УДК 549.334

Э. М. Спиридонов, Т. Н. Чвилева

БОГДАНОВИТ Аи₅ (Си, Fe)₃ (Те, Pb)₂ —НОВЫЙ МИНЕРАЛ ИЗ ГРУППЫ ИНТЕРМЕТАЛЛИЧЕСКИХ СОЕДИНЕНИИ ЗОЛОТА *

При изучении руд из зоны окисления месторождений Дальнего Востока и Казахстана нами были обнаружены новые минералы, представляющие интерметаллические соединения золота, меди, железа, серебра, свинца и теллура [6]. Ранее эти минералы на основании качественной оценки их оптических свойств были описаны как риккардит [1] — теллурид меди. Одним из наиболее распространенных среди них является минерал, состав которого отвечает общей формуле Au₅(Cu, Fe)₃ (Te, Pb)₂.

Минерал назван нами богдановитом (bogdanovite) в память о выдающемся советском геологе, профессоре Московского государственногоуниверситета, председателе Международной комиссии по тектоническим картам, Алексее Алексеевиче Богданове (1907—1971).

Богдановит развит только в зоне окисления рудных тел в ассоциации с билибинскитом Au₃Cu₂PbTe₂ (рис. 1); гипергенными медистым золотом (рис. 2), свинцово-медистым золотом и другими интерметаллическими соединениями золота, меди, железа, серебра, свинца и теллура; с теллуритами железа, меди и свинца (рис. 3); с гидроокислами железа; кроме того, слагает обособленные выделения в кварце. Разновидность богдановита, богатая медью, ассоциирует преимущественно с медьсодержащими минералами; разновидность, богатая железом, тяготеет к ассоциациям железосодержащих гипергенных минералов.

Образования богдановита, как правило, представляют сростки различно ориентированных зерен, нередко наблюдаются агрегаты радиально-лучистого сложения; размер сростков достигает 1 мм, размер индивидуальных зерен минерала не превышает 10 мкм.

Макроскопически богдановит — минерал розовато-бурого до бронзово-бурого цвета, с полуметаллическим блеском. На воздухе во влажной среде быстро покрывается синевато-черной побежалостью. Полируется хорошо, без царапин и ямок выкрошивания. Спайность отсутствует.

В полированных шлифах в отраженном свете богдановит очень своеобразен и вместе с тем похож на риккардит [2] и билибинскит [6]. Выполненные нами детальные исследования показали, что новый минерал имеет индивидуальный химический состав и отличается от сходных с ним по качественному оптическому впечатлению риккардита и

^{*} Рассмотрено и утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 23 мая 1978 г.

Рис. 1. Ассоцнация гипергенных минералов: медистого богдановита (1), билибинскита (2) и медистого золота (3) с теллуритами меди и свинца (4), замещающими халькопирит (5); 6 — гипогенное золото, нерудный минерал кварц. Полированный шлиф, × 300, обр. К-1

Рис. 2. Каемки богдановита (1) вокруг «рельефного» медистого золота (2). Полированный шлиф, × 300, обр. К-4

Рис. 3. Сросток относительно крупных зерен железистого богдановита (1) и теллуритов железа и меди (2), замещающих халькопирит (3); хорошо видно, что зериа богдановита состоят из множества пластинчатых и иной формы индивидов; 4 — гипогенное золото, черное — жильный кварц. Полированный шлиф, × 300, обр. К-2 билибинскита по рентгенограммам, характеру спектральных кривых отражения, значениям микротвердости.

Химический состав богдановита определен с помощью рентгеноспектрального микроанализатора JXA-5 при ускоряющем напряжении 25 кВ. Минерал устойчив под электронным пучком. Эталонами при анализе служили чистые золото и серебро и химически анализированные халькопирит, алтаит, клаусталит; использовались аналитические линии $\operatorname{Au}_{L_{\alpha}}$, $\operatorname{Ag}_{L_{\alpha}}$, $\operatorname{Cu}_{\kappa_{\alpha}}$, $\operatorname{Fe}_{\kappa_{\alpha}}$, $\operatorname{Pb}_{L_{\alpha}}$, $\operatorname{Te}_{\kappa_{\alpha}}$, $\operatorname{Se}_{\kappa_{\alpha}}$. Состав рассчитан с учетом массовых коэффициентов поглощения Хейнриха [13], с введением поправок на поглощение [12], атомный номер [4, 11], на флюорес-

Таблица 1

Компо- ненты	;	Железист	гый богдано	вит	Богл	дановит про соста	Медистый богдановит				
	F	(-2	К-3	3	K-2		Қ-3	K-1	K-2	K-4	
	6a	7	1-2	1-2 2 4		336	5	5ж	16	36	2н
Au Ag Cu Fe Pb Te Se	63,2 2,25 4,13 8,24 13,5 10,1 0,00	57,6 2,90 6,19 8,93 11,8 10,3 0,20	60,7 1,84 4,87 9,85 13,4 9,79 не опр.	59,9 1,75 3,32 10,3 12,6 9,78 0,00	58, 62, 768, 056, 6914, 49, 810, 00	62,7 1,87 9,04 4,72 11,7 9,82 не опр.	63,6 1,67 9,28 5,28 10,7 10,1 0,00	57,1 2,24 12,1 4,01 13,2 10,0 0,00	57,9 2,02 15,1 1,28 11,5 9,60 0,28	61,8 3,39 11,2 1,18 13,1 10,2 0,00	61,8 2,95 13,2 0,09 11,8 9,97 0,00
Сумма	100,4	98,0	100,4	97,7	99,4	99,8	100,6	98,7	97,7	100,9	99,8
Формульные единицы в расчете на 10 атомов											
Au Ag Cu Fe	4,59 0,31 0,93 2,11	4,08 0,37 1,36 2,23	4,28 0,23 1,07 2,45	4,38 0,23 0,75 2,66	4,20 0,23 1,79 1,70	4,57 0,25 2,04 1,21	4,55 0,22 2,05 1,22	4,05 0,29 2,67 1,00	4,15 0,27 3,36 0,32	4,58 0,46 2,57 0,30	4,55 0,40 3,00 0,09
Te Se Pb	1,13 0,93	1,13 0,03 0,79	1,07 0,90	1,10 0,87	1,09 0,99	1,11 0,81	1,12 0,73	1,10 0,89	1,07 0,04 0,79	1,17	1,13
ΣΜе	7,94	8,05	8,03	8,03	7,92	8,08	8,15	8,01	8,10	7,81	8,04

Химический состав богдановита (вес. %) месторождения Дальнего Востока

Примечание. Состав определен с помощью электронного микроанализатора JXA-5, аналитик Э. М. Спиридонов.

ценцию [14]. Расчет выполнен методом последовательных приближений (3—5 итераций) по программе «Карат»[3]. Результаты анализов приведены в табл. 1. Изучение на микрозонде показало, что химический состав богдановита довольно устойчив — различные зерна минерала близки по составу, заметно варьируют лишь содержания железа и меди, но сумма этих элементов практически постоянна. Средний состав трех образцов богатого медью богдановита — Аи—60,50, Ад—2,79, Си— 13,17, Fe—0,85, Pb—12,13, Te—9,92, Se—0,09, сумма — 99,45 вес. %; средний состав четырех образцов богатого железом богдановита — Аи60,35, Ag—2,19, Cu—4,63, Fe—9,33, Pb—12,83, Te—9,99, Se—0,07, сумма — 99,37 вес. %; средний состав четырех образцов богдановита промежуточного состава — Au—60,50, Ag—1,88, Cu—9,62, Fe—5,18, Pb— 12,50, Te—9,94, Se—0,00, сумма — 99,62 вес. %.

Из-за крайне малого размера индивидуальных зерен провести рентгеноструктурный анализ богдановита не удалось. Поэтому для определения формулы минерала были выполнены различные варианты пересчета химических анализов. Кратные рациональные коэффициенты получились при расчете на 1 (Te+Se) и при расчете на 1 (Te+Se+ +Pb); известно, что изоморфизм Te—Pb характерен для интерметаллических соединений. Атомное отношение (Au+Ag+Cu+Fe+Pb): (Te+ +Se) во всех образцах близко к восьми; атомное отношение (Au+Ag+ +Cu+Fe): (Te+Se+Pb) весьма близко к 4:1. Последний вариант согласуется с рентгенометрическими параметрами минерала. Эмпирические формулы, рассчитанные на 10 атомов (4+1)×2, следующие: богатый Cu — Au₄.43 Ag_{0.37} Cu_{2.99} Fe_{0.22} Te_{1.12} Se_{0.02} Pb_{0.85}; богатый Fe — Au_{4.33} Ag_{0.29} Cu_{1.03} Fe_{2.36} Te_{1.11} Se_{0.01} Pb_{0.87}; промежуточный — Au_{4.35} Ag_{0.25} Cu_{2.14} Fe_{1.31} Te_{1.10} Pb_{0.85}; идеализированная формула (Au, Ag)₅ (Cu, Fe)₃ (Te, Pb)₂, где Cu>Fe и Cu \leq Fe или Me₄(Te, Pb).

Рентгенограммы порошка железистого и медистого богдановита аналогичны. Рентгенограмма железистого богдановита, исправленная по особому снимку с NaCl, приведена в табл. 2. Сильнейшие отражения богдановита: 2,35 Å (10) - 2,045(6) - 1,447(6) - 1,230 Å (8). По величинам межплоскостных расстояний и соотношению интенсивностей наиболее сильных отражений богдановит близок к золоту [10]. По сравнению с золотом рентгенограмма богдановита содержит дополнительные отражения 4,06(0,5-1), 2,90(0,5), 1,293(0,5-1), 1,092(2) И 0,992(3), которые индицируются, как и сильнейшие отражения богдановита, исходя из примитивной псевдокубической субъячейки с $a_0' =$ =4,087 Å, и отражение 2,15 Å (1), которое не индицируется подобным образом. Наличие дополнительных отражений свидетельствует о том, что богдановит обладает сверхструктурой, производной от ГЦК решетки золота. Из этих данных, согласно А. Г. Хачатуряну [7], следует, что состав устойчивой сверхструктуры замещения или внедрения должен отвечать Ме4Х или Ме4Х3. Химический состав минерала соответствует Me₄X, где X=Te+Se+Pb, Me=Au+Ag+Cu+Fe. Так как изоморфные замещения Au-Te и Au-Pb невероятны, сверхструктура бог-

Таблица 2

I	d А _{ИЗМ}	hkl	d Арассч	1	d Å _{usm}	hki	d Å _{рассч}
0,5 0,5 10 1 6 6	4,06 2,90 2,36 2,15 2,045 1,447	100 110 111 ? 200 220	4,087 2,890 2,360 2,044 1,445	0,5-1 8 3 2-3 1-2	1,293 1,230 1,180 1,092 0,992	$ \begin{array}{c} 310 \\ 311 \\ 222 \\ 321 \\ 322 \\ 410 \end{array} $	1,292 1,232 1,180 1,092 0,9912

Рентгенограмма железистого богдановита обр. № 6а, К-2 ($\lambda \operatorname{Fe}_{K \alpha}$)

Примечание. Условия съемки: РКД 57,3 мм; Fe-антикатод, 35 кВ, 16 мА, образец «резиновый тарик» d ~ 0,2 мм; интенсивности оценивались визуально по десятибалльной шкале. Индексы отражений hkl получены для примитивной псевдокубической субъячейки a' == 4,087 Å. дановита должна быть сверхструктурой внедрения. Сверхструктуры внедрения типа Me₄X известны также в системах Fe—N, Ta—C [5] и др.

Остов сверхструктуры богдановита образуют атомы Au, Cu и Fe, распределение которых в узлах ГЦК решетки близко к статистическому [Au_{5/8} (Cu, Fe)_{3/8}]. Атомы внедрения Te и Pb заполняют первую подрешетку октаэдрических междоузлий ГЦК решетки, междоузлия двух остальных подрешеток вакантны. Предполагаемая субъячейка содержит одну формальную единицу [Au_{5/8}(Cu, Fe)_{3/8}]₄(Te, Pb).

Для предполагаемой структуры минерала были рассчитаны интенсивности отражений, исходя из пространственной группы Pm3m (\mathbb{N} 221) при условии статистического распределения атомов Au, Cu и Fe по узлам ГЦК решетки в позициях 1a (0, 0, 0) и 3c (0, $\frac{1}{2}$, $\frac{1}{2}$) и атомов внедрения Te и Pb — в октаэдрических междоузлиях в позиции 1b ($\frac{1}{2}$, $\frac{1}{2}$). Интенсивности, измеренные и рассчитанные, удовлетворительно согласуются:

hkl	100	110	111	200	220	310	311	222	321	322
I _{изм} І _{рассч}	0,5 0,4	0,5 3,0	10 10	6 7,3	6 6,0	0,5—1 0,6	8 7,0	$3 \\ 3,5$	1—2 1,3	$2-3 \\ 2,8$

Другой вариант формулы Me₄X_{0,5}, т. е. [Au₄(Cu, Fe)₃Pb]Te, первоначально принятый авторами для богдановита, оказался маловероятным. Рассчитанные по этому варианту интенсивности отражений 100, 110, 310, 321 и 322 должны быть меньше и значительно меньше 0,5; в рентгенограммах же богдановита эти отражения присутствуют.

Третий вариант, рассмотренный авторами по предложению доктора Като, — аналогия с мошельландсбергитом ($a_0 = 10,03$ Å, ОЦК решетка, пр. гр. Im3m). Этот вариант казался интересным прежде всего потому, что число атомов в формулах и мошельландсбергита, по [9], и богдановита равно 5. Однако детальный анализ показал, что аналогии между структурами этих минералов нет: 1) формула мошельландсбергита согласно рентгеноструктурным исследованиям отвечает Ag₅Hg₈[15]. структура этого минерала близка к структуре у — латуни Cu₅Zn₈; в той и другой структурах соотношения атомов разного сорта 5:8, тогда как в богдановите 1:4 (или 1:8); 2) число наблюдаемых отражений в рентгенограмме богдановита значительно меньше в сравнении с возможным в пространственной группе Іт3т для фазы с параметром 10 Å, в частности, в мошельландсбергите, ASTM 11-67; 3) наличие отражения 310 (1, 293 Å). Соотношения параметров мошельландсбергита и предполагаемой нами для богдановита кубической субъячейки составляют V 6. Рентгенограмму богдановита нельзя проиндицировать в ячейке мошельландсбергита, так как отражению (310) $(h^2 + k^2 + l^2 = 10)$ должен быть приписан индекс с $h^2 + k^2 + l^2 = 60$. В кубической ячейке такие индексы не существуют; 4) близость всех интенсивных отражений богдановита и золога, которая дает основание предполагать, что структура богдановита близка к ГЦК решетке золота.

Таким образом, наблюдаемая рентгеновская картина богдановита соответствует псевдокубической субъячейке; по оптическим свойствам симметрия богдановита не выше ромбической (минерал оптически двуосный), что, видимо, связано с частичным упорядочением атомов металлов, которое не проявляется на рентгенограммах. На основании имеющихся рентгеновских данных истинная симметрия минерала не может быть установлена. Рентгенограмма богдановита заметно отличается от билибинскита: в рентгенограмме богдановита имеются отражения небольшой и средней интенсивности 2,15 Å; 1,293; 1,092 и 0,992 Å и отсутствует отражение средней интенсивности 3,06 Å.

Плотность минерала измерить не представлялось возможным. Рентгеновская плотность богатого железом богдановита обр. № 6а, К-2 (таблицы 1, 2) составляет 14, 12 г/см³.

В отраженном свете богдановит необыкновенно своеобразен. Для него характерны яркие, резко контрастные цветовые эффекты, проявляющиеся и с одним, и с двумя николями. Такая оптическая особенность свойственна всего нескольким минералам; наиболее ярко она выражена у риккардита, за который раньше и принимался богдановит; яркая пятнистая цветовая картина в шлифе характерна также для билибинскита, который часто наблюдается в тесной ассоциации с богдановитом и, так же как последний, раньше принимался за риккардит.

Отражение богдановита умеренное, в зависимости от кристаллографической ориентировки сечений изменяется от слабого до среднего, очень сильно меняется с изменением длины волны; визуальная оценка отражения затруднена из-за исключительно сильного цветового эффекта двуотражения. В разных сечениях цвет богдановита меняется от пурпурно-малинового или серовато-лилового до золотисто-желтого или серовато-желтого. Эффекты анизотропии при скрещенных николях так же, как и эффекты двуотражения, очень сильные, яркие, цветные, в ало-красной, золотисто-желтой, фиолетово-красной гамме.

Отражение богдановита в интервале спектра $\lambda = 420-700$ нм исследовалось на приборах «Блеск», ПООС и МРV-2 фирмы Лейтц. На рис. 4 и в табл. 3 приведены результаты, полученные для членов «семейства» богдановита. Спектры 1, 2 и 3 относятся к образцу с высоким содержанием меди. Спектральные кривые 1 и 2 характеризуют сечение минерала с наиболее резко выраженным цветным эффектом двуотражения — от пурпурно-малинового до золотисто-желтого; эти кривые показывают изменение интенсивности отражения медистого богдановита в двух направлениях главного сечения минерала — R_g и R_p ; кривая 3 характеризует изменение отражения в сечении, близком к круговому — R_m . Кривые 4—10 характеризуют дисперсию отражения железистого богдановита; 4 и 5 — в главном сечении, 6 и 7, 9 и 10 — в промежуточных, 8 — в сечении, близком к круговому.

Спектры отражения богдановита индивидуальны, имеют сложные профили с четко выраженными широкими минимумами и максимумами, в которых резко преобладает аномальный тип дисперсии. Спектры отражения существенно медистого и существенно железистого богдановита и богдановита промежуточного состава в аналогичных сечениях практически полностью подобны и близки по общему уровню; это свидетельствует об отсуствии ощутимой зависимости отражения минерала от вариаций химического состава. Спектры отражения главного сечения богдановита аналогично спектрам золота и меди характеризуются большой скоростью изменения интенсивности отражения с изменением длины волны: профиль кривой R_g подобен профилю R золота; при λ= 670 нм кривые Rg и Rp пересекаются, в этом участке спектра происходит изменение оптического знака отражения минерала в главном сечении. В отличие от богдановита изменение знака отражения у билибинскита происходит при $\lambda = 620$ нм (рис. 5). Спектр отражения кругового сечения R_m богдановита занимает промежуточное положение между

№ кривых на рис. 4	Сечения	420	440	460	480	500	520	540	560	580	600	620	640	660	68 0	700
1	∫ R _g — золотисто-желтое	15,8	15,2	14,8	14,8	16,9	22,5	29,5	34,5	37,6	39,2	40,0	39,8	39,0	37,7	35,7
2	(<i>R_p</i> — пурпурно-малиновое	11,8	10,5	9,2	8,0	6,9	6,2	5,6	6,1	8,4	13,4	21,0	29,5	36,2	41,2	44,9
3	<i>R_m</i> — кремово-желтое		10,6	10,1	9,5	9,7	11,7	14,6	17,5	19,8	21,5	22,4	23,0	23,3	23,4	23,2
			1						 	 						
4	∫ R _g — золотисто-желтое	14,8	14,2	13,8	13,8	15,6	21,5	28,3	33,5	36,4	37,9	38,3	37,4	35,8	33,9	31,7
5	<i>R_p</i> — пурпурно-малиновое	9,5	8,0	6,7	5,4	4,4	3,4	2,5	2,2	3,0	5,9	11,9	21,0	29,9	36,9	42,8
6	R _g , — бежево-кремовое	14,3	13,5	12,9	12,6	13,5	16,4	19,3	21,4	22,8	23,6	24,2	24,4	24,3	24,0	23,7
7	<i>R_p</i> , — сине-лиловое	12,3	11,6	10,5	9,6	8,9	8,9	9,4	9,6	9,6	9,4	9,4	9,8	10,8	12,3	14,4
8	<i>R_m</i> — кремово-желтое		12,8	12,1	11,6	11,7	13,5	16,3	19, 1	21,0	22 ,2	22,6	22,6	22,5		
						· · · · · · · · · · · · · · · · · · ·				l		[!i			
9	∫ <i>R_{g'} —</i> бежевое		23,4	12,7	12,0	12,2	14,1	16,9	19,7	21,5	22,6	23,1	23,0	22,7		
10	(<i>R_{p'}</i> — серо-лиловое		13,2	12,4	11,6	10,7	11,1	12,4	13,7	14,8	15,8	16,6	17,1	17,4		

Коэффициенты отражения богдановита в интервале спектра $\lambda = 420-700$ нм

Примечание. 1—3— медистый богдановит, обр. № 36, К-2; 4—8— железистый богдановит, обр. № 6а, К-2; 9—10— железистый богденовит, обр. № 7, К-2; 1—7— измерения выполнены Д. К. Щербачевым (прибор МРV-2 фирмы Лейтц, эталоны— карбид кремния и карбид вольфрама-титана, аттестованные в НФЛ, Англия); 8—10— измерения выполнены Т. Н. Чвилёвой (прибор ПООС, эталон кремний).

спектрами R_g и R_p и имеет резко выраженный аномальный тип дисперсии. Промежуточное положение кругового сечения однозначно свидетельствует о том, что богдановит — оптически двуосный минерал, т. е имеет низкую сингонию. Резко аномальный тип дисперсии кривой R_m определяет преобладание в общей сумме спектров минерала кривых дисперсии с аномальным профилем, а в цветовой гамме богдановита довольно ярких золотисто-желтых тонов. Это обстоятельство важно для

Рис. 4. Спектры отражения богдановита в интервале видимой области $\lambda =$ =420—700 им. Медистый богдановит, обр. № 36, К-2: 1 и 2 показывают изменение отражения в главном сечении $R_g - R_p$, 3— круговое сечение R_m . Железистый богдановит, обр. № 6а, К-2: 4 и 5— главное сечение минерала $R_g R_p$, 6 и 7— промежуточное сечение $R_g' - R_p'$ 8— круговое сечение R_m . Железистый богдановит, обр. № 7, К-2: 9 и 10— промежуточное сечение $R_{g'} - R_{p'}$

Рнс. 5. Спектры отражения богдановита $(1 - R_g, 2 - R_p, 3 - R_m)$ и билибинскита $(4 - R_g, 5 - R_p, 6 - R_m)$

отличия богдановита от билибинскита — в цвете последнего преобладают пурпурные тона и отсутствуют золотисто-желтые.

Микротвердость заметно меняется в зависимости от состава минерала: медистый богдановит 235— 270, в среднем 257 кг/мм² (6 заме-

ров); богдановит промежуточного состава 277—338, в среднем 310 кг/мм² (4 замера); железистый богдановит 290—354, в среднем 321 кг/мм² (14 замеров) (измерено Н. Ф. Соколовой на ПМТ-3 при нагрузке 20 г, прибор тарирован по NaCl— H_{NaCl} =21 кг/мм² при P= =5 г). Изоморфное замещение меди железом приводит, таким образом, к существенному возрастанию микротвердости, но при этом не оказывает заметного влияния на оптические свойства и размеры элементарной ячейки. Аналогичные зависимости были отмечены ранее в блеклых рудах — вхождение железа вместо меди в состав блеклых руд не оказывает ощутимого влияния на отражение и параметр элементарной ячейки, но вызывает увеличение микротвердости [8]. Микротвердость богдановита значительно выше, чем у оптически сходного с ним риккардита — H=161—226, в среднем 212 кг/мм² [2], и ниже, чем у билибинскита, H=329-419, H_{ср}=381 кг/мм² [6]. Относительный рельеф богдановита значительно выше, чем у золота.

Выводы. 1. Установлен новый минерал из группы интерметаллических соединений золота — богдановит, представляющий собой теллурид, крайне богатый металлами, — плюмботеллурид золота, меди и железа Au₅ (Cu, Fe)₃ (Te, Pb)₂. Состав богдановита варьирует от богатого железом Cu : Fe \sim 1 : 2 через промежуточный Cu : Fe \sim 2 : 1 до почти чисто медистого Cu~3. 2. Богдановит является характерным минералом зоны цементации золото-теллуридных месторождений. Железистый богдановит ассоциирует с теллуритами Fe - Pb, Fe - Cu - Pb; медистый богдановит — с билибинскитом Au₃Cu₂PbTe₂, гипергенными медистым и свинцово-медистым золотом. З. Богдановит характеризуется сверхструктурой внедрения типа Ме₄Х, производной от ГЦК структуры золота; параметр примитивной псевдокубической субъячейки равен 4,087 А; минерал анизотропный, оптически двуосный.

Полированные шлифы с богдановитом находятся в Минералогическом музее АН СССР.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андрусенко Н. И., Щепотьев Ю. М. Темп. режим формирования и стадийность субвулканических золото-серебряных месторождений.—«Геох.», 1974, № 2.
- 2. Безсмертная М. С., Чвилёва Т. Н. Определитель рудных минералов в отраженном свете. М., 1976. 3. Бердичевский Г. В. и др. Нахождение концентраций элементов при количе-
- ственном рентгеноспектральном микроанализе минералов. «Геол. и геофиз.», 1977, № 3.
- 4. Данкамб П., Рид С. Прогресс в вычислении тормозной способности и фактора обратного рассеяния. - В кн.: Физ. основы рентгенослектр. локального ан. М., 1973.
- 5. Зубков В. Г., Дубровская Л. Б., Гельд П. В. Нейтронографическое исследование упорядочения нестехиометрических кубических карбидов переходных металлов пятой группы. — ДАН СССР, 1969, т. 184, № 4. 6. Спиридонов Э. М. и др. Билибинскит Au₃Cu₂PbTe₂ — новый минерал, золото-
- теллуридных месторождений. «Зап. всесоюз. минерал. о-ва», 1978, выл. 3—4. 7. Хачатурян А. Г. Теория фазовых превр. и структ. твердых растворов. М., 1974. 8. Чвилёва Т. Н. Влияние примесей на оптические и некоторые другие свойства
- блеклых руд.— В кн.: Исследования в области рудной минералогии. М., 1973. 9. Berman H., Harcourt G. A. Natural amalgams.— «Am. Min.», 1938, vol. 23, N 11.
- Berry L. G., Thompson R. M. X-ray powder data for ore minerals: the Peacock atlas.— «Geol. Soc. Am.», 1962, vol. 85.
 Duncumb P., Reed S. J. B. The calculation of stopping power and backscatter
- effect in electron probe microanalyses. Quantitative electron probe microanalyses .--
- NBS, Sp. Publ., 1968, vol. 198.
 12. Duncumb P., Shields P. K. Effect of critical excitation potential on the absorption correction. Electron Microprobe. N. Y., 1966.
 13. Heinrich K. F. J. X-ray absorption uncertainty. Electron Microprobe. N. Y., 1966.
 14. Reed S. J. B. Characteristic fluorescence corrections in electron-probe microanalysis. «Brit. J. Appl. Phys.», 1965, vol. 16.
 15. Stan bock St. Bentgenaphyse der legicungen von guecksiller mit silber gold und

- 15. Stenbeck St. Röntgenanalyse der legirungen von quecksilber mit silber, gold und zink .- «Zeitschr. anorg. chem.», 1933, vol. 214, N 1.

Кафедра исторической и региональной геологии, ИМГРЭ Поступила в редакцию 14.06.78