with the chemical analysis of the holotype material from Russia (Kapustin 1972, 1973). The empirical formula was calculated on the basis of 31 (O + F):

$$\begin{split} (K_{1.85}Rb_{0.03}Cs_{0.01}Na_{0.05})_{\Sigma 1.94}(Na_{0.83}Ca_{0.16}Sr_{0.01})_{\Sigma 1} \\ & \left(Fe^{2+}{}_{3.48}Mn_{3.44}Zn_{0.08}Mg_{0.08}\right)_{\Sigma 7.09} \\ & \left(Zr_{1.00}Ti_{0.80}Nb_{0.22}\right)_{\Sigma 2.02} \big[(Si_{7.54}Al_{0.43})_{\Sigma 7.97}O_{24} \big]O_2 \\ & \left[(OH)_{3.98}F_{0.02} \right]_{\Sigma 4}F, Z = 1, D_{calc.} = 3.365 \ g/cm^3. \end{split}$$

DATA COLLECTION AND STRUCTURE REFINEMENT

Single-crystal X-ray data for zircophyllite were collected using a Bruker APEX II ULTRA three-circle diffractometer equipped with a rotating-anode generator (Mo $K\alpha$), multilayer optics, and an APEX II 4K CCD detector. The intensities of 25294 reflections were measured from a twinned crystal of zircophyllite using 10 s per 0.3° frame. Unit-cell parameters were determined by least-squares refinement of reflections

TABLE 3. MISCELLANEOUS REFINEMENT DATA	
FOR ZIRCOPHYLLITE	

a (Å)	5.447(2)
b	11.966(5)
С	11.789(4)
α (°)	112.95(1)
β	94.688(6)
γ	103.161(7)
V (Å ³)	676.4(7)
Space group	PĪ
Ζ	1
Reflections ($l > 10\sigma l$)	7489
Absorption coefficient (mm ⁻¹)	5.00
<i>F</i> (000)	660.7
$D_{\text{calc.}}$ (g/cm ³)	3.365
Second component (%)*	15.8(6)
Crystal size (mm)	0.10 imes 0.10 imes 0.01
Radiation/monochromator	Mo <i>K</i> α/graphite
2θ-range for data collection (°)	60.27
h	$-7 \le h \le 7$
k	–16 ≤ <i>k</i> ≤15
1	$0 \le l \le 16$
<i>R</i> (int) (%)	1.66
Reflections collected	25294
Independent reflections	4005
$F_{0} > 4\sigma F$	3657
Refinement method	Full-matrix least squares on F^2 , fixed weights
Final B(obs) (%)	
$F > 4\sigma F$	3 79
R.	4.26
wBa	10.72
Highest neak deenest hole	1 47 -1 23
(e Å ⁻³)	1.77, 1.20
Goodness of fit on F^2	1.080

* Structure refinement using HKLF5 dataset containing reflections that belong to the first component and overlap with reflections from the second component.

with $I > 10\sigma I$ and are given in Table 3, together with miscellaneous information on data collection and structure refinement. An absorption correction was done using the TWINABS program (Sheldrick 2008). CELL_NOW (Sheldrick 2004) was used to obtain an HKLF5 file. The crystal structure of zircophyllite was refined using the atom coordinates of bulgakite (Agakhanov *et al.* 2016) as a starting model, with the Bruker SHELXTL Version 5.1 system of programs (Sheldrick 2008). The refinement converged to $R_1 =$ 3.79% based on 3657 unique reflections with ($F_o >$ $4\sigma F$), the twin ratio being 0.842(6):0.158(6). Scattering curves for neutral atoms were taken from the *International Tables for Crystallography* (Wilson 1992). Site-scattering values were refined for the M(1-4) sites with the scattering curve of Fe, D site (scattering curve of Zr), A site (scattering curve of K), B site (scattering curve of Na), and X^P_D site (scattering curve of F). For the final refinement, the D(donor)– H(1,2) distances were softly constrained to 0.98 Å where D = O atoms of OH groups at the $X^O_A(1,2)$ sites in the H sheet. Here and further on in the paper, we label cations and anions in accord with Sokolova *et al.* (2017b).

Final atom coordinates and displacement parameters are listed in Table 4, selected interatomic distances and framework angles are given in Table 5, refined site-scattering and assigned site-populations for selected cation and anion sites are listed in Table 6, bond-valence values for selected anions are presented in Table 7, and details of hydrogen bonding are given in Table 8. A list of observed and calculated structure factors and a Crystallography Information File (CIF) may be obtained from The Depository of Unpublished Data on the MAC website [document Zircophyllite CM54-5_10.3749/canmin.1600034].

STRUCTURE DESCRIPTION

Zircophyllite is isostructural with astrophyllite (Table 1). In the crystal structure of zircophyllite, the four *T* sites are occupied by Si and minor Al (Table 2). The T atoms are tetrahedrally coordinated by O atoms with $\langle T-O \rangle = 1.626$ Å (Table 5). There is one Zrdominant *D* site: it is occupied by $Zr_{1.00}Ti_{0.78}Nb_{0.20}$, ideally Zr_2 *apfu* (Table 6). The D atom is coordinated by five O atoms and an X^P_D anion ($X^P_D = F$), with $\langle D-\phi \rangle 2.013$ Å ($\phi = O$, F). The $\langle D-\phi \rangle$ distance of 2.013 Å is in accord with the larger ionic radii of ^[6]Zr (0.72 Å, Shannon 1976) compared with (1) ^[6]Ti (0.605 Å): $\langle D-\phi \rangle 1.965$ Å in bulgakite where D = Ti (Agakhanov *et al.* 2016) and (2) ^[6]Nb (0.64 Å): $\langle D-\phi \rangle$ 1.982 Å in niobokupletskite where D = (Nb,Ti), Nb \rangle Ti (Piilonen *et al.* 2000).

There are four *M* sites octahedrally coordinated by O atoms and OH groups at the $X^{O}_{A}(1,2)$ sites, Tables 5–8, with $< M-\phi > = 2.173$ Å ($\phi = O$, OH). These four *M* sites give (Fe²⁺_{3.48}Mn_{3.44}Zn_{0.04}Mg_{0.04}), ideally Fe²⁺₇ *apfu*. As in most astrophyllite-supergroup structures, the sizes of M octahedra follow the pattern $< M(1)-\phi > < M(2)-\phi > < M(3)-\phi > < M(4)-\phi >$ due to the different linkages of M octahedra and the polyhedra of the H sheets (Sokolova 2012). The T tetrahedra share vertices to form the T₄O₁₂ (ideally Si₄O₁₂) astrophyllite ribbon along [100]. Astrophyllite ribbons and D octahedra share common vertices to

Atom	X	У	Ζ	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	${m U}_{ m eq}$
M(1)	0.85048(9)	0.20620(5)	0.48125(5)	0.0086(3)	0.0087(3)	0.0160(3)	0.0063(2)	0.00423(18)	0.0032(2)	0.01044(18)
M(2)	0.28029(10)	0.06836(5)	0.48968(5)	0.0094(3)	0.0097(3)	0.0165(3)	0.0075(2)	0.0052(2)	0.0042(2)	0.01076(19)
M(3)	0.42296(10)	0.35246(5)	0.48586(6)	0.0099(3)	0.0105(3)	0.0178(3)	0.0081(2)	0.0052(2)	0.0044(2)	0.01160(19)
M(4)	0	1/2	1/2	0.0089(4)	0.0084(4)	0.0156(4)	0.0065(3)	0.0026(3)	0.0026(3)	0.0105(2)
D	0.07892(7)	0.08691(4)	0.19808(3)	0.00763(18)	0.0098(2)	0.01351(19)	0.00562(16)	0.00288(12)	0.00308(15)	0.00993(12)
T(1)	0.67949(19)	0.27442(9)	0.23196(9)	0.0105(4)	0.0077(4)	0.0114(4)	0.0049(3)	0.0020(3)	0.0015(3)	0.0098(2)
T(2)	0.8128(2)	0.54750(10)	0.25398(10)	0.0147(5)	0.0085(4)	0.0143(5)	0.0066(4)	0.0037(4)	0.0033(4)	0.0119(2)
T(3)	0.37623(19)	0.67382(10)	0.25606(9)	0.0130(4)	0.0080(4)	0.0140(4)	0.0069(4)	0.0028(3)	0.0028(4)	0.0109(2)
T(4)	0.50577(19)	0.92973(9)	0.23637(9)	0.0120(4)	0.0073(4)	0.0114(4)	0.0055(3)	0.0032(3)	0.0029(3)	0.0096(2)
A	0.1384(4)	0.27352(15)	0.99546(16)	0.0853(13)	0.0463(9)	0.0360(7)	0.0162(7)	0.0063(7)	0.0112(9)	0.0579(6)
В	1/2	0	0	0.0134(7)	0.0066(6)	0.0039(6)	0.0017(5)	0.0010(4)	0.0023(5)	0.0083(4)
O(1)	0.7261(5)	0.3182(3)	0.3835(3)	0.0116(12)	0.0115(12)	0.0113(11)	0.0055(10)	0.0029(9)	0.0025(10)	0.0113(5)
O(2)	0.1279(5)	0.3916(3)	0.5935(2)	0.0124(12)	0.0107(12)	0.0125(12)	0.0058(10)	0.0030(9)	0.0031(10)	0.0116(5)
O(3)	0.5617(5)	0.2576(3)	0.5891(2)	0.0126(11)	0.0101(12)	0.0147(11)	0.0056(10)	0.0040(9)	0.0037(10)	0.0122(5)
O(4)	0.5720(5)	0.0138(3)	0.3881(2)	0.0118(11)	0.0093(12)	0.0118(11)	0.0041(10)	0.0032(9)	0.0028(10)	0.0111(5)
O(5)	0.0700(7)	0.5912(4)	0.2018(3)	0.0254(17)	0.036(2)	0.0195(15)	0.0082(14)	0.0060(13)	-0.0056(14)	0.0305(8)
O(6)	0.2541(8)	0.0424(4)	0.8273(3)	0.0315(19)	0.049(2)	0.0205(16)	-0.0016(16)	0.0130(14)	-0.0197(18)	0.0439(12)
0(7)	0.4293(7)	0.4146(4)	0.7981(3)	0.038(2)	0.038(2)	0.0213(16)	0.0105(15)	0.0021(14)	0.0249(17)	0.0307(8)
O(8)	0.1310(9)	0.8051(5)	0.8319(3)	0.073(3)	0.064(3)	0.0204(16)	0.0203(18)	0.0221(18)	0.062(3)	0.0433(12)
(6)0	0.2666(9)	0.9551(4)	0.1719(4)	0.060(3)	0.044(2)	0.0228(17)	-0.0019(16)	-0.0118(17)	0.043(2)	0.0434(12)
O(10)	0.2671(9)	0.6057(3)	0.8048(3)	0.068(3)	0.0120(14)	0.0173(14)	0.0078(12)	0.0049(15)	0.0057(16)	0.0333(9)
O(11)	0.5721(9)	0.2214(3)	0.8011(3)	0.070(3)	0.0097(14)	0.0187(15)	0.0070(12)	0.0041(16)	0.0041(15)	0.0341(9)
O(12)	0.3897(7)	0.1928(5)	0.1673(3)	0.0251(18)	0.063(3)	0.0221(17)	0.0209(18)	-0.0068(14)	-0.0235(18)	0.0427(11)
°°×	0.1478(5)	0.1635(3)	0.3774(2)	0.0119(11)	0.0154(13)	0.0171(11)	0.0070(11)	0.0042(9)	0.0050(11)	0.0145(5)
X ^O A(1)	0.2985(5)	0.4638(3)	0.4028(3)	0.0137(13)	0.0146(13)	0.0167(13)	0.0076(11)	0.0044(10)	0.0044(10)	0.0145(5)
X ^O A(2)	0.9886(5)	0.1160(3)	0.5919(3)	0.0144(12)	0.0125(12)	0.0148(12)	0.0057(10)	0.0041(10)	0.0047(10)	0.0137(5)
X_{D}^{P}	0	0	0	0.0208(15)	0.0191(16)	0.0152(13)	0.0060(14)	0.0030(11)	0.0063(14)	0.0187(6)
H(1)	0.243(10)	0.414(4)	0.3121(13)	0.01739*						
H(2)	1.036(10)	0.178(4)	0.6802(17)	0.01643*						

TABLE 4. ATOM COORDINATES AND DISPLACEMENT PARAMETERS ($\mathring{A}^2)$ FOR ZIRCOPHYLLITE

 $^* U_{\rm iso}$

TABLE 5. SELECTED INTERATOMIC DISTANCES (Å) AND ANGLES (°) FOR ZIRCOPHYLLITE

$\begin{array}{c} \hline M(1)-(X^O{_D})a \\ M(1)-O(3) \\ M(1)-X^O{_A}(2) \\ M(1)-O(2)a \\ M(1)-O(4) \\ M(1)-O(1) \\ < M(1)-\phi> \end{array}$	2.144(3) 2.151(3) 2.177(3) 2.194(3) 2.230(3) 2.253(3) 2.192	$\begin{array}{l} M(2){-}X^O{}_A(2)b\\ M(2){-}O(4)\\ M(2){-}X^O{}_A(2)c\\ M(2){-}O(3)\\ M(2){-}X^O{}_D\\ M(2){-}O(4)c\\ {<}M(2){-}\phi{>} \end{array}$	2.119(3) 2.135(3) 2.140(3) 2.215(3) 2.227(3) 2.229(4) 2.178	$\begin{array}{c} M(3) - X^{O}{}_{A}(1) \\ M(3) - O(1) \\ M(3) - O(2) \\ M(3) - O(3) \\ M(3) - X^{O}{}_{A}(1) d \\ M(3) - X^{O}{}_{D} \\ < M(3) - \phi > \end{array}$	2.125(3) 2.144(3) 2.150(3) 2.158(3) 2.182(3) 2.210(3) 2.162
$\begin{array}{l} M(4){-}X^O{}_A(1) \ {\times}2 \\ M(4){-}O(1)b \ {\times}2 \\ M(4){-}O(2) \ {\times}2 \\ {<}M(4){-}\phi{>} \end{array}$	2.093(3) 2.168(3) 2.187(3) 2.149	T(1)-O(12) T(1)-O(8)d T(1)-O(10)d T(1)-O(1) <t(1)-o></t(1)-o>	1.596(4) 1.598(4) 1.627(3) 1.633(3) 1.614	T(2)–O(10)d T(2)–O(2)d T(2)–O(5)a T(2)–O(7)d <t(2)–o></t(2)–o>	1.620(3) 1.627(3) 1.635(3) 1.637(3) 1.630
T(3)-O(11)d T(3)-O(3)d T(3)-O(7)d T(3)-O(5) <t(3)-o></t(3)-o>	1.623(3) 1.651(3) 1.656(4) 1.658(4) 1.647	T(4)-O(6)d T(4)-O(9) T(4)-O(11)d T(4)-O(4)e <t(4)-o></t(4)-o>	1.595(4) 1.602(4) 1.625(3) 1.633(3) 1.614	$\begin{array}{l} T(1)d{-}O(10){-}T(2)d\\ T(2)b{-}O(5){-}T(3)\\ T(2)d{-}O(7){-}T(3)d\\ T(3)d{-}O(11){-}T(4)d\\ <{}T{-}O{-}T{>} \end{array}$	143.3(2) 139.6(2) 139.7(2) 143.6(1) 141.4
$\begin{array}{l} D{-}X^{O}{}_{D} \\ D{-}O(9)g \\ D{-}O(6)f \\ D{-}O(8)h \\ D{-}O(12) \\ D{-}X^{P}{}_{D} \\ < D{-}\phi > \end{array}$	1.911(3) 2.009(4) 2.011(4) 2.016(4) 2.021(4) 2.0113(9) 2.013	$\begin{array}{l} A - O(8)k \\ A - O(9)h \\ A - O(12)l \\ A - O(6) \\ A - (X^{P}_{D})l \\ A - O(11) \\ A - O(11)b \\ A - O(11)b \\ A - O(10)k \\ A - O(5)h \\ A - O(7) \\ A - O(7)m \\ A - O(5)l \\ < A - \phi > \end{array}$	2.921(5) 2.928(5) 2.931(5) 3.210(2) 3.415(5) 3.465(5) 3.477(5) 3.487(5) 3.557(4) 3.637(4) 3.657(4) 3.754(4) 3.338	$\begin{array}{l} B - O(12) \times 2 \\ B - O(6)c \times 2 \\ B - O(9)g \times 2 \\ B - O(8)d \times 2 \\ B - X^{P}{}_{D} \qquad \times 2 \\ < B - \phi > \end{array}$	2.617(5) 2.620(5) 2.640(5) 2.648(5) 2.7235(9) 2.650

* $\varphi = 0$, OH, F. Operators for generating equivalent atoms: a: x+1, y, z; b: x-1, y, z; c: -x+1, -y, -z+1; d: -x+1, -y+1, -z+1; e: x, y+1, z; f: -x, -y, -z+1; g: x, y-1, z; h: -x, -y+1, -z+2; ; l: x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, z+1; m: -x+1, -y+1, -z+2; i : x, y, -x+1; m: -x+1, -y+1, -x+2; i : x, y, -x+1; m: -x+1, -y+1; -x+2; i : x, -x, -y+1; -x+1; -

TABLE 6.	REFINED	SITE-SCATTE	ERING VALUES	AND ASSIGNED	SITE-POPULAT	FIONS FOR	ZIRCOPHYLLI	ITE

Site*	Refined site-scattering (<i>epfu</i>)	Site population (<i>apfu</i>)	Calculated site-scattering (<i>epfu</i>)	<x-φ>_{obs.}** (Å)</x-φ>	Ideal composition (<i>apfu</i>)
Cations					
<i>M</i> (1)	49.4(2)			2.192	
<i>M</i> (2)	49.9(2)	3.48 Fe ²⁺ + 3.44 Mn +		2.178	
<i>M</i> (3)	50.5(2)	+ 0.04 Zn + 0.04 Mg		2.162	
<i>M</i> (4)	25.4(1)			2.149	
ΣM	175.2	$3.48 \; \text{Fe}^{2+} + 3.44 \; \text{Mn} + 0.04 \; \text{Zn} + 0.04 \; \text{Mg}$	178.16		Fe ²⁺ 7
D	66.9(2)	1.00 Zr + 0.78 Ti + 0.22 Nb	66.18	2.013	Zr ₂
^[13] A	37.2(2)	1.85 K + 0.03 Rb + 0.01 Cs + 0.05 Na + 0.06 □	37.36	3.338	K ₂
^[10] B	15.6(1)	0.83 Na + 0.16 Ca + 0.01 Sr	12.71	2.650	Na
Anions					
$^{[3]}X^{O}_{A}(1,2)$		3.98 OH + 0.02 F			(OH) ₄
X ^P D		1.00 F			F

* coordination number is given for non-[6]-coordinated sites;

** X = cation, $\phi = 0$, OH, F.

TABLE 7. HYDROGEN BONDING IN ZIRCOPHYLLITE

D–H…A	D–H	H…A	D…A	∠DHA
	(Å)	(Å)	(Å)	(°)
X ^O _A (1)-H(1)···O(8)a	0.98(1)	2.73(4)	3.472(6)	133(4)
X ^O _A (1)-H(1)···O(12)	0.98(1)	2.87(4)	3.523(6)	125(4)
X ^O _A (2)-H(2)···O(6)b	0.98(1)	3.13(5)	3.522(6)	106(3)
$X^{O}_{A}(2) - H(2) \cdots O(9)c$	0.98(1)	3.12(5)	3.515(6)	106(3)

form an H sheet. M(1–4) octahedra share common edges to form a trioctahedral O sheet. Two H and one O sheets form an HOH block identical to that in astrophyllite (Fig. 1). In the zircophyllite structure, HOH blocks connect *via* D– X^P_D –D bridges as in other astrophyllite-group minerals (Table 1). In the **I** (Intermediate) block between adjacent HOH blocks, the two interstitial cation sites, ^[13]A and ^[10]B, are ideally occupied by K₂ and Na *apfu*, <A– ϕ > = 3.338 Å and <B– ϕ > = 2.650 Å (ϕ = O, F) (Tables 5, 6).

In the crystal structure of zircophyllite, there are 31 anions per formula unit. The 12 O atoms which coordinate Si atoms sum to O_{24} *apfu*. The X^O_D site is occupied by an O atom (Table 8) which coordinates 3M and D polyhedra (Table 5) and the X^O_D site ideally gives O_2 *apfu*. The OH groups at the $X^O_A(1,2)$ sites are involved in weak hydrogen bonding (Table 7). The $X^O_A(1,2)$ sites ideally give (OH)₄ *pfu*. The X^P_D site is occupied by F, giving F *apfu*.

We write the ideal formula of zircophyllite in the form $A_2BC_7D_2(T_4O_{12})_2X^O{}_{D2}X^O{}_{A4}X^P{}_D$ as follows: $K_2NaFe^{2+}{}_7Zr_2(Si_4O_{12})_2O_2(OH)_4F$, Z = 1. Zircophyllite and astrophyllite are related by the substitution ${}^DZr^{4+}$ $\leftrightarrow {}^DTi^{4+}$.

SUMMARY

The crystal structure and chemical composition have been determined for zircophyllite, ideally K₂Na-Fe²⁺₇Zr₂(Si₄O₁₂)₂O₂(OH)₄F, from Mont Saint-Hilaire, Québec, Canada. This is the first determination of the crystal structure of zircophyllite.

Zircophyllite is a Zr-analogue of astrophyllite, $K_2NaFe^{2+}{}_7Ti_2(Si_4O_{12})_2O_2(OH)_4F$. Zircophyllite and astrophyllite are related by the substitution ${}^DZr^{4+} \leftrightarrow {}^DTi^{4+}$.

Zircophyllite is a mineral of the astrophyllite group of the astrophyllite supergroup (Sokolova *et al.* 2017b).

Mont Saint-Hilaire, Québec, Canada is the second occurrence of zircophyllite. Zircophyllite was originally described by Kapustin (1972) from the Korgeredabin massif, Tuva, Russia.

FIG. 1. The crystal structure of zircophyllite: (a) O and H sheets; (b) general view of the structure. The Fe²⁺-dominant and Zr-dominant octahedra are green and yellow, respectively; Si tetrahedra are orange; K and Na atoms at *A* and *B* sites are shown as large green and medium navy blue spheres (that are hidden behind the yellow spheres of F); F atoms $[X^P_D \text{ site}]$ and O atoms of OH groups $[X^O_A \text{ sites}]$ are shown as small yellow and red spheres, respectively; H atoms of OH groups are shown as small grey spheres, O–H bonds are shown as black lines; the unit cell is shown with thin black lines.

TABLE 8. SELECTED BOND-VALENCE VALUES* FOR ZIRCOPHYLLITE

Atom**	M(1–4)	D	А	В	Σ
Х ^о р	0.94	0.94			1.88
Х ^о _А (1)	1.11				1.11
X ^O _A (2)	1.07				1.07
X ^P D		$0.45^{\times 2 \rightarrow}$	$0.07^{\times 2 \rightarrow}$	$0.08^{\times 2 \rightarrow}$	1.20

* Bond-valence parameters (*vu*) are from Brown (1981) and Brown & Altermatt (1985) for Zr-F; ** $M = (Fe^{2+},Mn)$; $D = (Zr,Ti); A = K; B = Na; X^{O}_{D} = O; X^{O}_{A}(1,2) = OH; X^{P}_{D} = F.$

ACKNOWLEDGMENTS

We are grateful to Fernando Cámara and Associate Editor James Evans for their comments and suggestions that helped to improve the manuscript. We thank Anatoly Kasatkin for the loan of the sample of zircophyllite from Mont Saint-Hilaire, Québec, Canada (sample #183Ц from the mineral collection of Anatoly Kasatkin, Moscow, Russia). We thank Mark A. Cooper for collection of the single-crystal X-ray data for zircophyllite. This work was supported by a Canada Research Chair in Crystallography and Mineralogy and by a Discovery grant from the Natural Sciences and Engineering Research Council of Canada to FCH, and by Innovation Grants from the Canada Foundation for Innovation to FCH.

REFERENCES

- AGAKHANOV, A.A., PAUTOV, L.A., UVAROVA, Y.A., SOKOLOVA, E., HAWTHORNE, F.C., & KARPENKO, V.YU. (2008) Nalivkinite, Li₂NaFe²⁺₇Ti₂(Si₈O₂₄)O₂(OH)₄F, a new mineral of the astrophyllite group from the Darai-Pioz massif, Tadjikistan. New Data on Minerals 43, 5–12.
- AGAKHANOV, A.A., PAUTOV, L.A., SOKOLOVA, E., ABDU, Y.A., & KARPENKO, V.YU. (2016) Two astrophyllite-supergroup minerals, bulgakite and nalivkinite: bulgakite, a new mineral from the Darai-Pioz alkaline massif, Tajikistan and revision of the crystal structure and chemical formula of nalivkinite. *Canadian Mineralogist* 54, 33–48.
- BROWN, I.D. (1981) The bond valence method: an empirical approach to chemical structure and bonding. *In* Structure and Bonding in Crystals II (M. O'Keeffe & A. Navrotsky, eds.). Academic Press, New York City, New York, United States (1–30).
- BROWN, I.D. & ALTERMATT, D. (1985) Bond–valence parameters obtained from a systematic analysis of the inorganic crystal structure database. *Acta Crystallographica* **B41**, 244–247.
- CÁMARA, F., SOKOLOVA, E., ABDU, Y., & HAWTHORNE, F.C. (2010) The crystal structures of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite; revisions to the crystal chemistry of the astrophyllite-group minerals. *Canadian Mineralogist* **48**, 1–16.
- KAMPF, A.R., ROSSMAN, G.R., STEELE, I.M., PLUTH, J.J., DUNNING, G.E., & WALSTROM, R.E. (2010) Devitoite, a new heterophyllosilicate mineral with astrophyllite-like layers from eastern Fresno County, California. *Canadian Mineralogist* 48, 29–40.
- KAPUSTIN, YU.L. (1972) Zircophyllite the zirconium analogue of astrophyllite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva 101(4), 459–463 (in Russian).
- KAPUSTIN, YU.L. (1973) Zircophyllite, the zirconium analogue of astrophyllite. *International Geology Review* 15, 621– 625 (English translation of Kapustin, 1972).

- KHOMYAKOV, A.P., CÁMARA, F., SOKOLOVA, E., HAWTHORNE, F.C., & ABDU, Y. (2011) Sveinbergeite, Ca(Fe²⁺₆Fe³⁺) Ti₂(Si₄O₁₂)₂O₂(OH)₅(H₂O)₄, a new astrophyllite-group mineral species from the Larvik plutonic complex, Oslo region, Norway: description and crystal structure. *Mineralogical Magazine* **75**, 2687–2702.
- NICKEL, E.H., ROWLAND, J.F., & CHARETTE, D.J. (1964) Niobophyllite – The niobium analogue of astrophyllite; a new mineral from Seal Lake, Labrador. *Canadian Mineralogist* 8, 40–52.
- PIILONEN, P.C., LALONDE, A.E., MCDONALD, A.M., & GAULT, R.A. (2000) Niobokupletskite, a new astrophyllite-group mineral from Mont Saint-Hilaire, Quebec, Canada: description and crystal structure. *Canadian Mineralogist* 38, 627–639.
- PIILONEN, P.C., MCDONALD, A.M., & LALONDE, A.E. (2001) Kupletskite polytypes from the Lovozero massif, Kola peninsula, Russia: kupletskite-1A and kupletskite-Ma2b2c. *European Journal of Mineralogy* 13, 973– 984.
- POUCHOU, J.L. & PICHOIR, F. (1985) 'PAP' φ(ρZ) procedure for improved quantitative microanalysis. *In* Microbeam Analysis (J.T. Armstrong, ed.). San Francisco Press, San Francisco, California, United States (104–106).
- SEMENOV, E.I. (1956) Kupletskite, a new mineral of the astrophyllite group. *Doklady Akademii Nauk SSSR* 108, 933–936 (in Russian).
- SHANNON, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica* A32, 751–767.
- SHELDRICK, G.M. (2004) CELL_NOW. University of Göttingen, Göttingen, Germany.
- SHELDRICK, G.M. (2008) A short history of SHELX. Acta Crystallographica A64, 112–122.
- SOKOLOVA, E. (2012) Further developments in the structure topology of the astrophyllite-group minerals. *Mineralogical Magazine* 76, 863–882.
- SOKOLOVA, E. & CÁMARA, F. (2008) Re-investigation of the crystal structure of magnesium astrophyllite. *European Journal of Mineralogy* 20, 253–260.
- SOKOLOVA, E., CÁMARA, F., HAWTHORNE, F.C., SEMENOV, E.I., & CIRIOTTI, M.E. (2017a) Lobanovite, $K_2Na(Fe^{2+}_4Mg_2Na)Ti_2(Si_4O_{12})_2O_2(OH)_4$, a new mineral of the astrophyllite supergroup and its relation to magnesioastrophyllite. *Mineralogical Magazine* **81**, 175–181.
- SOKOLOVA, E., CÁMARA, F., HAWTHORNE, F.C., & CIRIOTTI, M.E. (2017b) The astrophyllite supergroup: nomenclature and classification. *Mineralogical Magazine* 81, 143–153.
- STEPANOV, A.V., BEKENOVA, G.K., LEVIN, V.L., SOKOLOVA, E.V., HAWTHORNE, F.C., & DOBROVOLSKAYA, E.A. (2012) Tarbagataite, $(K,\Box)_2(Ca,Na)(Fe^{2+},Mn)_7Ti_2(Si_4O_{12})_2O_2$

(OH)₄(OH,F), a new astrophyllite-group mineral species from the Verkhnee Espe deposit, Akjailyautas Mountains, Kazakhstan: description and crystal structure. *Canadian Mineralogist* **50**, 159–168.

- WEIBYE, P.C. (1848) Beiträge zur topographischen Mineralogie Norwegens. Archiv für Mineralogie, Geognosie Bergbau und Hüttenkunde 22, 465–544 (in German).
- WILSON, A.J.C., Ed. (1992) International Tables for Crystallography. Volume C: Mathematical, physical and chem-

ical tables. Kluwer Academic Publishers, Dordrecht, Netherlands.

- YEFIMOV, A.F., DUSMATOV, V.D., GANZEYEV, A.A., & KATAYEVA, Z.T. (1971) Cesium kupletskite, a new mineral. Doklady of the Academy of Sciences U.S.S.R., Earth Sciences 197, 140–143.
- Received April 14, 2016. Revised manuscript accepted July 19, 2016.