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Auszug

Die Kristallstrnktur eines trigonalen Dreischicht-Mnskowits (:~T) von Sultan
Basin, Washington, wurde bestimmt und mittels Ausgleichsrechnung drei-
dimensional vorfeinort. Die Ranmgruppe ist P3112 (P3212). Die Gitterkonstan-
ten sind: a = 5,1963 :l:: 0,0004 A, c = 29,9705 =j~0,0016 A. Der Vergleich der
Strukturdaten des 3 T-Muskowits mit denen eines i.iblichen 22vlrMuskowits
zeigt, daB die Kationen im 3 T sowohl in tetraedrischen als auch in oktaedrischen
Lagen partiell geordnet sind, wiihrend beim 21111die Verteilung der Si und Al in
tetraedrischen Lagen vollkommen ungeordnet ist, und dal3 die Struktur beim 3 T
etwas weniger gewellt ist als beim 21111-Mnskowit. Die einzolne Glimmcrschicht
des 3 T-Muskowits hat die Raumgrnppc C 2, wogegen die Ranmgruppe der ent-
sprechenden Schicht des 21VlrMuskowits C list; demnach sind die Schichten der
beiden Mnskowite nicht equivalent. In Anbetracht dieser Differenz wird die
Ansicht geiiuBert, daB die beiden Muskowitformen nicht als Polytype, sondern
als polymorphe Formen aus voneinander ableitbaren einzolnen Schichten zu
bezeiehnen sind.

Abstract

The crystal strneture of a natural sample of three-layer trigonal (3 T) musco-
vite from Sultan Basin, Snohomish County, Washington, has been determined
and refined by least-squares methods using single-crystal counter intensity data.
This specimcn is trigonal, space group P 3112 (or P 3212) and has the following
cell dimensions: a = 5.1963 :l:: 0.0004 A, c = 29.9705 :l:: 0.0016 A. Comparison
of 3 T muscovite structural parameters with those of thc common 22vl1 muscovite
shows that (a) cations are distributed in a partially ordered arrangement in both
tetrahedral and octahedral sites in 3 T, whereas in 21111the distribution of Si and
Al in tetrahedral sites is completely disordered, and (b) the 3 T structure is
slightly less corrugated than that of 21111muscovite. The single mica layer of 3 '1'
muscovite has space group C 2, whereas the corresponding layer of 21111muscovite
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has space group C I; hence these layers are not equivalent. Considering these
differences, it is suggested that these forms of muscovite not be termed polytypes
but rather polymorphs with derivative single layers.

Introduction

Polymorphism of micas has remained a subject to prime interest
to petrologists and clay mineralogists ever since HENDRICKS and
JEFFERSON (1939) showed that these minerals crystallize with one
of several layered structures, all of which are based on the same
substructure. The substructure is a single mica layer about 10 A thick
consisting of two layers of tetrahedra (containing Si plus Al or FeH)
separated by an octahedral layer (containing primarily Al or Fe+3 in
dioctahedral micas). In the idealized muscovite structure proposed
by JACKSONand \VEST (1930) the mica layer as a unit has monoclinic
symmetry, while its surface layers of oxygen atoms form a hexagonal
array. Hence, according to SMITH and YODER (1956), packing of the
surface layers will be invariant with layer rotations of 60 0 or multiples
thereof, and structures with different overall symmetry will result
from varying the stacking sequence of individual mica layers.

It is clear that an ordered mica crystal can form only if structural
control over the layer stacking sequence exists during growth. SMITH
and YODER (1956) showed that only six distinct mica structures can
be generated by stacking layers with a constant interlayer stacking
angle. By treating mica structures as close-packed arrangements of
anions, ZVYAGIN (1962) defines the possible structures in terms of
the relative displacements of tetrahedral layers with respect to each
other within the mica unit. Rather than considering the various
structures as sequences of mica layers rotated with respect to each
other as SMITHand YODER (1956) have done, ZVYAGIN(1962) preferred
to think of them as a sequence of superpositions of composite layers
having differing relative displacements of tetrahedral layers. In terms
of stacking-sequence descriptions, there is clearly no real difference
between the two methods. ZVYAGIN'Sapproach, however, seems more
desirable if one is attempting to relate structure type to growth
mechanism, since he implies that stacking sequences result from
growth "decisions" relating the position of one tetrahedral layer
relative to another within each composite mica layer. We shall dis-
regard any genetic implications and use SMITH and YODER'S technique
to describe different stacking modifications because of its geometric
simplicity.
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Recently Ross et al. (1966) determined the space groups and
idealized cell geometry of the 36 possible structures having four or
fewer layers in the repeat unit, and interlayer stacking angles of any
combination of 0°, ::J::60°, ::J::1200, and 180°. These authors found

that biotites (trioctahedral) are capable of forming anyone of several
structures with stacking sequences having combinations of 00 and

::f::1200 interlayer stacking angles. Dioctahedral muscovite, on the
other hand, most commonly crystallizes with the 2Ml structure
(alternating + and -1200 interlayer stacking angles) and rarely

with the 3 T structure (constant + 120 ° interlayer stacking angles).

The 1M structure (00 rotation between layers) has been synthesized
and compared with similar natural materials by YODER and EUGSTER
(1955). VELDE (1965) suggested that 1M is a metastable phase of
muscovite. The absence of interlayer stacking angles of ::J::600 and 180 °
in all micas except those containing Li is generally attributed to the
reduction of symmetry of surface oxygen atoms from hexagonal
in the ideal structure to trigonal (or pseudotrigonal) in those struc-
tures that have recently been determined (STEINFINK, 1962; BURNHAM
and RADOSLOVICH,1964; TAKEUCHI, 196f3).

The crystal structure of 2Ml muscovite having the composition
(K.9tNa.06) (AI1.8tFe+3.l2Mg.o6) (Si3.nAI.89)OlO(OH)2 was refined by
RADOSLOVICH (1960) using Fourier methods to R = 17 % for all

measured reflections, and again with the same film data, using least-
squares methods by GATINEAU (1963) to R = 8%. On the basis of
mean bond lengths, RADOSLOVICHsuggested that Al is preferentially
located in one of the two crystallographically independent tetrahedral
cation sites; GATINEAU'S refinement indicated, on the other hand,
little ordering of tetrahedral AI. GUVEN (1967) has refined the struc-
ture of a 2Ml muscovite in which he demonstrated complete lack of
long-range order of tetrahedral AI. Until now no structural studies
of either the 1M or 3 T muscovite structures have been reported.

Although we now have considerable knowledge of the details of
the 2Ml structure, the reasons for the preference of muscovite for
this structure, rather than one or more of the several possibilities,
are not at all clear. RADOSLOVICH(1960) suggested that 2Ml stability
is related to the fact that interlayer K is not in the center of its coor-
dination polyhedron, whereas TAKEUCHI (1966) pointed out that
structural control may be related to the direction of O-H bonds in
the octahedral layers. Implicit in most discussions of this problem is
the concept that the only difference between the various structures



166 NECIP GUVEN and CHARLES W. BURNHAM

is the stacking sequence, and hence that modifications of micas having
identical compositions are polytypes with identical single layers. The
concept of polytypism, as routinely applied to micas in the literature,
requires the assumption of equivalence of the single mica layers-an
assumption that, in the case of muscovite, is not justified on the basis
of the structural knowledge to be presented below.

We report here a determination of the crystal structure of 3T
muscovite that we undertook with the problems stated above in mind.
Specifically, we wanted to determine whether or not the single mica
layer of the 3T form is identical to that of 2M! muscovite, and, in
addition, by comparing the structural parameters of the two forms,
to seek reasons for the obvious preference by muscovite for the 2M!
stacking sequence.

Specimen description

We obtained specimens of 3T muscovite from Dr. M. Ross, U.S.
Geological Survey. This material is part of a sample collected by
Dr. A. C. WATERS, who described it (in AXELROD and GRIMALDI, 1949)
as "a white, nearly uniaxial muscovite (occurring) as veinlets and
replacements in the granodiorite near the Sunrise Copper Prospect,
Sultan Basin, Snohomish County, Washington" . WATERS stated that
"The mica occurs as both fissure and 'replacement veins' t to 1 inch
thick which commonly appear along closely spaced partings or
sheeting in the granodiorite." He suggested that the mica may have
formed by "selective replacement" of the granodiorite, and that "hot
gases, following the sheeting in the granite rock, probably were the
agents that formed the mica."

AXELROD and GRIMALDI (1949) reported the following optical
properties:

Biaxial negative: IX= 1.555 ::f::0.003

f3 = 1.589 ::f::0.003

Y = 1.590 ::f::0.003

Pleochroism feeble: X = pale yellow with some green
y = Z = deeper yellow with more green.

Under the polarizing microscope we observed that the mica appears
as twinned 4 X 3 X l mm aggregates with heavily striated and
ruled surfaces. Small segments of uniform crystals form by cleaving
along the rulings. Such grains with low birefringence show a 2 V of
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2 to 50, depending on the extent to which the crystals are bent. Our
check on refractive indices gave the value (3 :S: Y = 1.592 ::1:: 0.002 for
Na light.

Calculating from a chemical analysis on the basis of 22 anionic
charges, AXELROD and GRIMALDI (1949) gave the formula as:

(KO.90NaO.06CaO.01Bao.01) (AIl.S3Fe2+ 0.04Fe3+ 0.04Mgo.09Tio.01) (Si3.nAlo.89)

01O(OH1.9SFo.03) .

This composition has a striking similarity to that of 2 M 1 muscovite
which was analyzed by RADOSLOVICH(1960). The formula of the latter
is repeated here for comparison:

(KO.94Nao.06)(AIl.S4Mgo.06Fe3+0.12)(Si3.nAlo.s9)OlO(OH)2'

Although AXELROD and GRIMALDI(1949) recognized the appear-
ance of trigonal symmetry on Laue and Weissenberg photographs,
they suggested on the basis of asymmetry of diffuse streaks and the
non-zero optic-axial angle that the true symmetry was monoclinic,
space group 02. In reexamining the material, SMITH and YODER
(1956) ascribed the diffuse streaks on Weissenberg photographs to
stacking disorder and saw no evidence in the sharp x-ray reflections
for lack of trigonal symmetry. They concluded that the mica is 3T,
with space group P3112 (or P3212).

Space group and unit cell

Because of the ribbed, ruled nature of the flakes, which are often
bent and warped, it is difficult to find single crystals of 3 T muscovite
suitable for x-ray diffraction analysis. About 50 crystals that appeared
optically uniform and free of mechanical distortion were examined
by oscillation and rotation photographs. Zero-level Weissenberg
photographs were taken of those that seemed promising, and the one
that showed the least diffuse scattering and spot broadening was
selected for intensity measurements. The a-( 5.2 A)-axis zero-level
Weissenberg photograph of this crystal (Fig. 1) exhibits some diffuse
scattering, indicating the presence of stacking disorder as well as
mechanical distortion. Unfortunately, no better crystals could be
found.

The space group was determined from a set of precession photo-
graphs taken along the c, a (5.2 A), and [12' 0] directions. The c-axis
zero-level precession photograph displays plane point group 6mm,
whereas the first and second levels along the same direction show
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plane point group 3m. The a-axis zero-level precession photograph
shows plane point group 2mm, indicating that the possible 2-fold
axis is normal to a. The [12' 0] zero-level precession photograph shows
plane point group 2. The OO.l reflections with l oF 3n are systemati-
cally absent, indicating the presence of a 3-fold screw axis. The
diffraction symbol is thus 3mP31-; since the 2-fold axis is normal
to a, the space group is P3112 or its enantiomorph P3212.

"-- - _ _
_,;;JIll>

. .

Fig.1. Weissenberg zero-level a-(5.2 A)-axis photograph of 3T muscovite
showing diffuse scattering along the Okl reciprocal lattice rows

Precise unit-cell dimensions were obtained by least-squares refine-
ment of data obtained with a precision back-reflection Weissenberg
camera (BUERGER, 1942) using CUKiX radiation. The refinement was
carried out using an IBM 7094 program (BURNHAM, 1962), which
corrected for systematic errors due to film shrinkage, specimen
absorption, and camera eccentricity. The following results were

obtain ed: a = 5.1963 :::!:0.0004 A, c = 29.9705 :::!:0.0016 A, volume

= 70 0.84:::!: 0.13 A3.
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The 3 T muscovite model

Polytype coordinates

Atomic coordinates of a 3T polytype model were derived from
those of 2Ml muscovite by considering the geometric relationships
between the basic mica unit (the 1M form) and both the 2-layer and
3-layer forms (Fig.2a and b). The orthohexagonal cell of 3T is de-
scribed in terms of the monoclinic 2 M 1 cell as follows:

ao=a2, bo=b2, Co=tc2+ta2'

The hexagonal primitive cell of 3 T is related to the orthohexagonal
cell by

By combining these relations, the matrix for transforming atomic
coordinates of a single mica layer from 2Ml geometry to that of 3T
becomes [Ut/020/00iJ. Using the atomic coordinates of 2Ml deter-
mined by BURNHAM and RADOSLOVICH(1964), we thus obtained the
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Fig.2a. Relationships between 1M, 2M!> and 3T muscovite unit cells as pro.

jected along the [010] direction

Fig.2b. Relationships between 1M (dashed lines), 2Ml (solid lines), and 3T

muscovite unit cells as projected along the [001] direction
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coordinates of atoms in an identical single mica layer referred to the
3T unit cell. By itself this layer has 01 symmetry as it does in the
2M1 structure; in the 3T model the additional layers are generated
by the operations of the 31 axis to yield a 3-layer polytype with space
group P31.

The resulting atomic coordinates were used to calculate expected
intensities of several Okl reflections. Comparison of these with the
a-axis (5.2 A) precession photograph showed qualitative agreement,
indicating that a 3 T model in which the single mica layer is identical
to that of 2M1 muscovite is an acceptable starting point.

Twinning

Polysynthetic twinning of 1M muscovite following the common
mica twin law-180° rotation around the [310] axis with composition
plane (001)-may result in x-ray diffraction patterns similar to those
of 3T muscovite. SADANAGAand TAKEUCHI (1961) pointed out that
the twin and stacking operations become identical if the mica single
layer possesses 02/m symmetry, and has a unit cell with b = a f3.
Accordingly, the nature of a mica structure is clearly dependent on
the frequency of the occurrence of the twin (= stacking) operation.
If such an operation occurs regularly at unit-cell frequencies, a multi-
layer polytype will result; if it occurs frequently but without regular-
ity, the resulting structure would be described in terms of disorder
due to numerous stacking faults; if it occurs only infrequently, the
result would be termed a twin.

In the case of 3 T muscovite, the single mica layer possesses
a 2-fold axis as eXplained previously. In the structure of 2M1 mus-
covite, however, the 2-fold symmetry of the single mica layer is only
approximate. For the sake of simplicity we will assume in the following
discussion that 2-fold symmetry exists rigorously and that the stacking
(120° rotation about c*) and twin (180° rotation about [310]) opera-
tions are equivalent.

In the 3 T polytype, the atomic coordinates for successive mica
layers are given by the operations from space group P 31:

xyz; y, x-y, i + z; y-x, x, i + z.
The structure factor of the 3 T polytype can be expressed as

F3T = Efnei2"(hx + kll+lz)+ Efnei2"(h'Z+k'y+lz)ei2"1!3

+ Efnei2"(h"z+k"y+lz) ei2"21!3 (1)



h h
k = [R] k
1 A(lM) 1 3T

h h'
k = [R] k' (4)
1 B(lM) 1 3T

h h"
k = [R] k"
1 G(lM) 1

3T'
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where the summations are over the n atoms in the single mica layer,
and the hk index transformation is given by the transpose of the
matrix that transforms atomic coordinates. Thus the structure factor
can be split into three terms related to each successive layer:

If now the single mica layers are replaced by 1M crystals, the twin
reciprocal lattice will be identical to that of the 3 T polytype. The
intensity distribution from the twin can be derived from Equation (2)
by omitting phase shifts, since the individual crystals do not scatter
coherently with respect to each other; hence

where lX,p, and yare physical and geometrical factors. Note that the
contributions of the first, second and third layers of the 3 T polytype
are now replaced by contributions from the A, B, and 0 monoclinic
cells of 1M crystals making up the twin. The cell of 1M crystal
is related to the hexagonal primitive cell of a corresponding mica layer
of the 3T polytype (i.e. 1M crystal A to layer 1, 1M crystal B to
layer 2, 1M crystal 0 to layer 3) by the matrix [R] = [OIO/210/0U],
as derived from relations shown in Fig.2b. Note that layer 1 of the
polytype is related to 1M cell A and not B or 0 because of the orienta-
tion requirements of the 2-fold axis parallel to b of the 1M cells.

The indices of the individual contributors to a twin reflection are
related to the transformed indices of the corresponding polytype layer
(see Equation 2) by the matrix [R] as follows:



(0 2 0).1 176 77 104 1 0 0
(1 1 O)B 66 230 204 1 0 1
(1 1 1)0 25 20 45 1 0 2
(0 2 1).1 23 63 47 1 0 3
(1 1 1h 138 221 220 1 0 4
(I 1 2)0 349 212 290 1 0 5
(0 2 2).1 503 410 689 1 0 6
(1 1 2)B 446 406 360 1 0 7
(I 1 3)0 509 721 563 1 0 8
(0 2 3).1 193 144 217 1 0 9
(1 1 3h 261 120 127 1 0 10
(1 1 4)0 19 19 23 1 0 11
(0 2 4).1 92 5 6 1 0 12
(1 1 4)B 70 7 7 1 0 13
(1 1 5)0 12 17 9 1 0 14
(0 2 5).1 27 21 33 1 0 15
(1 1 5h 14 27 23 1 0 16
(I 1 6)0 13 21 15 1 0 17
(0 2 6).1 94 48 66 1 0 18
(1 1 6)B 46 106 87 1 0 19
(1 1 7)0 262 162 135 1 0 20
(0 2 7).1 48 43 85 1 0 21
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Using [R] as given above, we see that:

lB(1M) =

lo(1M) =

(k + IhT
3

(k' + l)aT

3
(kif + IhT

3
(5)

lA OM) =

Thus for It winto be non-zero for any particular hkl of the twin reciprocal
lattice, at least one of the relations given by Equation (5) must yield
an integral value for 'lM. If, however, none of these relations gives
integral values for 'lM' the intensity of that hkl reflection will be
identically zero. It can be shown that if the conditions (h-khT = 0
(mod 3) and (k + 'hT '# 0 (mod 3) are satisfied simultaneously, the

relations given by (5) will all yield fractional values for 'll}!. Reflections
for which these conditions are satisfied lie along the S rows described
by SADANAGAand TAKEUCHI (1961) and will be missing if the crystal

Table 1
Intensities of twinned 1M muscovite and of the 3T polytype of muscovite

Twin individuals Observed 3 T polytype

F~ hklh k I F"e



The crystal structure of 3 T muscovite 173

is twinned. Since such reflections are observed (see Table 3), our
crystal is not a twin.

We also tested the hypothesis of a polytype with "twinned do-
mains" by examining the intensities of reflections along the (10l)3T
row. This is a T row in the terminology of SADANAGAand TAKEUCHI
(1961), and the reflections, while all observable, will nevertheless
have different intensities depending on whether the crystal is a twin
or a polytype. Intensity functions from Equations 2 and 3 were
calculated on the IBM 7094 using a program developed by one of
us (NG) with the 3T polytype coordinates generated in the previous
section. To afford suitable comparisons, intensities for the twin
individuals were multiplied by 3. The results are given in Table 1.
The Fobs values are those obtained from our crystal. Striking differ-
ences occur in intensity distribution along this row, with observed
values in better agreement with those calculated for the 3 T polytype.
In most cases the observed values do not lie between the two cal-
culated values; hence it is unlikely that the crystal contains "twinned
domains."

Intensity measurement and structure refinement

Intensities were measured by counter methods using our Supper-
Pace automated single-crystal diffractometer. To minimize overlap
of reflections due to: (1) the 30 A c axis, (2) diffuseness caused by
stacking faults, and (3) large mosaic spread, in part reflecting me-
chanical distortion of the crystal, we used V-filtered CrKtX x-radiation
to record 463 accessible reflections with indices :::!::h, + k, + l. We
found that our Th-activated NaI scintillation detector, linear amplifier,
and PHA circuitry (set to accept 90% of the incoming radiation)
operate satisfactorily with this wavelength. Our intensity collection
and data-processing procedures have already been described (GU-VEN
and BURNHAM, 1966) and need not be repeated here. Intensity data
were converted to observed structure factors by applying the standard
Lorentz and polarization corrections, and a precise absorption correc-
tion was calculated on the IBM 7094 using numerical integration
techniques (BURNHAM, 1966). Several reflections, whose intensities
were inaccurately determined because of superposition or diffuse
streaking problems, had to be disregarded. Thus only 341 reflections,
listed in Table 3, could be used for the refinement.

Full-matrix least-squares refinement of the 3T structure was
carried out on the IBM 7094 computer using a program written by
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PREWITT (1962) and modified by one of us (CB) to accept analytic
expressions for atomic scattering curves. All atoms were considered
to be fully ionized, and the scattering curve for 0-2 was used for OR-.
Both real and imaginary anomalous dispersion corrections were
applied throughout the refinement. The technical aspects of our use
of scattering factors and anomalous dispersion corrections are analo-
gous to those described by PREWITT and BURNHAM (1966).

To eliminate constraints on atomic positions in the single mica
layer we initiated the refinement in space group P 31, with 19 atoms
in the asymmetric unit. If the assumption of polytypism between
2M1 and 3T muscovites is strictly valid, the space group of the 3T
form must be P3lo since the single layers of 2M1 muscovite possess
symmetry 01 (BURNHAMand RADOSLOVICH,1964; GUVEN, 1967).

After three cycles of refinement, the discrepancy factors for the
P 31 model were reduced to 0.094 (unweighted R) and 0.062 (weighted
R). Subsequent refinement of isotropic thermal parameters gave
a negative temperature factor for OR-. At this stage strong
correlation coefficients existed between parameters of some pairs of
atoms which can be related by a 2 or 1 operation in the single layer.

The coordinates of an apparent inversion center in the single layer
of 3 T muscovite were calculated, and tests for the presence of this
center showed that the pairs of atoms Silo Si2, 0c, 0e, and Od were
clearly off their centrosymmetric sites. Thus the single layer of 3 T
muscovite does not possess an inversion center in contrast with that
of 2M1. Similary we tested for the presence of the 2-fold axis, which
must be present if the space group is indeed P3112. With the excep-
tion of two basal oxygen atoms the agreement was satisfactory, and
subsequent refinement was carried out in space group P3112. Dis-
crepancy factors resulting from refinement in both space groups are
summarized in Table 2; comparison shows that group P 3112 is fully
justified.

Refinement of isotropic temperature factors was successfully run
through three cycles in this space group, and a preliminary com-
putation of the bond lengths showed the following mean values:

T1-O = 1.666 :1: 0.017 A

T2-O = 1.615 :1: 0.017 A

AI1-O = 1.967 :1: 0.013 A

AI2-O = 1.910:1: 0.012 A.



P31 P3112

Unweighted R (= 1:li~ Fel)for all observations 10.4 9.9

(
[1:W (L1F)2

n
6.6 6.3WeightedR = 1:wF~

2 for all observations

Unweighted R for 318 unrejected reflections 9.4 9.1

Weighted R for 318 unrejected reflections 6.2 6.1

Standard error of fit [.Ew (Fo - FYj(m - n)]1/2 13.016 12.448
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Table 2. Discrepancy factors for the two possible space groups of 3T muscovite
based on 341 reflections

Comparison of the tetrahedral bond lengths with those given by
SMITH and BAILEY (1963) indicates that the T2 tetrahedron contains
only Si, whereas the Tl tetrahedron contains about 35% AI. The
octahedral distances, compared with the corresponding values given
by BURNHAM and RADOSLOVICH(1964) and by GUVEN (1967) for 2Ml
muscovite, indicate that the Al2 octahedron has no noticeable iso-
morphic replacement, whereas the All octahedron contains larger
cations and is possibly distorted. We modified the chemical formula
given by AXELROD and GRIMALDI (1949), assigning appropriate site
occupancies according to the following scheme:

AI(Alo.saRo.17)Si2(Sio.555Alo.445MOH1.9sF0.oa)OlO(Ko.90R'o.os),

where

and

R' = CaO.125N ao. 750BaO.125'

Final refinement was carried out with the 341 reflections listed
in Table 3 using a subroutine which rejected reflections with

IFa-Fcl > 6.0. The refinement converged after six cycles to an
unweighted R of 0.064 and weighted R of 0.024 for 280 reflections
that were not rejected. The calculated F's at R = 0.064 are given in
Table 3 (corrected for anomalous dispersion). Of these F's, 129 are
redundant since they are related by the 2-fold axis and subsequent
inversion. Since we corrected them for anomalous dispersion, these
reflections are instead treated as independent*. Further, 57 F's which

* A test of absolute orientation using inverted atomic coordinates in space
group P3212 yielded R values of .069 (unweighted) and .026 (weighted), as com-
pared with .064 and .024 using the coordinates of Table 4 in space group P3112.
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Table 3. Observed and catculaled structure factors of 3T muscovite
(Fe's are corrected for anomalous dispersion)

h k 1 '. "
h k 1 '. 'c

h k 1 '. '. h k 1 ,. "0 0 6 60.8 57.7 -J 0 0 188.0 196.J -1 1 2J 11.0 12,\ -1 2 19 178.5 178.0
0 0 9 142.2 129.2 J 0 J 44.7 45.2 -1 1 .. 11.2 13.8 -1 2 20 25.5 25.0
0 012 65.9 65.6 -J 0 J 42.1 1,a4.7 2 1 1 26.5 30.6 -1 2 21 2.9 2.J
0 o 15 187.\ 176.7 J 0 5 '.5* 9.5 -2 1 2 152.1 1't8.9 -1 2 22 "'2.4 1t3.1
0 o 18 2%.7 17.0 -J 0 5 ,.8* 9.5 _2 1 5 95.6 95.0 -2 2 0 39.1 lat.?
0 o 21 67.8 67.1 J 0 6 5.' 9.J -2 1 6 H.' 12.2 2 2 1 75.7 85.2
0 0" 104.4 103.0 -J 0 6 8.0* 9.7 _2 1 7 10.5 9.8 -2 2 1 25.6 J6.4
1 0 0 27.5 28.2 J 0 7 5.7 9.7 2. 1. 8 27.9 30.8 -2 2 J 46.1 49.J

-1 0 0 27.8 30.It -J 0 7 9.2 9.5 _2 1 8 109.4 127.3 2 2 4 6.8* 6.]
1 0 1 '7.8 51.% J 0 8 10.2 15.7 2 1 9 26.9 30.7 -2 2 6 49.4 .lt5.1

-1 0 1 "'9.0 49.2 -J 0 8 12.2 15.8 -2 1 9 11.5 18.2 -2 2 7 22.\ 11.9
1 0 2 11.,0 18.2 J 0 9 35.2 33.1 2 1 10 3\.4 J9.5 2 2 8 21.5 23.2

-1 0 2 19.9 22.1 -J 0 9 :n.4 3J.O -2 1 10 5.8* 1.5 -2 2 8 17.5 28.8
1 0 J 25.0 33.4 J o 10

7.'*
2.0 2 1 11 18,8 30.6 2 2 9 6.2 2.'1 0 4 "6.8 50.' -J o 10 6.4* J.2 2 1 12 15.7 H.'

_2 2 9 22." 23.9
-1 0 5 52.9 52.' J 011 20.2 24.5 -2 1 12 7.%. J.o -2 212 18.,5 28.....

1 0 6 6J.6 71.5 -J 011 2"'.2 211.8 2 1
"

17.4 20.5 -2 2" 30.7 30.'-1 0 6 70.4 72.7 J o 12 87.4 93.1 -2 1
"

124.0 152.5 -2 2 15 17.0 15.7
1 0 7 63.4 7J.5 -J 012 89.8 93.0 2 1 15 12.0 11.1 -2 2 ,6 48.7 %5.8
1 0 8 84.5 83.7 , 013 35.1 3%.5 -2 1 15 18.0 19.5 -2 2 17 32.6 32.5

-1 0 8 9%.1 84.0 -J 013 )7.8 36.0 2 1 16 21.7 24.1 -2 2 1. 8%.2 83.5
-1 0 9 %2.2 39.6 J 0" 28.8 28.5 _2 1 16 5.1* 5.0 -2 2 19 36.3 )6.0

1 o 10 34.5 31.5 -J 0" 27.7 27.% 2 1 17 8.9 9.9 -2 2 20 %2.2 %2.6
-1 o 10 ".5 32.9 J 015 56.9 55.J 2 1 18 11.0 13.7 -2 221 %5.5 '5.91 o 11 13.6 10.2 -J 015 56.7 55.2 -2 1 18 7.J 11.\ -J 2 1 }O., }0.6
-1 011 8.2* 10.} 0 1 0 27.2 30.% -2 1 19 6.5 8.' -J 2 6 6".9 60.6
1 o 12 7.2* 4.9 0 1 1 '-7.6 49.2 -2 1 21 7.0 6.. -J 2 7 %%.7 '-1t.1

-1 o 12 7.5* 6.2 0 1 2 2%.0 22.1 -2 1 22 11.5 J.O -J 2 8 33.0 30.8
1 o

"
11.9 11.2 0 1 J 26.7 29.5 -J 1 1 27.3 29.5 -J 2 9 31." 30.1

-1 013 12.9 9.6 0 1 . 53.6 51.9 -J 1 . 22.6 28.6 -J 2 10 37.4 J9.5
1 0" 1;.0 1).0 0 1 5 5J.6 52.' J 1 5 72.9 7%.1 -J 211 2%.0 30.6

-1 0" 1;.% 15.2 0 1 6 67.8 72.7 -J 1 5 J6.' 36.2 -J 212 H.6 14.3
1 o 15 17.0 17.7 0 1 7 65.J 71.9 J 1 6 ".J 27.3 -J 213 8.7 9.0

-1 015 17.8 11,..8 0 1 8 69.J 8%.0 J 1 7 ".7 %%.2 -J 2" 17.7 20.'1 o 16 16.' lJ.Jj 0 1 9 J5.5 J9.6 -J 1 7 29.7 %0.% -J 2 15 11.7 11.1
-1 o ,6 16.J 15.9 0 1 10 :JO.O 32.9 -J 1 8 24.2 33.2 -J 216 22.' 2%.1
1 o 17 H.3 20.1 0 111 9.6 to.} -J 1 9 20.4 28.5 -J 217 10.2 9.9

-1 o 17 9.. 15.0 0 1 12 5.3. 6.. -J 113 6.5* 8.' 0 J 0 181.7 196.3
1 o 18 21.9 20.' 0 1 13 9.7 9.6 -J 1

"
11.0 21.6 0 J J 1,.2.9 %%.7

-1 o 18 24.8 22.' 0
'"

12.6 15.2 -J 1 15 7.5 9.J 0 J 5 5.4* 9.]
1 o 19 J2.J J5.7 0 1 15 11.2 H.8 -J 1 17 8.5 10.' 0 J 6 5.'* 9.7

-1 o 19 ".J 3".} 0 1 16 11.9 15.9 -J 1 18 8.5 15.5 0 J 8 14.7 15.8
1 o 20 %0.1 1r.2.t 0 1 17 7.7 15.0 0 2 0 4'.1 %2.' 0 J 9 ".7 ".0-1 o 20 )9.8 %2.% 0 1 18 19.} 22.5 0 2 1 25.0 ,... 0 J ,0 7.2* M
1 o 21 20.7 23.0 0 1 19 27." :5%.} 0 2 2 22.7 19.7 0 J11 25.8 2%.8

-1 021 22.1 22." 0 121 17.8 22.4 0 2 J 1t8.% %8.% 0 J12 93.1 93.0
1 022 33.9 32.0 0 1 22 27.1 32.0 0 2 6 44.S %5.5 0 J13 34.8 36.0

-1 o 22 33.t 32.0 0 1 2J 10.6 10.5 0 2 8 15.8 2,.\ 0 J" 27.5 27.%
1 0" 11.5 12.% 0 1.. 12.3 15.5 0 2 9 21.6 29.1 0 J 15 55.1 55.2

-1 o 2J 1}.2 10.5 -1 1 1 %8.7 51.4 0 210 20.S 19.% -1 J 1 1}., 13.0
1 0" 15.9 1}.8 1 1 2 150.6 HS.9 0 213 ".5 35.2 1 J 6 36.1 28.5

-1 0" 18.0 15.5 -1 1 2 18.1 18.2 0 2" ".5 29.6 -1 J 6 60." 59.6
2 0 0 40.9 41.7 -1 1 J 30.9 33.4 0 215 21.8 18.1 -1 J 7 "3.5 3".1_2 0 0 J9.9 42.} -1 1 . 50.1t 50.} 0 216 %11.1 ".5 -1 J 8 51.8 62.0
2 0 1 26.0 36.\ 1 1 5 10}.9 95.0 0 2 17 32.% 3".2 -1 J 10 10.9 1.4

-2 0 1 21t.3 3".4 -1 1 5 50.1 5J.9 0 2 18 83.2 8}.0 -1 J11 8.7 12.2
2 0 2 16.8 18.' -1 1 6 62.0 71.5 0 219 J7.9 J7.' -1 J12 22.5 2".0

-2 0 2 15.5 19.7 1 1 7 9.7 9.. 0 2 20 42.6 42.1 -1 J13 21.2 21.1
2 0 J 50.6 49.3 -1 1 7 62.2 7J.5 0 2 21 47.9 46.6 -1 J" 17.1 19.J

-2 0 J %7.J "8.It 1 1 8 124.9 127.3 1 2 1 28.5 29.5 -1 J 15 17.0 16.5
2 0 6 41.8 %5.1 1 1 9 11.9 18.2 1 2 J 20.8 29.3 -1 J 16 H.8 16.0

-2 0 6 "3.7 "5.5 -1 1 9 J6.7 J9.6 1 2 . 28.9 28.6 -1 J 17 2.8 J.9_2 0 8 23.2 23." 1 1 10 6.2* 1.5 -1 2 . 96.0 9J.' -2 J J 31.3 22.3
2 0 9 2,..8 23.9 -1 1 10 32.1 31.5 -1 2 6 6.7 7.6 -2 J 6 H..7 60.1

-2 010 19.9 19.4 1 111 J6.6 38.5 -1 2 7 45.7 '%.7 -2 J 7 ".7 32.3
2 011 30.6 36.0 -1 111 11.4 10.2 1 2 8 25.3 33.2 -2 J ,0 9.2 2.9

-2 011 3%.% 38.6 1 1 12 8.6* J.O -1 2 8 9.5 7.J -2 J11 9.1 13.3
2 o 12 16.\ 28.% -1 112 5.%* 4.9 1 2 9 26.9 28.5 -2 J12 21.3 23.1

-2 012 18.1 25.' 1 113 17.6 22.7 -1 2 9 18.\ 17.8 -2 J13 21.1 23.6
2 0" 30.7 30.5 -1 113 8.J t1.2 1 210 37.2 J9.9 -2 J" 15.3 17.6
2 o 15 17.5 15.7 1 1

"
ao.2 152.5 -1 2 10 109.0 109.5 -2 J 15 16.2 18.'-2 o 15 18.5 18.1 1 1 15 21.7 19.5 1 211 13.' 29.' -2 J 16 13.8 13.'2 o 16 U.% %5.8 -1 1 15 13.6 17.7 -1 211 25.S 24.7 -2 J 17 6.2 8.1

-2 016 "7.2 %'-.5 1 1 16 4.8 5.0 1 2 12 16.6 15.6 -J J 0 182.3 196.6
2 o 17 34.7 ".5 -1 1 16 9.7 13.' -1 212 21.5 17.8 -J J 5 8.5 9.5

-2 o 17 J5.8 31t.2 1 1 17 65.2 7'.J 1 213 7.9 8.4 -J J 6 10.} 9.5
2 o 18 85.5 8}.5 -1 1 17 8.5 20.1 -1 213 95.7 93.8 -J J 7 11.1 9.7

-2 o 1. 85.1 83.0 1 118 6.9 11." 1 2" 20.0 21.6 -J J 8 H.8 15.7
2 o £9 J9.0 J6.0 -1 1 1. 17.6 20.5 -1 2,. 18.0 16.2 -J J 9 29.5 JM

-2 o 19 38.5 J7.4 1 1 19 %.5* 8.4 -1 2 15 19.} 19.1 -J J 10 7.9* 2.0
2 o 20 42.1 .\2.6 -1 1 19 26.3 J5.7 1 216 22.7 2%.6 -J J11 22.7 2".5

-2 o 20 42.} %2.1 1 1 20 40." %3.5 -1 216 129.6 115.9 -J J 12 92.0 9J.l
2 o 21 %6.8 %5.9 1 1 21 4.2 6.. 1 217 13.0 10.5 -J J1J 33.8 ".6-2 o 21 '6.J "6.6 -1 1 21 16.5 23.0 -1 2 17 '.ij* 2.4 -J J" 26.2 28.,
J 0 0 185.9 196.6 -1 1 22 25.' 32.0 -1 218 26.1 27.2 -J J 15 5J.2 55.J

* Oburved iDtendt,. 18 leu than 20'(10); 1011 ..dgned the value of 20'(10),

are also redundant by the 3-fold axis are also included as independent
observations.

The atomic coordinates and isotropic temperature factors from
the last cycle are listed In Table 4. The abnormal temperature



Position Atom x a (x) y a (y)
I

z a (z) B a(B)

3a All -0.230 ::I::0.001 0.230::1:: 0.0011 1/3 0.95::1:: 0.17
3a Al2 0.100 ::1::0.001 -0.100 ::1::0.001 1/3 0.74::!:::0.19
3b K 0.130::1:: 0.001 -0.130::1:: 0.001 5/6 1.73 ::1::0.10
6c 0. 0.750::1::0.004 0.178::1::0.003 -0.0357::1:: 0.0004 1.53::1:: 0.43
6c 0. 0.522::1:: 0.003 0.566::1:: 0.004 -0.0363::1:: 0.0004 0.40 ::!:::0.35

6c OR 0.112 ::1::0.004 -0.085::1:: 0.004 -0.0337::1:: 0.0002 0.39::1::0.19

6c Tl 0.796::1:: 0.002 0.200::1:: 0.002 -0.0894::1:: 0.0001 0.19::1::0.20

6c T2 0.462::1:: 0.002 0.550::1:: 0.002 -0.0895::1:: 0.0001 0.65::1:: 0.20

6c 0, 0.666::1:: 0.004 0.857::1:: 0.004 -0.1110::1:: 0.0003 0.74::1:: 0.22

6c Od

f

0.140:1: 0.005 0.451 ::I::0.004 -0.1058:1: 0.000410.80::1:: 0.30
6c 0, 0.563:1: 0.004 0.311 :I: 0.004 -0.1098::1::0.00030.17:1:0.27
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Table 4. Atomic coordinates in 3T muscovite, space group P3l12, origin at 3112

factors are possibly related to the stacking disorder described pre-
viously.

Final interatomic distances and angles were calculated using the
IBM 7094 program ORFFE (BUSING et al., 1964), and the results

Fig. 3. Single mica layer of 3T muscovite projected on (001). Thick solid and
dashed lines: upper tetrahedral layers. Thin solid lines: lower tetrahedral layers.

Dash-dot lines: octahedral polyhedra

Z. Kristallogr. Bd. 125, 1-6 12



Tl tetrahedron: T2 tetrahedron:

Tl-O. 1.622 :!: 0.014 A T2-Ob 1.619 :!: 0.012 A
Tl-O, 1.690 :!: 0.018 T2-O, 1.545 :!: 0.017

Tl-Od 1.675 :!: 0.022 T2-Od 1.563 :!: 0.021

Tl-O, 1.698 ::1::0.015 T2-O, 1.686 ::1::0.016

Mean Tl-O 1.671 ::1::0.009 Mean T2-O 1.603 ::1::0.008

0.-0, 2.709::1:: 0.019A Ob-O, 2.593 ::1::0.016 A
O.-Od 2.768 :!: 0.022 Ob-Od 2.731 ::1::0.020
0.-0, 2.653 ::1::0.016 Ob-O, 2.634 ::1::0.016
O,-Od 2.831 :!: 0.024 O,-Od 2.488 :!: 0.024
0,-0, 2.674 ::1::0.024 0,-0, 2.606 :!: 0.025
Od-O, 2.713 ::1::0.026 O,-Od 2.638 :!: 0.023

Mean 0-0 2.725 :!: 0.009 Mean 0-0 2.615 :!: 0.009

All octahedron: Al2 octahedron:

All-O. 1.971 ::1::0.019 A AI2-Ob' 1.943 :!: 0.015 A
All-O/ 1.941 ::1::0.015 AI2-O. 1.918 =~ 0.016

All-Ob 1.941 ::1::0.015 AI2-Ob 1. 943 ::1:: 015

All-O.' 1.971 ::1::0.019 AI2-O.' 1.918 ::1::0.015

All-OR 2.002 ::1::0.017 AI2-OR 1.878 :!: 0.015

All-OR' 2.002 :!: 0.017 AI2-OR' 1.878 :!: 0.015

Mean All-O 1.971 ::1::0.007 Mean AI2-O 1.913 ::!::0.006

Unshared: Unshared:

O.-Oa' 2.961 :!: 0.031 A OR'-O. 2.775 ::1:: 0.020 A
Ob' -OR 2.918 ::1::0.018 O.'-OR 2.775 ::!::0.020

OR' -Ob 2.918 :!: 0.018 °b-Ob' 2.972 ::1::0.026

Mean 0-0 2.932 ::1::0.013 Mean 2.841 ::1::0.013
unshared unshared

Shared: OR-OR' 2.492 ::!:: 0.019 A
O.-Ob' 2.453 ::1::0.012

Ob-O.' 2.453 ::1::0.012

Mean 0-0 2.466 ::1::0.008
shared

InterIayer cation:

K-O. 2.900 :!: 0.014 A K-O, 3.283 ::!:: 0.014 A
K-O, 2.839 :!: 0.015 K-O, 3.385 ::1::0.015

K-Od 2.864 ::1::0.015 K-Od 3.502 ::!::0.014

Mean K-O 2.868 :!: 0.009 Mean K-O 3.390 :!: 0.008

K-OR 3.997 ::1::0.007 A
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Table 5. Interatomic distances in 3T muscovite
(See Fig. 3 for atom designation)
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Table 6. Interatomic angles in 3T muscovite

(Central atom is vertex)

Tl tetrahedron:

O,-T1~Od

0.-T1-O,

0,-T1-Od
Oa-TI-O,
Oa-TI-O,

Oa-TI-Od

Mean 0-T1-0

114.59 ::!:: 0.76°

104.23 ::!:: 0.92

107.12 ::!:: 0.93

106.06 ::!:: 0.90

109.75 ::!:: 0.79

114.21 ::!:: 0.75

109.32 ::!:: 0.35

T2 tetrahedron:

0,-T2-Od
O,-T2-O.
Od-T2-0.
Ob-T2-0,

0.-T2-Od
0.-T2-O.

Mean 0-T2-O

106.36 ::!:: 0.78 °
107.50 ::!:: 0.83

108.58 ::!:: 0.88

110.06 ::!:: 0.83

118.23 ::!:: 0.79

105.69 ::I: 0.85

109.40 ::!:: 0.34

Angles between basal oxygens:

O.-O,-Od
Od-O.-O,
O,-Od-O.
O,-Od-O.
O.-O,-Od
Od-O.-O,

Amount of rotation from 1200

141.24 ::I: 0.52°

143.81 ::!:: 0.60

145.52 ::!:: 0.58

94.97 ::!:: 0.38

97.23 ::!:: 0.41

96.31 ::!:: 0.38

21.24°
23.81
25.52
25.03
22.77
23.69

Mean 23.68 ::!::0.20

are given in Tables 5 and 6. The configuration of the single mICa
layer is shown in projection on (001) in Fig. 3.

To check our refinement results the three-dimensional electron-
density distribution and the difference electron density (eo - ec) were
computed using an IBM 7090 program (SLY et al., 1962). The Fourier
and difference-Fourier maps clearly show that there is no noticeable
electron density in the vacant octahedral sites. Further, the difference-
Fourier map confirms the refined structure.

Comparison of 3T and 2M1 muscovite structures

The differences between these two forms of muscovite consist
essentially of (a) substitutional order-disorder of the tetrahedral and
octahedral cations and (b) the distortions in the two structures.

a) Substitutional order-disorder

Interatomic distances in 3T muscovite and in the well-refined 2MI
structures are summarized in Table 7. There is a noticeable "partial
ordering" in both tetrahedra and octahedra of 3 T muscovite, with
Al restricted to the T 1 tetrahedron and Fe, Mg, and Ti to the All
octahedron. In 2M I muscovites there is no such ordering.

12*



1.671 A 1.645 A 1.643 A
2.725 2.685 2.682

1.603 1. 645 1.643
2.615 2.685 2.682

1.971 1. 923 1.932
2.932 2.824 2.891

1.913 1.923 1.932
2.841 2.824 2.891

2.492 2.370 2.402
2.453 2.446 2.454

b) Distortions
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Table 7. Comparison of the tetrahedral and octahedral mean interatomic distances
in 3 T and 2Ml muscovite

3T muscovite

2Ml muscovite

(BURNHAM and
RADOSLOVICH,

1964)

(GU-VEN,

1967)

T 1 tetrahedron

Tl-O
0-0

T 2 tetrahedron
T2-O
0-0

All octahedron
All-O
0-0 (unshared)

Al2 octahedron
AI2-O
0-0 (unshared)

shared
OR-OR
0-0

Comparing the interatomic distances in 3T muscovite and the
wellrefined structures of 2M! muscovite (BURNHAMand RADOSLOVICH,
1964; GU-VEN, 1967) we found that individual tetrahedra are more
regular in the 2M! than in the 3T structure. However, the linkage
of the tetrahedra results in slightly greater structural distortion in 2 M 1
than in 3T. These distortions may be divided into two types: those
in the plane of the layers and those normal to the layers.

Tetrahedra rotate about axes normal to the layer, destroying the
ideal hexagonal-sheet configuration and forming pseudoditrigonal rings
of tetrahedra. The amount of rotation is obtained by comparing the
observed interatomic angles between basal oxygen atoms (Table 6)
to the 120 ° values found in ideal hexagonal rings. The tetrahedral
rotations have a mean value of 11.84 ::!: 0.10 ° in 3T muscovite,
since the rotations of two adjacent tetrahedra contribute to the total
deviation from 120°. The corresponding rotations in 2M! muscovite
have a mean value of 11.37 ::!::0.04 ° (Gu-vEN, 1967).
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The tetrahedral distortions normal to the plane of the mica sheet
are shown by the difference of the z coordinates of the basal oxygens.
In both structures, basal oxygen atoms Oc and O. are coplanar
whereas 0d occupies a position off this plane towards the vacant
octahedral site. The amount of "tetrahedral tilt" can be calculated
according to:

[
Zo + Zo

]
.,1z =

c
2

e
- ZOd . C . slnj'L

The tilt, ,1z, is 0.23 A in both the 2Ml muscovite structure refined
by GUVEN (1967), and the Na-rich 2Ml muscovite structure deter-
mined by BURNHAM and RADOSLOVICH(1964). In the 3T structure,
however, the tilt is 0.14 :::J:0.02 A showing that basal oxygen layers
are less corrugated than those in 2M 1 muscovite.

The tetrahedral cations are coplanar in both the 2Ml and 3T
structures. Also the extent of octahedral flattening is essentially the
same in both structures. As seen in Table 7, the shared OH-OH
edge in 2Ml muscovites is noticeably contracted and is shorter than
the other shared edges. Corresponding shared octahedral edges in 3 T
muscovite, show also similar differences.

Conclusion

The concept of polytypism, as developed in studies of different
forms of substances like SiC, CdI2 and ZnS is based on different ways
of stacking ideally close-packed equivalent layers (VERMA and
KRISHNA, 1966). As shown above, the single layer of 3T muscovite is
not equivalent to the single layer of 2Ml muscovite; hence, these
two structures cannot be considered polytypes. However, both single
layers bear an interesting relation to an ideal undistorted mica single
layer with a disordered cation distribution, whose symmetry is 021m.
In 2Ml muscovite the mirror plane is destroyed by distortions, and
the symmetry of the single layer is reduced to 01, while in 3T mus-
covite the inversion center is destroyed by substitutional ordering,
and the symmetry of the single layer becomes 02. Thus, both single
layers are derivatives (BUERGER, 1947) of the ideal mica layer. We
propose therefore to term the two muscovite structures polymorphs
with derivative single layers.
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