67. Yakubovich O. V., Urusov V. S. Electron density distribution and chemical bonds in lithiophosphatite, Li₃PO₄//Ext. Abstr. Sagamore XI: Charge, Spin and Momentum Densities. France, Brest, 1994. P. 236.

Поступила в редакцию 05.09.95

ВЕСТН. МОСК. УН-ТА. СЕР. 4, ГЕОЛОГИЯ. 1996. № 2

УДК 549.656.2

Л. А. Паутов, А. А. Агаханов, Е. В. Соколова, К. И. Игнатенко

ДУСМАТОВИТ — НОВЫЙ МИНЕРАЛ ГРУППЫ МИЛАРИТА

Введение. При полевых работах на морене ледника Дара-и-Пиоз обнаружен ранее неизвестный минерал, который получил название дусматовит (dusmatovite), в честь известного минералога и геолога Вячеслава Джураевича Дусматова, который одним из первых начал изучать этот интересный, но трудно доступный щелочной массив и открыл ряд новых минералов на Дара-и-Пиозе.

Новый минерал принадлежит к группе миларита, по составу и структуре он наиболее близок к дарапиозиту [3] и неназванному силикату [1], который тоже происходит из морены Дара-и-Пиоз. Типовой образец дусматовита хранится в музее Ильменского государственного заповедника РАН (г. Миас, Россия) под № 4946.

Место находки и ассоциация. Новый минерал найден в глыбе пегматита на морене ледника Дара-и-Пиоз, которая расположена в верховьях одноименной реки (Гармский район, Таджикистан), прорезающей Верхнедара-и-пиозский щелочной массив. Этот массив находится на сочленении Алайского, Гиссарского, Зеравшанского и Туркестанского хребтов и относится к позднепермскому-раннетриасовому алайскому интрузивному комплексу. Площадь массива 8 км², из них около половины занимают щелочные кварцевые сиениты. Внешняя часть массива сложена мелкозернистыми субщелочными биотитовыми гранитами 2-й

Рис. 1. Прозрачный шлиф дусматовита (1) с прожилками кварца (2), вростками эгирина (3), Мп-селиката (4); ×55

фазы внедрения туркестанского комплекса, а центральная часть массива сложена щелочными породами алайского комплекса. Глыба, в которой встречен дусматовит, сложена преимущественно кварцем и микроклином, в меньших количествах присутствуют эгирин, цезийкуплетскит, полилитионит, гиалотекит, бетафит, таджикит- (Y). Дусматовит образует выделения неправильной формы до 40×50 мм, сложенные либо агрегатами зерен, либо монокристальными зернами, с обильными пойкилитовыми вростками эгирина, таджикита- (Y), микроклина, недиагностированного марганцевого силиката и прожилками кварца (рис. 1), доставившими много сложностей при выделении монофракции нового минерала.

Физические свойства. Дусматовит обладает стеклянным блеском, полупрозрачный, в тонких зернах — прозрачный. Цвет дусматовита темно-синий, часто грязно-синий до фиолетово-бурого. Черта светлоголубая. Спайность не проявлена, но наблюдается отдельность в одном направлении. Твердость 4,5 по шкале Мооса. Микротвердость измеряли на приборе ПМТ-3, тарированном по NaCl при нагрузке 100 г. Среднее значение микротвердости VHN=423, разброс значений от 411 до 436. Минерал хрупкий. Плотность измеряли уравновешиванием зерен минерала при центрифугировании в растворе жидкости Клеричи, она оказалась равной 2,96 (2) г/см³, расчетная плотность 2,978 г/см³.

Инфракрасный спектр дусматовита приведен на рис. 2. Положение наиболее интенсивной полосы поглощения Si—O валентных колебаний в области 1030 см⁻¹ отвечает стехиометрии аниона O: Si=3:1. Узкая четкая полоса в области 795 см⁻¹ характерна для кольцевых силикатов [2]. Для сравнения на рис. 2 приведен ИК-спектр синтетического силиката близких состава и структуры. Спектры пропускания в видимой области изучали на установке, собранной на основе ПООС-1 с ФЭУ-79, а в ближней УФ- и ближней ИК-области — на установке, собранной на основе КФК-3.

Рис. 2. ИК-спектры: 1 — дусматовита (препарат — таблетка с КВг, прибор — UR20, аналитик С. В. Батуров); 2 — синтетического силиката КМп₂Zn₃Si₁₂O₃₀ [4]

В спектрах пропускания дусматовита (рис. 3) присутствуют сильные полосы поглощения в области 320—400 нм и широкая полоса в

Рис. 3. Оптические спектры поглощения дусматовита

ласти 320—400 нм и широкая полоса в области 580 нм, что не противоречит присутствию в дусматовите большого количества Мп⁺² и незначительного Мп⁺³. Однако природа синей окраски дусматовита осталась не выясненной, что требует проведения дополнительных исследований.

Оптические свойства. Дусматовит в шлифе прозрачный, с хорошо проявленным плеохроизмом от светло-синего по N_e до светло-фиолетового по N_o; одноосный, отрицательный; $n_o=1,590$ (2), $n_e=1,586$ (2), $n_o-n_e=0,004$. Угасание относительно трещин отдельности прямое, удлинение отрицательное. Индекс сходимости свойств (1— K_p/K_c)=0,016, что соответствует превосходной степени.

Химический состав минерала изучали на сканирующем электронном микроскопе с энергодисперсионной приставкой Edax 9900 и на рентгеновском микроанализаторе Camebax-microbeam в прозрачно-полированных шлифах. Результаты анализа приведены в табл. 1. Содержание Li₂O, K₂O и Na₂O определяли в лаборатории музея Ильменского заповедника методом пламенной фотометрии из двух параллельных навесок, тип пламени - пропан-воздух. Калий и натрий определяли на простом фильтровом пламенном фотометре, литий — на установке, собранной на монохроматора YM2 базе из забуференных по калию растворов.

Кроме того, В. О. Поляков изучал состав минерала на лазерном микроанализаторе. Анализ показал отсутствие элементов, не определенных рентгеновским микроанализом и пламенной фотометрией.

Дусматовит нерастворим в соляной кислоте (1:1) ни при комнагной температуре, ни при кипячении. Легко растворяется при нагревании в плавиковой кислоте. Результаты анализов пересчитаны по аналогии с другими минералами группы миларита [4] на формулу (расчет на 30 атомов кислорода):

 $K_{1,00} (K_{0,49} Na_{0,22} \square_{0,23})_{1,00} (Mn_{1,40}^{+2} Mn_{0,16}^{+3} Y^{0,16} \times X^{0,16})$

 $\times \operatorname{Zr}_{0,14}\operatorname{Fe}_{0,07}\operatorname{Yb}_{0,03}_{1,96}(\operatorname{Zn}_{2,16}\operatorname{Li}_{0,84})_{3,00}\operatorname{Si}_{12,15}\operatorname{O}_{30,0}.$

Упрощенная формула дусматовита:

K (K, Na, \Box) (Mn, Y, Zr)₂ (Zn, Li)₃ Si₁₂O₃₀.

Рентгеновские данные. Порошковая рентгенограмма получена на дифрактометре ДРОН-2 на медном излучении и приведена в табл. 2. Параметры ячейки по порошковой рентгенограмме: *a*=10,196 (5), *c*=

=14,284(8) Å. Для монокристального исследования дусматовита выбрали зерно минерала, не содержащее пойкилитовых вростков других фаз, тщательно проверенное на однородность в иммерсионной жидкости под микроскопом. Получены следующие параметры гексагональной ячейки: a ==10,218(4), c=14,292(3)Å; V = 1292,6 (6) Å³; пр. гр Р6/*тсс*, Z=2. Наблюдаемые различия в параметрах ячейки, полученные по порошковым данным и по результатам исследовамонокристалла, можно ния объяснить некоторыми вариациями состава минерала. Монокристальные исследования велись на автоматическом дифрактометре. Синтекс Р1 монохроматором графитовым на Мо К (α) излучении, 2Θ—Θ методом съемки. определен max SinΘ/λ=0,980 Å⁻¹. Получены интенсивности 284 независимых ненулевых отражений (*I*≥1,96σ*I*), параметры ячейки уточнялись по автоматически центрированным рефлексам в диапазоне 10,83<0<28,10°.

Расчеты проведены на специализированной вычислительной системе INEXTL. Окончательные *R*-факторы следующие: R_{anis}=0,036; R_{wanis}= =0,031; S=2,03. Дусматовит является цинк-литий-марганцевым силикатом каркасной структуры со сдвоенными кольцами группы миларита. Позиция Li=T2 на 75% занята Zn^{+2} : d(T2-O) = 1,966(5) Å; K занимает крупные пустоты C): (позиция d(K - O2) ==3,045(6)А; в позиции В

Таблица 1

Химический	состав	дусматовита	И	дарапиозита
------------	--------	-------------	---	-------------

Компоненты	Дусматовит	Дарапиозит [1]	
SiO ₂	64,40	63,65	
ZrO ₂	1,55	5,00	
Fe ₂ O ₃		1,85	
FeO	0,45		
MnO	8,78	8,25	
Мп ₂ О ₃ *	1,13	-	
CaO	-	0,57	
ZnO	15,51	7,85	
TR ₂ O ₃		0,96	
Y ₂ O ₃	1,51		
Yb ₂ O ₃	0,54	<u> </u>	
K²O	6,16	5,14	
Na ₂ O	0,61	2,96	
Li ₂ O**	1,10	1,74	
П. п. п.		0,58	
Σ	101,74	99,45	

Примечание. Условия анализа дусматовита: микрозонд Сатевах-тісговеат, U = 14 кВ, ток зонда 30 нА, анализы с участков 5×5 мкм, образцы сравнения: на Zr — циркон, ZrO₂; на Fe — ильменит, на Mn — MnTiO₃, на Zn — ZnS, на Y — YAl₃ (BO₃)₄, на Yb — Na₁₅Yb₃Si₁₂O₃₆, на Na — альбит, на K — ортоклаз, аналитик K. И. Игнатенко. * Соотношение Mn⁺²/Mn⁺³ расчетное (по данным изучения кристаллической структуры); ** определен пламенной фотометрией, аналитики Л. А. Паутов и А. А. Агаханов.

=3,045(6) Å; в позиции В ($Na_{0,56}K_{0,12}\Box_{1,20}$) расстояния В—O1= =2,567(7) Å и В—O3=3,024(4) Å. Межатомные расстояния в Si-тетраэдрах (1,582—1,631) Å и А-октаэдрах ($Mn^{+2}Mn^{+3}Zr^{+4}Y^{+3}Fe^{+2}$) (A—O3=2,124(5) Å) находятся в хорошем соответствии с литературными данными для минералов миларитовой группы.

Кристаллохимическая формула дусматовита для зерна, на котором изучена структура, имеет следующий вид:

$$\begin{array}{l} K_{1,00} \left(K_{0,56} Na_{0,24} \bigsqcup_{0,20} \right)_{1,00} \left(Mn_{1,38}^{+2} Mn_{0,16}^{+3} Y_{0,18} \times \right. \\ \left. \times Zr_{0,18} Fe_{0,10} \right)_{2,00} \left(Zn_{2,25} Li_{0,75} \right)_{3,00} Si_{12,00} O_{30,00}. \end{array}$$

5 ВМУ, № 2, геология

57

Более подробному освещению кристаллической структуры дусматовита будет посвящена отдельная публикация.

Т	а	б	л	И	Ц	a	2
~	~	-		**		ч	-

			-				
I	d _{H3M}	d _{выч}	hkl	I	d _{H3M}	d _{Bblq}	hkl
1	2	2	4	9	2,073	2,075	224
15	8-, 83	8,83	100	18	2,020	2,020	314
30	7,13	7,14	002	7	1,926	1,927	410
20	5,54	5,55	102	11	1,908	1,910	411
18	5,10	5,10	110	12	1,860	1,860	412
20	4,41	4,41	. 200	7	1,783	1,785	008, 413
- 45	4,15	- 4;15	112	• 3	1,766	1,766	500
50	3,75	3,76	202	16	1,740	1,740	226
12	3,30	3,31	104	3	1,700	1,699	330
100	3,25	3,25	211, 203	5	1,696	1,696	414
16	3,02	3,02-	212	6	1,577	1,578	511
39	2,924	`2,9 25	114	1	1,472	1,472	600
32	2,777	2,776	204	8	1,462	1,462	228
8	2,731	2,733	213	10	1,441	1,441	425, 602
52	2,548	2,549	220	10	1,413	1,414	520
. 16	2,402	2,403	222	2	1,369	1,372	426
5	2,177	2,178	· 313	1	1,332	1,332	319
10	2,109	2,109	402 .		1	I	

Рентгеновские порошковые данные дусматовита

Примечание. Условия съемки — ДРОН-2, графитовый монохроматор, скорость счетчика 0,5 град/мин, внутренний стандарт — кварц, аналитики Л. А. Паутов, А. А. Агаханов.

Отношение к близким минералам. Дусматовит наиболее близок к дарапиозиту, отличается от него прежде всего преобладанием количества цинка над марганцем, меньшим количеством лития и другими от-

·. . . '

58.

ношениями калия к натрию и неназванному силикату с Дара-и-Пиоза, встреченному Д. И. Белаковским в ассоциации с ридмерджнеритом, микроклином и эвдиалитом [1]. Некоторую неясность вызывают существенные различия между формулой этой фазы, приведенной в [1] по структурным данным, и формулой в опубликованном авторами [1] химическом анализе. При изучении нового минерала мы предприняли попытку прояснить указанное несоответствие формул неназванного силиката. К сожалению, нам среди ридмерджнеритовой ассоциации не удалось встретить фазы, точно соответствующей по составу фазе найденного Д. И. Белаковским минерала, но мы изучали большое число выделений фазы с составом, близким к неназванной фазе, но существенно отличающейся от дусматовита. По-видимому, в пегматитах Дара-и-Пиозского массива присутствует несколько марганцево-цинковых силикатов из группы миларита, изучение которых желательно продолжить. Характеристики дусматовита и близких минералов приведены в табл. З.

Таблица З

Характеристики минерала	теристики нерала Дусматовит Дарапнозит, [1]		Неназванная фаза, [2]	
Химическая формула	K (K, Na) Mn₂ × × (Zn, Li)₃Si₁₂O₃₀	KNa ₂ Zr [Li (Mn, Zn) ₂ × × Si ₁₂ O ₃₀]	K (K, Na) ₂ Zn ₃ Mn _{1,5} × \times Si ₁₂ O ₃₀ *	
Сингония, пр. гр.	Гексагональная, Р6/ <i>тс</i> с	Гексагональная, Р6/ <i>тсс</i>	Гексагональная, Р6сс	
a, Å	10,196	10,32	10,525	
c, Å	14,284	14,39	14,218	
Наиболее силь- ные линии по- рошкограммы	7,13(3) 4,15(5) 3,75(5) 3.25(10) 2,92(4) 2,78(3) 2,55(5) 2,40(2) 2,02(2)	$\begin{array}{c} 7,09(6) \\ 4,43(4) \\ . 4,13(5) \\ 3,75(4) \\ 3,26(10) \\ 2,93(7) \\ 2,76(5) \\ 2,56(6) \\ 2,02(3) \end{array}$		
Осность, опти- ческий знак	Одноосный (—)	Одноосный (—)		
ng	1,590	1,580	· ·	
np	1,586	1,575		
Плотность, г/см ³	2,96	2,92		

Сравнительная характеристика дусматовита с близкими минералами группы миларита

* Формула взята из названия и текста [2], она не соответствует приведенному анализу. Анализ рассчитан на формулу K_{2.00}Na_{1.20}Zn_{2.19}Mn_{1.72}Ca_{0.07}Fe_{0.02}Si_{12.00}O_{30.00}.

Авторы благодарны за помощь при проведении полевых работ сот. рудникам Института сейсмологии АН Туркмении Т. К. Беркелиеву. М. К. Беркелиеву, сотрудникам музея Ильменского заповедника В. Ю. Карпенко и П. В. Хворову, за получение инфракрасного спект. ра — сотруднику Института минералогии УрО РАН С. Н. Батурову.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, код проекта 94-05-17585.

СПИСОК ЛИТЕРАТУРЫ

1. Надежина Т. Н., Соколова Е. В., Белаковский Д. И.//Докл. АН СССР. 1990. Т. 313, № 4. С. 865—868. 2. Плюснина И. И. Инфракрасные спектры минералов. М.: Изд-во МГУ, 1977. 3. Семенов Е. И., Дусматов В. Д., Хомяков А. П. и др.//Зап. ВМО.

1975. Вып. 5. С. 583-585.

4. Hawthorne F. C., Kimata M., Černy P. et al./Amer. Mineral. 1991. Vol. 76. P. 1836-1856.

Поступила в редакцию 14.02.95

ВЕСТН. МОСК. УН-ТА. СЕР. 4, ГЕОЛОГИЯ. 1996. № 2

УДК 550.837.3

В. А. Шевнин, И. Н. Модин, Е. В. Перваго, Д. К. Большаков

ИЗУЧЕНИЕ ОСОБЕННОСТЕЙ ЭЛЕКТРИЧЕСКИХ ЗОНДИРОВАНИЙ НАД погребенной анизотропной средой

Введение. Подобная задача в теоретическом плане является более общей, чем задача о поле над анизотропным полупространством, и весьма важной в практическом отношении. Авторы в ходе полевых работ на Чукотке в районе г. Билибино, в Донецке, на территории Крымской учебной геофизической практики и в других местах сталкивались с подобными ситуациями. Для обеспечения научно-производственных и учебных полевых исследований возникла потребность в создании программного обеспечения для электрических наблюдений над анизолопным полупространством с наносами. В литературе известны решения этой задачи [1-3]. Зная об этих работах, мы все же предприняли свою попытку решения задачи, преследуя следующие цели: 1) необходимы алгоритмы для разных установок; 2) конечные расчетные формулы должны сохранить ясную структуру и четкий физический смысл; 3) сведение расчетных формул к виду интегралов Ханкеля может позволить применить для их расчета метод линейной фильтрации; 4) формулы должны быть удобны для решения обратной задачи.

Наиболее общей постановкой слоистой анизотропной задачи можно считать горизонтально-слоистую модель с произвольно ориентиро-ванной анизотропией в каждом слое [4]. Мы рассматриваем более частный случай: анизотропное основание с вертикальной ориентировкой анизотропии и изотропные наносы, как в работе [1].

Модель среды. Рассматривается двухслойная модель среды: верхний слой имеет сопротивление от и мощность Н, нижний слой — анизотропное полупространство: продольное сопротивление рt и поперечное ρ_n , коэффициент анизотропии $\lambda = (\rho_n/\rho_t)^{\gamma_h}$, среднее квадратичное сопротивление $\rho_m = (\rho_n \cdot \rho_t)^{\frac{1}{2}}$ и угол падения анизотропной толщи 90°. Ось Х направлена вкрест простирания анизотропной толщи, а ось У —