жления сформировались в реа нескольких минеральных ассонним относятся магнетитовая и представлена кварц-биотитовызыми прожилками с магнетитом магнетита в пределах развития матитов. Пиритовая ассоциация ые выделения пирита неправильотина и халькопирита и сущестс пирротином (так называемый

бденитовая, пирит-халькопиритоаллическая) несут основной объно связаны с проявлениями гидний кислотного типа. Наиболее ляется кварц-молибденовая, кочасти месторождения и нескольтела. Объем ее уменьшается с дена сравнительно низкие. Мочешуек в кварцевых прожилках нсивного окварцевания. Пиритна флангах рудных тел и за их с кварц-(серицит)-эпидот-хлориэит и халькопирит образуют тонительно равномерно распредеиных кристаллов пирита и хальассоциация слагает ценвая ных тел, где халькопирит и бори структуры типа взаимных грапроявлена слабо. Она представі с гнездами карбоната и нерави рудных минералов: сфалерита, юпирита, редко — блеклых руд. полагается в зоне карбонатиза-ения (рисунок, б). Незначительпоявляется вместе с поздним ых метасоматитов. Образования ются маломощными кварц-кар-

й в пиритах и халькопиритах, 2], показали, что набор элеменх минералов, изменяется с той аругих медно-порфировых местоей рудных тел к их флангам поэля в пиритах. Пириты полимеюй степени обогащены цинком, борнит-халькопиритовой ассоциасеребра. По распределению котом и халькопиритом были опреэтих минералов [1] (рисунок, в). р кристаллизации совпадает с :ральных ассоциаций — от более я) к более низкотемпературным

Таким образом, совокупность приведенных данных говорит о том, что Михеевское месторождение является типичным представителем месторождений медно-порфирового типа, имеющим относительно глубокий эрозионный срез, но сохранившим общие черты рудно-метасоматической зональности, характерные для месторождений данного типа.

СПИСОК ЛИТЕРАТУРЫ

1. Безман Н. И. и др. Пирит-халькопиритовый геотермометр: распределение кобальта//Геохимия. 1978. № 3.

2. Бородаев Ю. С., Еремин Н. И., Мельников Ф. П., Старостин В. И.

Лабораторные методы исследования минералов руд и пород. М., 1988. 3. Грабежев А. И., Белгородский Е. А., Чащухина В. А. Медно-пор-фировая минерализация Урала/ИГГ УНЦ АН СССР. Препринт. Свердловск, 1986. 4. Кравцов А. И., Мигачев И. Ф., Шишаков В. Б. Морфология и геомет-

ризация рудных тел медно-порфировых месторождений и критерии их поисков//Раз-зедка и охрана недр. 1980. № 7.

Поступила в редакцию 05.09.90

ВЕСТН. МОСК. УН-ТА. СЕР. 4, ГЕОЛОГИЯ. 1991. № 5

УДК 548.736

, Second Second

А. П. Хомяков, Е. А. Победимская, Т. Н. Надежина, Л. Е. Терентьева, Р. К. Расцветаева

СТРУКТУРНАЯ МИНЕРАЛОГИЯ ВЫСОКОКРЕМНИСТОГО КАНКРИНИТА

Объектом настоящего исследования явился природный алюмосиликат группы канкринита, существенно отличающийся от других ее представителей высоким отношением Si/Al¹. Минерал найден в северо-западной части Ловозерского щелочного массива (Аллуайв) в пегматитах ультраагпаитового типа [4, 6], где он образует гнездообразные обособления неправильной формы размером до 10-15 мм. Минерал ярко-сиреневый, водяно-прозрачный, с сильным стеклянным блеском, раковистым изломом. Плотность, определенная методом гидростатического взвешивания, равна 2,40 г/см³. Оптически одноосный, отрицательный, ne=1,490, no=1,509. Характерно яркое, желтое свечение в ультрафиолетовых лучах. Рентгенодифракционный и инфракрасный спектры сопоставимы с аналогичными спектрами обычного Na, Ca-канкринита.

Результаты химического анализа Si-канкринита (Na₂O — 21,30, K₂O — 0,10, CaO — 0,68, MgO — 0,11, Fe₂O₃ — 0,33, Al₂O₃ — 24,42, SiO₂ — 43,11, CO₂ — 4,82, SO₃ — 0,36, H₂O — 5,01) пересчитываются при Al+Si=12 на эмпирическую формулу (Na_{6,89}K_{0,02}Ca_{0,12}Mg_{0,03}). (Al_{4,80}Si_{7,20}) О_{24,02} (CO₃)_{1,10} (SO₄)_{0,04} 2,79H₂O, соответствующую идеализированной $Na_7Al_5Si_7O_{24}(CO_3) \cdot 3H_2O_2$.

Выявленная нестехиометричность Si и Al в изученном минерале казалась парадоксальной, поскольку до недавнего времени считалось твердо установленным, что в минералах группы канкринита с общей формулой A₆₋₈[AlSiO₄]₆X₁₋₄·1—5H₂O, где А=Na+, K+, Ca²⁺ и Х= =CO₃²⁻, SO₄²⁻, Cl⁻, OH⁻ существенные вариации состава затрагивают

¹ Условно он назван нами высококремнистым и обозначен далее в статье Si-канкринитом.

лишь внекаркасные катионы, анионы и молекулы воды, тогда как содержание тетраэдрических катионов структуры не испытывает значительных колебаний². При этом отношение Si/Al=1 в обычном канкрините соответствует упорядоченному распределению атомов Si и Al по двум разнообъемным тетраэдрам [9] структуры. Поскольку качество изученного нами образца, тщательность его отборки и анализа исключали возможность существенных ошибок, то нестандартность химического состава Si-канкринита обусловила повышенный интерес к нему как к особой разновидности или возможно новому минеральному виду и явилась причиной его детального рентгеноструктурного исследования.

Экспериментальной основой для уточнения химического состава и симметрии Si-канкринита, а также выявления особенностей его кристаллической структуры явился трехмерный набор интенсивностей, полученный с монокристалла на автодифрактометре P1 «Синтекс» (2 в: :θ-метод, Мо-излучение, 867 независимых ненулевых *I*≥2σ*I* отражений). Параметры гексагональной ячейки a=12,575(3), c=5,105(2) Å. Расчеты выполнены на вычислительной системе E-XTL и по системе программ AREN [1]. Закономерные погасания в массиве интенсивностей однозначно установили более высокую симметрию кристаллов Siканкринита (пр. гр. Р 63mc) по сравнению с ранее изученными (пр. гр. Р 63). Уточнение методом МНК позиционных и тепловых параметров атомов структуры, а также коэффициентов заселенности атомных позиций в пр. гр. Р 63mc позволило достигнуть фактора расходимости *R_{hkl}*=0,048 в изотропном и *R_{hkl}*=0,029 в анизотропном приближении. Координаты базисных атомов и изотропные тепловые поправки сведены в табл. 1, а межатомные расстояния в табл. 2.

Координаты базисных атомов в структуре высококремнистого канкринита

Таблица 1

				•	
Атом	Кратность позиции и коэффициент заселенности позиции *	x/a	y _l b	z/c	<i>В_ј</i> изотр.
Si Na ₁ Na ₂ Na ₃ Na ₄ C ₁ C ₂ O ₁ O ₂ O ₃ O ₄ O ₅ O ₆ —(H ₂ O) ₄ O ₇ —(H ₂ O) ₁ O ₈ —(H ₂ O) ₂ O ₉ —(H ₂ O) ₃	$\begin{array}{c} 12(1)\\ 2(0,55)\\ 6(0,85)\\ 2(0,24)\\ 6(0,10)\\ 2(31)\\ 2(30)\\ 6(1)\\ 6(1)\\ 12(1)\\ 6(0,31)\\ 6(0,37)\\ 6(0,17)**\\ 2(0,54)**\\ 2(0,29)\\ 2(0,16) \end{array}$	$\begin{array}{c} 0,0793(1)\\ 1/3\\ 0,1225(1)\\ 2/3\\ 0,280(2)\\ 0\\ 0\\ 0\\ 0,2022(1)\\ 0,4421(1)\\ 0,0356(2)\\ 0,0598(7)\\ 0,120(1)\\ 0,058(2)\\ 0,648(2)\\ 2/3\\ 0\\ \end{array}$	$\begin{array}{c} 0,4122(1)\\ 2/3\\ -0,1225(1)\\ 1/3\\ 0,140(2)\\ 0\\ -0,2022(1)\\ -0,4421(1)\\ 0,3566(2)\\ -0,0598(7)\\ 0,060(1)\\ 0,115(2)\\ 0,296(3)\\ 1/3\\ 0\\ \end{array}$	$\begin{array}{c} 0,7512(1)\\ 0,659(2)\\ 0,2852(6)\\ 0,083(4)\\ 0,792(5)\\ 0,192(4)\\ -0,109(6)\\ 0,6646(6)\\ 0,7249(8)\\ 0,0522(4)\\ 0,880(4)\\ 0,188(3)\\ 0,962(7)\\ 0,70(1)\\ 0,66(1)\\ 0,04(1,6) \end{array}$	$\begin{array}{c} 0,55(1)\\ 2,1(1)\\ 1,97(4)\\ 1,5(2)\\ 1,98(3)\\ 1,4(2)\\ 1,6(3)\\ 1,52(4)\\ 1,76(4)\\ 1,46(3)\\ 2,2\\ 2,7(2)\\ 3,0(4)\\ 4,9(1,0)\\ 5,0(1,5)\\ 2,50(3) \end{array}$

* Коэффициент заселенности-отношение числа атомов в данной позиции к кратности этой позиции.

** Положение молекулы H₂O не подчиняется симметрии правильной системы точек.

² По этой причине обнаруженный в образце натриевого канкринита из пегма-тита долины р. Чинглусуай (Ловозеро) (Na_{6,70} K_{0,08} Ca_{0,09} Fe_{0,05} Mg_{0,03}) (Al_{4,79} Si_{7,81}) О24,26 (CO₈)0,91·3,20 H₂O избыток кремния первоначально был объяснен Е. И. Семеновым возможной примесью уссингита, при этом не исключалась возможность и образования твердого раствора кремнезема в нефелиновой компоненте канкринита [3].

 $2,69(3) \times 2$ 2,73(3) 2, 34(3)2,67(3) $Na_4 - O_1$ $Na_4 - O_4$ $Na_4 - O_4$ Na4-O5 Na4-O5 Na4-O6 2,472(2) imes 32,36(1) imes 22,48(2) $2,36(1) \times 2$ 2,602(4)Межатомные расстояния в структуре высококремнистого канкринита, Å 2,47(1) 2,17(3) $Na_2 - O_3$ $Na_2 - O_4$ Na₂—O₁ Na2-O Na2-On $2,394(1) \times 3$ $2,856(2) \times 3$ 2,478(6)×3 2,53(7)2,58(9)2, 37(7)2,80(7) $\begin{array}{c} \mathrm{Na_1-O_2}\\ \mathrm{Na_1-O_1}\\ \mathrm{Na_1-O_8}\\ \mathrm{Na_1-O_8}\\ \mathrm{Na_1-O_8}\end{array}$ Na₁-0, Na₁--0, ,667(2) 656(2) ,657(2) ,664(2)2,664(1)2,690(2) 2,721(2) 1,661 (Si--0)_{cp} Si-O2 Si-O₃ Si-03 Si-O1 0

3

Таблица

 $2, 33(2) \times 2$

 $,70(3) \times 2$

47(4)

и молекулы воды, тогда как сотруктуры не испытывает значиение Si/Al=1 в обычном канкрииспределению атомов Si и Al по структуры. Поскольку качество ть его отборки и анализа исклюбок, то нестандартность химичеила повышенный интерес к нему ожно новому минеральному виду рентгеноструктурного исследова-

уточнения химического состава и яявления особенностей его криерный набор интенсивностей, пофрактометре $\overline{P1}$ «Синтекс» (2 θ : имых ненулевых $I \gg 2\sigma I$ отражеейки a=12,575(3), c=5,105(2) Å. ой системе E-XTL и по системе согасания в массиве интенсивносокую симметрию кристаллов Siнию с ранее изученными (пр. гр. ционных и тепловых параметров ентов заселенности атомных постигнуть фактора расходимости в анизотропном приближении. опные тепловые поправки сведеи в табл. 2.

Таблица 1

ре высококремнистого канкринита

y ₁ b	z/c	В, изотр.
an a		· · · ·
,4122(1) /3 ,1225(1) /3 ,140(2) ,2022(1) ,4421(1) ,3566(2) ,0598(7) ,060(1) ,115(2) ,296(3) /3	$\begin{array}{c} 0,7512(1)\\ 0,659(2)\\ 0,2852(6)\\ 0,083(4)\\ 0,792(5)\\ 0,192(4)\\ -0,109(6)\\ 0,6646(6)\\ 0,7249(8)\\ 0,0522(4)\\ 0,880(4)\\ 0,188(3)\\ 0,962(7)\\ 0,70(1)\\ 0,66(1)\\ 0,04(1,6) \end{array}$	$\begin{array}{c} 0,55(1)\\ 2,1(1)\\ 1,97(4)\\ 1,5(2)\\ 1,98(3)\\ 1,4(2)\\ 1,6(3)\\ 1,52(4)\\ 1,76(4)\\ 1,76(4)\\ 1,46(3)\\ 2,2\\ 2,7(2)\\ 3,0(4)\\ 4,9(1,0)\\ 5,0(1,5)\\ 2,50(3) \end{array}$
исла атомо	в в данной поз	иции к крат-
я симметри	и правильной сис	темы точек.
азце натри К _{0,08} Са ₀ , оначально	евого канкринит ₀₉ Fe _{0,05} Mg _{0,03}) был объяснен	та из пегма- (Al _{4,79} Si _{7,21}) Е. И. Семе-

ом не исключалась возможность и обфелиновой компоненте канкринита [3].

		Межатомные	расстояния в структуре	высококремнистого	санкринита, Å		
Si-01	1,656(2)	$Na_1 - O_2$	$2,394(1) \times 3$	Na,O.	2.472(2) imes 3	Na,0.	9 33(9) ~ 9
$Si-O_2$	1,657(2)	$Na_1 - O_1$	$2,856(2) \times 3$	Na,0,	2.602(4)	Na,—O,	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
Si-O ₃	1,664(2)	$Na_1 - O_8$	2,53(7)	$Na_2 - O_4$	$2.36(1) \times 2$	Na,O,	2,01(0) 9 69(3) ~9
$Si-O_3$	1,667(2)	Na ₁ —O ₈	2,58(9)	$Na_2 - O_4$	2,48(2)	$Na_4 - O_4$	2,73(3)
(Si0) _{cp}	1,661	Na ₁ —0,	2,37(7)	$Na_{3}-O_{k}$	$2,36(1) \times 2$	Na,—O.	9 67(3)
$O_1 - O_2$	2,664(1)	Na ₁ —O,	2,80(7)	Na ₂ —0,	2,47(1)	Na,0,	$2, 70(3) \times 2$
$0_1 - 0_3$	2,690(2)	$Na_3 - O_2$	2,478(6) imes 3	Na ₂ —O	2, 17(3)	Na,—Oa	2.47(4)
$0_1 - 0_3$	2,721(2)	Na ₃ —O ₁	$2,886(3) \times 3$	Na ₂ —O [°]	$2,48(3) \times 2$	Na,O.	$2.79(3) \times 2$
$O_2 - O_3$	2,758(1)	Na ₃ —O ₈	2, 14(9)	Na ₂ —O,	2.94(2)	Nat-O.	$2.48(2) \times 2$
$O_2 - O_3$	2,768(2)	Na ₃ —O ₈	2,96(9)	0 1		0 }	よう
$0_3 - 0_3$	2,668(1)	Na ₃ —O ₇	2,07(3)				
(00) _{cp}	2,708						
C105	$1,31(1)\times 3$	Na ₁ —Na ₃	0, 39(2)				
0,-0,	2,11(2)	0,0,	0,46(6)				
C ₂ 04	$1,30(1) \times 3$						
0-0	$2.26(1) \times 3$						

Схема расположения внекаркасных атомов Na, молекул H₂O и (CO₃)-групп в структуре высококремнистого канкринита в проекции (001) (a), вдоль осей 6₃ (б) и 3 (в). Черные кружочки — атомы Na, незаштрихованные кружочки — молекулы H₂O

Остов структуры исследованного канкринита составляет алюмосиликатный каркас (рисунок), в котором по 12-кратной позиции Si-атомов изоморфно распределяются 4,8 атомов A1, о чем свидетельствует и увеличенное среднее Si—O расстояние (табл. 2).

В центре каналов на осях третьего порядка (рисунок) размещаются атомы Na₁, которые окружены анионами каркаса, а вдоль оси переложены молекулами H₂O. Позиция Na₁ заселена на 55% и дополняется Na₃ с заселенностью на 24% (табл. 1). Аналогично позиция

O₈(H₂O) на тройной оси дополи вокруг этой оси. Расстояния O₇может только поочередно заним ций. Суммарная заселенность N ленности H₂O и свидетельствует этого типа, а подвижность атомо с окружающими анионами карка

Еще бо́льшая разупорядочен каналах структуры вокруг осн Na₂ и Na₄ также статистически зиции. Суммарно эти позиции за динационная сфера Na атомов с стически атомами O, которые об круг атомов C. Детальное уточно оси 6_3 атомов углерода на C₁ и с стоянии 1,5 Å. Эти позиции засел Треугольные основания уплощен круг 6_3 на 60° . Кроме CO₃-групп статистически 1,2 молекулы вод как и (H₂O)₁, может нарушать с лентные точки отстоят друг от ди

Найденная в Si-канкрините атомов Na групп (CO₃)²⁻ и моле изученными ранее [2, 5, 7—10].

Результаты рентгеноструктур данными химического анализа и мическую формулу Si-канкринита

Na7,2 [Si7,2Al4,8C

 $= [Si_{7,2}Al_{4,8}O_{24}] [Na_{1,6}]$

Убедительная локализация а рамках нестандартной для канки зательством открытия новой высс нита. Использование методики ра ния обрыва ряда привело к фикс нового минерала.

Пегматитовые породы района минерал, представляют собой вес лочными, летучими и редкими эл для которых, как и для ультра чрезвычайное разнообразие минер гаются калиевым полевым шпато кринитом, арфведсонитом, призма В подчиненных количествах прис бит, уссингит, макатит, грумантит серандит, лоренценит, нептунит, лит, паракелдышит, терскит, цире тин, молибденит, клейофан, вилли рит, стенструпин. Из перечисленн служивают макатит NaHSi₂O₅.2H сутствие которых в данной ассоци ности пегматитообразующего раси та натрия. Это в сочетании с резк дифференциатах агпаитовых магм благоприятные для образования Si

4 (001) (a), вдоль осей 63 (б) и 3 (я). ванные кружочки — молекулы H₂O

канкринита составляет алюмоом по 12-кратной позиции Si-атоомов Al, о чем свидетельствует и (табл. 2).

о порядка (рисунок) размещаанионами каркаса, а вдоль оси н Na₁ заселена на 55% и дополтабл. 1). Аналогично позиция $O_8(H_2O)$ на тройной оси дополняется O_7 — (H_2O) , которая ондулирует вокруг этой оси. Расстояния O_7 — O_7 столь малы (0,7 Å), что атом O_7 может только поочередно занимать одну из трех эквивалентных позиций. Суммарная заселенность Na-позиций (80%) соответствует заселенности H_2O и свидетельствует о возможных вакансиях в каналах этого типа, а подвижность атомов и молекул H_2O — о слабой связи их с окружающими анионами каркаса.

Еще бо́льшая разупорядоченность атомов наблюдается в широких каналах структуры вокруг оси шестого порядка (рисунок). Атомы Na₂ и Na₄ также статистически занимают близко расположенные позиции. Суммарно эти позиции заселены почти полностью (95%). Координационная сфера Na атомов со стороны оси 6₃ дополняется статистически атомами O, которые образуют треугольные группировки вокруг атомов C. Детальное уточнение выявило расщепление позиций на оси 6₃ атомов углерода на C₁ и C₂, отстоящих друг от друга на расстоянии 1,5 Å. Эти позиции заселены примерно одинаково на 33 и 35%. Треугольные основания уплощенных пирамид C₁ и C₂ повернуты вокруг 6₃ на 60°. Кроме CO₃-групп на оси 6₃ и около нее расположены статистически 1,2 молекулы воды (H₂O)₃ и (H₂O)₄. Причем (H₂O)₄, как и (H₂O)₁, может нарушать симметрию позиций, так как эквивалентные точки отстоят друг от друга на расстояниях, меньших 2,2 Å.

Найденная в Si-канкрините разупорядоченность внекаркасных атомов Na групп (CO₃)²⁻ и молекул H₂O максимальна по сравнению с изученными ранее [2, 5, 7—10].

Результаты рентгеноструктурного анализа хорошо согласуются с данными химического анализа и позволяют представить кристаллохимическую формулу Si-канкринита в следующем виде:

 $Na_{7,2}[Si_{7,2}Al_{4,8}O_{24}](CO_3)_{1,2} \cdot 3H_2O =$

 $= [Si_{7,2}Al_{4,8}O_{24}] [Na_{1,6} (H_2O)_{1,7}] [Na_{5,6} (CO_3)_{1,2} (H_2O)_{1,3}].$

Убедительная локализация атомов алюмосиликатного каркаса в рамках нестандартной для канкринитов группы Р6₃mc служит доказательством открытия новой высококремнистой разновидности канкринита. Использование методики разностных синтезов с расчетом влияния обрыва ряда привело к фиксации подвижных атомов в структуре нового минерала.

Пегматитовые породы района Аллуайв, где встречен изученный минерал, представляют собой весьма своеобразные, пересыщенные щелочными, летучими и редкими элементами, пегматоидные образования, для которых, как и для ультраагпаитовых пегматитов, характерно чрезвычайное разнообразие минеральных видов. В основном они слагаются калиевым полевым шпатом, нефелином, гакманитом, Si-канкринитом, арфведсонитом, призматическим и волокнистым эгирином. В подчиненных количествах присутствуют: анальцим, натролит, альбит, уссингит, макатит, грумантит, вуоннемит, ломоносовит, соболевит, серандит, лоренценит, нептунит, лампрофиллит, астрофиллит, эвдиалит, паракелдышит, терскит, цирсиналит, казаковит, беловит, пирротин, молибденит, клейофан, виллиомит, акцессорные лопарит, ловчоррит, стенструпин. Из перечисленных минералов особого внимания заслуживают-макатит NaHSi₂O₅·2H₂O и грумантит NaHSi₂O₅·H₂O, присутствие которых в данной ассоциации свидетельствует о пересыщенности пегматитообразующего расплава-раствора в отношении силиката натрия. Это в сочетании с резким дефицитом алюминия в конечных дифференциатах агпаитовых магм, очевидно, и определяет условия, благоприятные для образования Si-канкринита.

СПИСОК ЛИТЕРАТУРЫ

1. Андрианов В.И. AREN-85 — развитие системы кристаллографических про-грамм «Рентген» на ЭВМ NORD, СМ-4 и ЕС//Кристаллогр. 1987. Т. 32, вып. 1. 2. Пущаровский Д.Ю., Ямнова Н.А., Хомяков А. П. Кристаллическая структура высококалиевого вишневита//Кристаллогр. 1989. Т. 34, выл. 1.

3. Семенов Е. И. О канкрините щелочных пегматитов. Минералогия и генетические особенности щелочных массивов. М., 1964.

4. Семенов Е. И. и др. Натриевые канкриниты Ловозерского щелочного массива//Минерал. журн. 1984. Т. 6, № 2

5. Смолин Ю. И. и др. Кристаллическая структура канкринита//Кристаллогр. 1981. Т. 26, вып. 1.

6. Хомяков А. П. Минералогические особенности щелочных пегматитов Хибино-Ловозерской провинции//Развитие минералогии и геохимии и их связь с учением о полезных ископаемых. М., 1983. С. 66—82. 7. Эмиралиев А., Ямзин И. И. Уточнение структуры канкринита по нейтро-

 8. Ваггег R. M., Соle I. F., Viliger H. Chemistry of minerals. Part VII: Synthesis, properties, and crystal structures of saltfilled cancrinites//J. Chem. Soc. A. 1970. N 9. P. 1523-1531.

9. Grundy H. D., Hassan I. The crystal structure of a carbonate-rich cancrini-te//Canad. Min. 1982. Vol. 20, N 2. P. 239-251.
10. Jarchow O. Atomenanordnung und Strukturverfeinerung von Cancrinit//Z. Kristallogr. 1965. Bd. 122, N 5/6. S. 407-422.

Поступила в редакцию 13.11.89

ВЕСТН. МОСК. УН-ТА. СЕР. 4. ГЕОЛОГИЯ. 1991. № 5

УДК 552.11:550.82(470.5)

Р. И. Костина

первичноликвационное происхождение хлоритолитов

В рудных полях колчеданных месторождений внимание исследователей неизменно привлекают ассоциирующие с рудой породы, в том числе так называемые хлоритолиты — образования, состоящие (почти на 100%) из хлорита либо смеси преобладающего хлорита с серицитом, хлорита с кварцем и серицитом. Они наблюдаются в виде пластов, линз, тел (объемов) разнообразной формы, нередко с апофизами во вмещающие породы, в непосредственной близости от руды, иногда как бы вместо нее, представляя в последнем случае так называемые прожилково-вкрапленные руды, так как содержат обильную сульфидную вкрапленность, прожилки сульфидов, «сгустки» и т. д. Наиболее распространенное мнение об их происхождении — это рудный метасоматоз рудовмещающих пород, безразлично какого состава и генезиса [1, 2]. Так же распространенной является точка зрения, что - осадочные образования типа илов, гелей, на которых, как на это -«подстилке», формируются осадочные руды [1, 2]. В отличие от существующих нами высказывается мнение о первичной ликвационной природе хлоритолитов. Оно основано прежде всего на геологических наблюдениях в рудных полях, карьерах колчеданных месторождений Урала, петрологии пород, а также на данных теоретических и экспериментальных исследований о возможном формировании рудообразующих растворов-расплавов путем их ликвационного отщепления от скликатных магм [3, 6].

Геологическая практика показывает, что на Урале хлоритолиты наблюдаются исключительно в рудных полях колчеданных месторож-

