Zeitschrift für Kristallographie, Bd. 136, S. 48-65 (1972)

Refinement of the crystal structures of realgar, AsS and orpiment, $As_2S_3^*$

By D. J. E. MULLEN and W. NOWACKI

Universität Bern, Abteilung für Kristallographie und Strukturlehre**

(Received 29 October 1971)

Auszug

Die Kristallstrukturen von Realgar, AsS und Auripigment, As₂S₃ wurden mittels Diffraktometerdaten verfeinert. Die Zelldimensionen von Realgar sind: $a = 9,325 \pm 0,003$ Å, $b = 13,571 \pm 0,005$ Å, $c = 6,587 \pm 0,003$ Å, $\beta = 106^{\circ}$ $23' \pm 5'$ und diejenigen für Auripigment sind: $a = 11,475 \pm 0,005$ Å, $b = 9,577 \pm 0,004$ Å, $c = 4,256 \pm 0,002$ Å, $\beta = 90^{\circ} 41' \pm 5'$. Die Raumgruppe ist in beiden Fällen $P2_1/n-C_{2h}^5$. Für Realgar wurden 1525 unabhängige Reflexe gemessen und der *R*-Wert ergab sich zu 0,045 (für 1205 Reflexe); für Auripigment 836 Reflexe und R = 0,064 (für 586 Reflexe).

Die Strukturen bestätigen die ursprünglichen Bestimmungen^{1, 2}. Realgar weist in der Einheitszelle vier getrennte As_4S_4 -Moleküle mit wiegenförmiger Konfiguration auf, welche durch van-der-Waalssche Kräfte zusammengehalten werden. Die Struktur von Auripigment besteht aus Schichten von kovalent gebundenen Schwefel- und Arsenatomen, die normal zu (010) liegen. Van-der-Waals-Kräfte sind für die Kohäsion zwischen den Schichten verantwortlich.

Bindungslängen und -winkel sind in beiden Strukturen sehr ähnlich; der mittlere (As-S)-Abstand beträgt 2,237(2) Å in Realgar und 2,283(5) Å in Auripigment.

Abstract

The crystal structures of realgar, AsS and orpiment, As₂S₃ were refined using diffractometer data. The cell dimensions of realgar are: $a = 9.325 \pm .003$ Å, $b = 13.571 \pm .005$ Å, $c = 6.587 \pm .003$ Å, $\beta = 106^{\circ} 23' \pm 5'$, and those of orpiment are: $a = 11.475 \pm .005$ Å, $b = 9.577 \pm .004$ Å, $c = 4.256 \pm .002$ Å, $\beta = 90^{\circ} 41' \pm 5'$. In both cases the space group is $P 2_1/n$ (C_{2h}°). A total of 1525 independent reflections were measured for realgar, and the final *R* factor was

* Contribution no. 224, part 65 on sulfides and sulfosalts.

** CH-3012 Bern, Sahlistr. 6

¹ T. ITO, N. MORIMOTO and R. SADANAGA, The crystal structure of realgar. Acta Crystallogr. 5 (1952) 775-782.

 2 N. MORIMOTO, The crystal structure of orpiment (As_2S_3) refined. Min. Journal (Japan) 1 (1954) 160-169.

0.045 (based on 1205 reflections). For orpiment 836 independent reflections were obtained, and the final R factor was 0.064 (based on 586 reflections).

The structures are essentially the same as in the original determinations^{1, 2}. Realgar has four separate As_4S_4 molecules per unit cell, with cradle-like molecular configurations, van der Waals forces being operative between the molecules. The structure of orpiment consists of layers of covalently bonded sulfur and arsenic atoms, lying normal to the (010) direction. Van der Waals forces are responsible for inter-layer cohesion.

Bond distances and angles are closely similar in the two structures, the mean As—S bond distances being 2.237(2) Å in realgar and 2.283(5) Å in orpiment.

Introduction

The structure of realgar was originally determined by Iro and coworkers¹ in 1952 by means of Harker-Kasper relationships and Fourier syntheses of hk0 and 0kl projections.

The structure of orpiment was originally determined by MORIMOTO³ and subsequently refined by him² by means of Fourier syntheses.

The present refinements of the structures of realgar and orpiment were undertaken to obtain better As—S bond distances, and thus to afford a more precise comparison between the two sulfides.

I. Realgar, AsS

Experimental

Crystal data: $a = 9.325 \pm .003$ Å, $b = 13.571 \pm .005$ Å, $c = 6.587 \pm .003$ Å, $\beta = 106^{\circ} 23' \pm 5'$; V = 799.7 Å³; F(000) = 784.0; Z = 4; λ (CuK α) = 1.54718 Å; linear absorption coefficient, μ (CuK α) = 303 cm⁻¹.

The material used for the collection of data came from the Lengenbach quarry (Binnatal, Switzerland).

A spherical sample, 0.186 mm in diameter, was made by polishing a crystal of realgar under the microscope. Cell dimensions were determined by the application of a least-squares method to back-reflection Weissenberg measurements, to obtain a "best fit" for cell parameters.

The space group is $P2_1/n$, with hol absent when h + l = 2n + 1and 0k0 absent when k = 2n + 1.

Intensity data were collected using a Supper-Pace two-circle diffractometer with Weissenberg geometry. A continuous ω -scan procedure was used to collect a total of 1525 independent reflections

³ N. MORIMOTO, The crystal structure of orpiment. X-rays 5 (1949) 115-120. Z. Kristallogr. Bd. 136, 1/2

D. J. E. MULLEN and W. NOWACKI

Table 1. Comparison of F_0 and F_0 values for realgar * denotes unobserved reflections ($F_0 < 3\sigma$)

h	k	1	F _o F _c	h	k	1	F _o F _c	h k	1	F _o F _c	h k l	F _o F _c	h k l	F _o F _c
0	0	2	243.4*-283.0	-1	0	1	133.2 -148.6	-1 7	3	55.8 -56.0	-2 0 8	18.8 18.6	2.7 6	35.6 34.3
		6	8.3* - 5.5 18.3 18.5	-1	0	3	207.8* 224.3	-1 7	4 19	29.5 29.7	2 1 0	42.5 -45.9	-2 7 6	28.1 -25.9 6.2* 3.6
0	1	1	113.8 114.6	-1	0	5	5.8* - 2.6	-1 7	5	9.9* -10.3	-2 1 1	105.6 -108.8	280	55.0 -53.3
		3	78.1 -82.3	į	ŏ	ź	42.1 -44.0	1 2 1	6	56.2 -54.0	-2 1 2	129.4 -134.7	-2 8 1	22.8 -17.4
		5	17.3 -17.8	-1	1	ó	34.2 37.0	-1 7	7	19.0 -18.8	-2 1 3	67.8 -70.4 151.6 158.1	-282	51.9 49.1 12.5* 10.9
		6	63.4 62.2	-1	1	1	8.4* - 1.0	18	0 1	80.3 -76.8	2 1 4	62.1 64.6	283	74.5 70.8
0	2	ó	51.2 49.3	1	i	2	135.5 -139.6	-1 8	1	51.9 -48.2	2 1 5	28.5 29.6	284	37.6 -37.2
		2	66.2 -67.6 99.1 -104.7	-1	1	3	42.8 38.6 62.0	-18	2 1	59.9 57.4 37.0	215	78.1 -73.7 7.9* 5.5	-284 285	39.9 35.6 15.2 -15.1
		34	14.8* -13.4 46.7 50.0	-1	1	3	116.8 119.0	18	3 3	22.2 20.2 46.4 40.7	-2 1 6	94.8 86.8 4.8* 3.1	-285 286	35.8 32.2
		5	18.9 19.8	-1	1	÷.	54.0 56.7	18	4 (69.9 -66.3	-2 1 7	25.3 23.7	-286	68.0 -59.3
		7	29.7 30.2	-1	i.	5	38.3 -39.3	18	5	32.0 29.8	2 2 0	65.1 -70.5	290	153.4 -147.6
0	3	1 2	57.9 -59.9 53.6 -55.8	-1	1	6	56.1 -54.8 51.9 -50.1	-18	5	14.1* -11.8 40.7 36.8	221	216.2 -240.1	-2 9 1	21.6 19.4
		3	36.0 35.9	1	i	Ţ	3.3* - 1.6	-18	6	5.4* - 2.5	2 2 2	77.6 80.0	-2 9 2	88.0 -86.3
		5	49.6 -51.0 5.0* 0.4	-1	2	ó	155.8 182.5	19	1	44.1 39.2	223	45.1 -44.5	-293	28.1 -26.9 18.0* -14.9
		6	39.0 38.1 34.9 -34.5	-1	2	1	49.5 49.2	-19	1 1	33.2 31.7 7.8* - 4.0	-223	100.2 ~106.0	294	26.6 27.5
0	4	ò	19.9 -21.4	1	2	2	36.8 36.7	-19	2 1	27.2 123.7	-2 2 4	26.9 27.0	2 9 5	6.9* 0.3
		2	26.6 29.8	- }	2	3	145.8 159.2	-19	3 3	44.5 -42.0 29.0 25.2	-2 2 5 -2 2 5	17.9 -19.1 76.3 74.7	-2 9 5	34.3 31.5 10.2* 7.1
		3	97.6 -97.8 62.1 61.5	-1	2	34	14.5* 10.2 66.5 =70.2	19	4 ·	14.4* 11.7	226	49.1 52.1	2 10 0	59.0 -57.6
		5	4.6* 4.0	-1	2	4	6.8* 4.5	19	5	10.6* 9.9	2 2 7	22.9 -23.6	-2 10 1	49.1 46.0
		7	12.1* -12.8	-1	2	5	31.0 -32.2	1 9 1	6	10.3* - 9.2	2 3 0	159.1 -173.7	-2 10 2	14.6* 3.2
0	5	1 2	17.1 -17.6	-1	2	6	52.6 53.9 38.5 -37.6	-1 9	6 : 0 :	12.7 -11.7	2 3 1	28.4 -23.9	2 10 3	77.8 71.5
		3	105.3 106.0	1	2	2	8.0* - 7.2	1 10		51.2 49.2	2 3 2	33.0 32.9	2 10 4	38.6 -37.7
		5	48.2 -44.6	i	3	ó	40.1 40.0	1 10 1	2	26.9 25.5	2 3 3	43.7 -47.5	2 10 4	7.1* - 3.7
		7	46.5 -43.7	-1	3	1	45.9 45.8 19.8 -18.8	-1 10 1	233	8.9* - 6.9 78.7 -72.2	-2 3 3	40.7 -42.3	-2 10 5 -2 10 6	36.2 32.8 5.9* - 4.9
0	6	Ó	213.9 232.6	_1	3	2	$13.0^{*} - 5.1$	-1 10	3	33.7 -28.8	-2 3 4	8.0* 6.5	2 11 0	71.1 -66.7
		2	143.8 -150.1	1	3	ž	87.8 -87.8	-1 10	4	65.1 58.8	-2 3 5	52.9 51.3	-2 11 1	14.5* -17.3
		3	28.5 -29.9 41.5 44.1	-1	3	4	71.0 75.6	1 10 -1 10	5	29.3 27.7 16.7 15.1	236	21.4 -21.7 7.1* - 1.9	2 11 2	69.0 68.7 81.2 -81.4
		5	59.9 57.9	-1	3	4	25.5 -25.3	-1 10	6 (62.1 -55.1	2 3 7	55.2 -57.4	2 11 3	27.4 27.2
	-	7	16.2 -16.1	-i	3	ş	32.0 -32.2	1 11	1	56.1 58.7	2 4 0	118.8 -118.6	2 11 4	6.1* 2.4
U	7	2	56.1 50.3 31.5 -31.8	-1	3	6	47.6 48.0	-1 11	1 2	56.1 54.4 8.8* - 6.5	241 -241	50.5 53.2 86.5 89.0	-2 11 4 2 11 5	65.4 65.8 18.2 18.5
		3	101.0 -97.8	-1	3	7	3.0* 2.5 41.5 - 39.4	-1 11 1	2 3	40.1 -41.2	242	51.7 50.9	-2 11 5	14.3 14.9
		5	28.3 -28.0	i	á.	ò	149.4 -159.2	-1 11	Ś	42.1 -42.5	2 4 3	59.2 -58.9	2 12 1	35.7 37.6
0	8	0	180.7 183.9	-1	4	i	9.3* - 7.6	-1 11	4 3	20.7 -20.8	-243 244	7.3* 3.2 7.8* - 3.8	-2 12 1 2 12 2	20.2 19.7 28.7 -28.9
		1	28.8 -30.1 103.2 -98.1	-1	4	22	25.4 -24.0 101.0 -106.9	-1 11	5	63.6 66.1 18.6 17.8	-244	80.8 76.8	-2 12 2 2 12 3	38.3 -39.9
		3	48.9 -45.7	1	4	3	205.8*-210.1	1 12 0	0 10	06.5 -102.7	-245	8.9* 2.2	-2 12 3	20.8 20.3
		5	12.1* 11.5	1	ī,	í.	17.4* 18.0	-1 12	1	49.0 -48.2	-2 4 6	7.9* 0.1	-2 12 4	18.1 -17.9
0	9	1	40.4 30.5 34.3 27.9	-1	4	5	9.9* 9.8 48.7 47.7	-1 12 :	22	7.0* 8.0 75.7 -76.0	247	5.7* 5.1 22.8 -21.0	-2 12 5 2 13 0	6.4* 6.7 6.7* 6.4
		2	35.6 -32.7	-1	4	5	54.0 54.1	1 12	3	37.0 -36.9	2 5 0	38.5 36.8	2 13 1	8.2* - 6.4
		á.	48.6 -48.3	-1	4	6	24.9 ~25.1	1 12	4	16.9 18.4	-2 5 1	6.0* - 4.1	2 13 2	42.4 43.2
		6	37.9 35.3 45.0 42.3	-1	4	ź	33.0 -32.8	-1 12	5	8.6* - 7.4	252	71.2 73.5 9.0* 4.3	-2 13 2 2 13 3	64.7 66.2 13.5 -12.9
0	10	0	38.7 -33.9 82.9 84.4	1	5	0	147.2 157.2	1 13	0	15.8* 12.8	2 5 3	62.9 -63.7	-2 13 3	23.8 -25.4
		2	29.2 27.3	-1	5	1	146.5 159.5	-1 13	1	25.8 24.4	2 5 4	64.6 -64.2	-2 13 4	8.4* 8.4
		í.	28.0 26.6	-1	5	2	6.4* -12.4	-1 13	2 1	20.0 -18.4	255	37.4 36.2	2 14 0	14.1* 11.7 8.6* 9.9
		5	65.1 58.9 18.5 -18.1	-1	5	3	$3.9^* - 1.6$ 189.3 -206.2	-1 13	3	7.7* 7.0 64.0 -65.7	-255 256	3.8* - 4.0 22.4 20.6	-2141 2142	14.6* 13.8 16.7 = 16.1
0	11	1	47.7 -47.2	1	5	4	7.8* - 8.9	1 13	4 9	20.9 20.7	-2 5 6	94.9 -89.7	-2 14 2	24.2 24.7
		3	58.1 58.3	1	5	5	57.1 55.8	1 14	Ö :	58.7 -57.0	2 6 0	76.9 80.9	-2 14 3	30.1 31.7
		5	27.6 -27.2	-1	5	6	7.9* 7.3	-1 14	1	8.0* 8.7 28.3 -28.5	2 6 1 -2 6 1	179.3 190.4	-2 14 4 2 15 0	3.7* - 1.7 11.4* - 9.4
0	12	0	33.7 -32.1 94.5 95.7	-1	5	6	32.0 - 30.7 17.1 + 16.9	1 14 5	2 1	40.7 43.2	262	71.9 -73.8	2 15 1	24.9 -24.1
		2	30.7 -30.8	-1	5	Ż	27.1 25.6	1 14	3	32.6 32.6	2 6 3	24.4 -24.1	2 15 2	22.5 23.1
		4	39.1 42.0	i	6	ĩ.	37.1 37.8	-1 14	ŝ	25.8 -27.4	264	12.7* 10.3	-2 15 2	9.9* - 9.3 14.0 -15.0
0	13	5	4.3* 4.2 29.8 -28.0	-1	6	12	91.3 -98.1 76.7 79.8	1 15 0	00	65.9 -63.3 11.5* 9.7	-264	24.5 21.6 29.3 -28.5	2 16 0	16.9 -16.8
		2	7.6* -10.1	-1	6	2	116.5 -121.3	-1 15	1	29.4 29.2	-2 6 5	65.2 -62.5	-2 16 1	5.3* 4.6
		4	16.8 -17.6	-1	6	3	106.5 110.2	-1 15	2 1	38.1 39.4	-266	22.4 -21.2	-2162 301	3.6* - 0.1 158.9 177.9
0	14	0	56.2 56.0 28.5 -27.5	-1	6	4	11.8* 11.9 6.5* 1.9	-1 15 1	5 1	21.0 -22.0	-267 270	9.1* - 9.5 10.2* 13.5	-301	224.7*-264.6
		2	$2.9^* - 2.5$	-1	6	5	18.6 18.5	1 16		27.4 -28.4	2 7 1	9.9* 3.3	-3 0 3	93.8 99.3
		Ĩ.	21.1 -23.3	1	6	é	16.5 17.7	-1 16	2	5.2* - 1.7	2 7 2	75.5 76.1	-305	4.8* - 0.1
U	0	2	14.4 -14.6	-1	6 7	0	50.3 53.8 49.2 -45.1	200	26	23.0 -11.0 67.4 -69.5	-272 273	76.7 79.1 12.4* -11.8	-307 310	66.8 67.0 41.6 41.8
0	16	3 0	36.0 -37.3 19.4 -19.6	-1	7	1	37.7 -36.5 35.6 32.4	-2 0 2	2	19.7 17.6	-2 7 3	83.1 84.7	3 1 1	87.0 86.5
-		1	25.4 25.6	1	Ż	2	48.3 -47.9	-2 0	1	37.2 142.7	-2 7 4	22.0 -21.5	312	35.7 37.4
1	0	1	55.1 48.0	1	7	3	42.1 42.5	-206	5 7	72.1 -71.9	-2 7 5	50.4 31.0 86.7 -81.7	-3 1 2 3 1 3	140.8 -142.2 10.6* 8.5

Table 1. (Continued)

h	k	1	F _o F _c	h k. 1	F _o F _c	h k 1	F _o F _c	h k l	F _o F _c	h k l	F _o F _c
-3	1	3	52.0 55.7 21.0 -21.2	-384 385	72.9 66.2	424	36.6 -37.3 65.5 -68.1	4 10 2 4 10 2	58.4 57.4 11.4* -11.3	-546 -547	12.7* 11.6
-3	i	4	23.6 20.1	-385	32.0 28.3 30.5 -28.3	425	13.0* -14.3	4 10 3	24.6 -23.2	5 9 0	19.8 -19.8
-3	1	5	8.6* - 9.9	-387	9.9* 5.4	426	9.9* 8.6 20.5 20.5	4 10 4 -4 10 4	48.1 -44.0	-551	62.3 61.2 39.7 -38.8
-3 -3	1	67	92.7 87.4 26.4 -24.3	391 -391	41.4 36.1 16.8* -15.3	-4 2 7 -4 2 8	7.0* 3.7	-4 10 5 -4 10 6	49.1 -45.3 26.6 24.7	-552	54.5 55.7
-3	1 2	8 0	45.2 -45.0	392 -392	34.9 32.4 35.4 -34.4	430	30.8 26.9 138.1 140.8	4 11 0	11.8* 9.5 98.6 101.9	-553	12.8* 10.6
3	2 2	1	68.2 67.1 114.0 -120.1	393	7.8* 5.7 85.6 83.4	-4 3 1 4 3 2	23.3 -16.9 43.0 -42.6	-4 11 1 4 11 2	48.3 -48.6 9.2* - 9.2	-554	77.5 -78.3
-3 -3	2 2	2 2	61.0 62.8 115.5 125.9	394 -394	48.6 -48.5 21.5 20.8	-4 3 2 4 3 3	11.5* 12.9 7.2* 6.8	-4 11 2 4 11 3	61.6 -64.6 28.0 -28.2	-555 -556	117.7 -113.4 17.3 16.9
3 -3	2 2	3	39.4 40.4 38.5 38.4	395 -395	60.3 - 56.3 $9.2^* - 9.4$	-4 3 3 4	120.2 -131.5 16.5* 16.9	-4 11 3 4 11 4	34.1 -35.6 13.9 -14.9	~5 5 7 5 6 0	76.1 73.9 25.6 24.3
-3	2	4	86.2 -91.8 58.2 -59.9	-3 9 6	32.2 30.6 34.5 -32.8	434	31.1 27.9 41.1 -44.2	-4 11 4	47.4 49.8 44.1 46.1	-5 6 1	26.8 25.0 22.4 15.6
-3	2	5	13.3* 11.8 34.4 -34.3	-3 10 1	45.7 -44.1 37.8 35.7	436	85.4 84.2 17.1 17.4	4 12 0	25.5 25.6 8.8* - 7.2	-562	9.0* - 1.4 82.6 82.4
-3	2	6	16.3 15.6	-3 10 2	41.2 -39.6	-4 3 7	16.2* -15.8	4 12 2	18.8 19.8 27.0 -26.2	-563	10.3* - 7.6
-3	2	8	7.0* - 4.2	-3 10 3	24.8 21.5 47.8 -45.9	441	17.1* 14.4 26.2 -26.6	4 12 3	6.4* - 5.4 55.7 59.0	-564	89.0 -89.2
3 -3	3	1	17.4* 18.6	-3 10 4 3 10 5	40.2 36.7 10.5* 9.9	442	169.7 178.0 77.0 -77.5	-4 12 4 -4 12 5	11.3* 12.3 15.4 -15.7	-565	23.4 -23.1 24.7 -23.8
3 -3	3	2 2	73.3 76.5 133.6 149.6	-3 10 5 -3 10 6	13.5* -11.9 36.7 -34.7	443	19.4 -20.3 75.4 79.6	4 13 Ö 4 13 1	19.7 19.6 22.0 21.9	-567 570	21.9 20.7 16.4* 15.5
-3 -3	3	3	14.7* 14.9 31.9 31.9	3 11 0	5.4* - 1.4 54.5 55.9	444	129.2 -137.3 24.8 -25.8	-4 13 1 4 13 2	43.5 -44.1 12.9 -13.4	571	20.2* -21.4 23.7 -23.0
-3	3	4	16.3* -16.1 51.1 -51.4	-3 11 1 3 11 2	15.5* 14.1 49.6 -50.4	-4 4 5	11.6* 11.8 18.3 -16.0	-4 13 2 4 13 3	9.3* -10.2 17.2 -17.3	572	78.4 79.7 15.2* -14.3
-3	3	5	34.9 -35.4 10.6* - 8.5	-3 11 2	71.1 73.6	-446	20.8 20.7	-4 13 3	37.9 40.5 30.7 32.4	-573	12.1* 9.6
-3	3	6 7	50.5 -48.4	3 11 4	28.4 30.4	4 5 0	36.2 - 36.9	4 14 0	53.0 -54.3	-574	3.4* - 0.7
3	9 4 1	6	95.0 -99.9	-3 11 5	20.2 -18.7 46 k -45 1	-451	127.5 -127.7	4 14 2	35.1 -36.2 27.9 28 3	-575	38.0 -37.7
-3	4	1 2	14.1* 10.2	3 12 1 -3 12 1	3.6* - 5.2 28.2 -27.8	-4 5 2	102.8 -107.8	-4 14 3	12.5* 13.9	-577	20.6 19.9
-3 3	4	23	60.9 -64.8 14.8* 15.0	3 12 2 -3 12 2	27.9 28.6 47.1 -48.3	~4 5 3 4 5 4	13.1* 12.2 31.6 -32.4	4 15 1 -4 15 1	41.0 -42.5 40.0 41.1	581	19.1* 15.4 9.9* 7.2
-3	4	3	123.5 130.7 11.0* - 3.0	3 12 3 -3 12 3	34.1 34.0 64.8 67.3	-454 455	81.6 80.7 22.7 -22.1	-4152 501	7.1* - 6.8 66.6 66.2	582 -582	92.3 -87.7 32.1 30.7
-3	4	4	97.8 97.9 19.8 19.3	3 12 4 -3 12 4	5.8* - 0.9 50.4 53.3	-4 5 5	32.4 30.6 17.2 -17.6	-501	100.2 -105.7 26.8 23.6	583 -583	37.6 36.7 25.4 -23.9
-)	4	6	9.8* - 9.8	-3 12 5	18.8 17.3	-4 5 7	20.0 -18.2 6.7* 0.3	505	72.0 -77.9	-584	49.6 48.2
-3	4	7	43.7 42.7	-3 13 1	18.0 -16.5	461	33.9 -35.4	-507	14.9 13.9	-586	54.6 49.1
3	5	1	18.2* -16.8	-3 13 2	28.4 -28.6	462	14.9* -12.5	5 1 1	123.5 -125.6	591	94.6 -88.3
-3 -3	5	22	8.1* 4.4 28.9 33.4	-3 13 3	11.1* 12.1	463	$10.4^{*} - 7.8$ $10.7^{*} - 6.6$	512	68.1 70.1 25.1 25.5	592	43.2 42.1
3 -3	55	3	8.2* 3.1 10.4* - 6.6	3 14 0 3 14 1	16.5 -14.9 7.0* 5.1	464	31.6 32.5 72.1 -69.0	513	23.9 23.7 59.8 -64.3	593 -593	22.4 21.5 20.3* 16.0
-3 -3	5	4	8.1* 6.3 8.3* 5.9	-3141 3142	15.0 -14.4 7.7* - 7.6	465	37.3 -37.5 22.9 21.8	514 -514	55.7 -58.5 46.0 -49.4	594 -594	47.6 -46.2
-3 -3	5 5	5	25.2 24.8 7.7* - 1.4	-3 14 2 -3 14 3	19.9 -20.1 5.3* 3.1	-4 6 6 -4 6 7	29.6 28.4 5.4* 3.7	5 1 5 -5 1 5	14.9 -13.1 64.4 66.3	-595 -596	46.9 44.3 48.0 -44.4
-3	5	6	17.7 -17.2 28.4 26.6	-3 14 4 3 15 0	22.7 24.8 24.9 23.1	470	26.8 23.5 10.8* 4.1	-5 1 6	17.3 17.7	5 10 0 5 10 1	10.7* 7.7 85.4 -80.5
-)	5	7 0 1	71.8 -73.6	-3 15 1	3.4* - 2.1 50.8 -51.5	472	37.6 37.1 20.5 -18.7	520	79.5 82.2	-5 10 1 5 10 2	49.0 46.6
-5	6	1	175.4 -185.0	-3 15 2	22.4 -23.6 32.0 33.7	473	7.0* - 6.6	-5 2 1 5 2 2	113.7 -119.7	5 10 2	20.8 19.8
-3	6	23	144.6 -152.0	3 16 0 -3 16 1	16.7 16.3 20.2 20.6	474	$3.6^* - 4.1$ 9.1* - 6.8	523	34.1 33.9	5 10 4	17.2 17.4
-3 3	6 6	3	96.3 99.8 60.8 62.2	400	86.8 -88.1 78.1 -82.3	475	25.1 24.6 90.4 -85.5	524 -524	33.0 35.3 33.2 32.0	-5 10 5	7.0* 3.6
-3	6 6	4 5	52.9 52.1 29.6 -29.7	-402 404	189.5* 209.9 46.7 45.2	-476 -477	36.2 34.1 23.3 22.4	525 -525	21.4 -21.4 10.9* -10.7	5 11 0 5 11 1	14.5* -14.3 48.3 -49.1
-3 3	6	56	39.3 -38.3 28.1 -30.0	-404 406	182.5 -198.3 20.7 -22.0	480	55.8 -52.5 78.6 -77.6	-526 -527	22.8 22.3 8.4* - 5.9	-5 11 1 5 11 2	34.5 -36.0 8.7* - 7.0
-3 -3	6	67	29.2 -28.0 43.2 40.9	-406	69.3 70.4 19.4 19.9	-4 8 1 4 8 2	31.2 -30.3 12.7* -10.4	530	39.3 -40.4 48.7 -49.8	-5 11 2 5 11 3	23.8 23.2 5.3* - 0.1
3	7	1	89.0 -89.8	4 1 0	25.1 -25.9	483	91.4 87.8	-5 3 1 5 3 2	89.5 -92.1 32.8 34.4	-5 11 3	0.0* 2.0
-)	ź	2	14.8* 14.2 105 1 -105 6	4 1 2	19.6 -20.8	484	47.2 45.0 24.9 25.1	5 3 3	16.9* 16.5	5 12 0	19.6 -18.6
-3	77	3	77.8 75.8	413	13.1* - 3.7 59.0 - 63.7	485	45.7 -43.2	534	35.3 -37.1	-5 12 1	28.0 28.7
-3	7	4	10.1* 8.5 6.8* - 3.6	414	9.7* 8.7 103.5 -109.1	-4 8 6	4.3* 3.4 8.4* 1.6	5 3 5	6.7* 5.3 52.4 51.7	-5 12 2	10.4* 9.5
3 -3	7	5 5	34.2 -33.2 18.5 18.9	415	12.6* 13.0 83.4 -85.7	491	69.9 -65.1 36.8 33.8	-536	25.1 -25.2 17.4 -15.6	-5 12 3 -5 12 4	12.2* 12.7
3 -3	7	6 6	11.6* 12.8 47.5 44.7	4 1 6	10.1* -10.2 19.9 -18.6	4 9 2	9.3* - 7.5 22.9 24.4	540 541	53.6 -53.5 142.8 -144.0	5 13 0 5 13 1	0.0* 30.0 6.6* - 3.5
-3	7 8	7	21.3 -19.9 61.5 58.5	-4 1 7	44.6 42.1 27.5 26.2	493	14.6* 9.2 32.0 -30.2	-541 542	151.6 152.9 23.4 23.3	-5 13 1 5 13 2	11.1* 10.5 24.1 -23.7
-3	8	1	/8.1 77.3 62.1 -57.8	420421	97.0 -101.2 70.6 -73.3	494	10.8* 9.0 6.4* - 6.3	-542	21.0 -22.5 28.9 29.7	-5 13 2 -5 13 3	7.6* - 7.5
-3	8 8	2 2 3	61.8 61.3	-4, 2 1 4 2 2	132.9 140.5	-4 9 6	3.8* - 2.0	-543	23.7 24.5	-5134 5140	17.0 -18.6
-3 3	8	34	34.2 -31.1 55.9 -54.9	423	40.0 41.3 17.5* 16.2	4 10 1	37.6 -32.4 92.3 -89.1	- 2 4 5 5 4 5 - 5 4 5	13.1 12.5 13.4* 12.0	-5 14 1	20.1 - 19.5
	-										

51

4*

Table 1. (Continued)

h k	1	F _o F _c	h k l	P _o F _c	h k l	F _o F _c	h k l	F _o F _c	h k l	F _o F _c
	1 5022446011225544556701122554455670112255445567011225544556701122554455670112255445670112255445670112255	$ \begin{bmatrix} \mathbf{p}_{0} \\ \mathbf{p}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{0} \\ $	1 45601122334560112233450111223450111223450112212121212121213555701122334456701122334456701122334557011223345570112233455701122334456701122335445670112233445670112233445670112233465670112233445670112234222223422223333333333333333333333	$ \begin{bmatrix} \mathbf{r}_{0} \\ \mathbf{r}_{0} \end{bmatrix} = \begin{bmatrix} \mathbf{r}_{0} \\ $	1 2354456701122354567011223545601122354560112235456011223450112234501122345011234011231202246011223545670112222222	$ \begin{bmatrix} \mathbf{P} & 0 \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} & 0 \\ \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F}$	л	$ \begin{bmatrix} \mathbf{P} \\ \mathbf{o} \end{bmatrix} = \begin{bmatrix} \mathbf{P} \\ \mathbf{o} \end{bmatrix} = \begin{bmatrix} 21.9 \\ 221.9 $	1 1 2 2 3 4 5 6 0 1 1 2 2 3 4 5 0 1 1 2 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 0 1 2 3 1 2 0 2 4 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 1 2 3 4 5 0 1 2 3 4 5 0 1 1 2 3 4 5 0	$ \begin{bmatrix} \mathbf{r} & \mathbf{r} & \mathbf{r} & \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} & \mathbf{r} \\ \mathbf{r}$
-667777777777777888888 -6666666666666666	70112233445601122	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-8 -8 -8 2 2 2 3 3 4 5 6 7 0 1 1 2 2 3 3 4 5 6 7 0 1 1 2 2 3 3 3 4 5 6 7 0 1 1 0 2 2 3 3 3 5 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 6 7 0 1 1 0 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\begin{array}{c} 4, 4^{*}, -2, 7\\ 32, 6^{*}, -32, 3\\ 11, 7^{*}, 11, 0\\ 19, 6^{*}, 18, 7\\ 5, 0^{*}, \mathbf{-3}, 0\\ 8, 11^{*}, 5, 9\\ 5, 0^{*}, \mathbf{-3}, 0\\ 8, 11^{*}, 5, 9\\ 7, 9, -37, 0\\ 28, 0, -28, 8\\ 0, -28, 8\\ 0, -28, 8\\ 0, 7\\ 12, 4^{*}, 10, 2\\ 30, 3\\ 25, 5\\ 24, 4\\ 10, 2\\ 30, 3\\ 28, 5\\ 78, 8\\ \mathbf{-79}, 1\\ 52, 1\\ 52, 5\\ 5\\ 5, 5\\ 5, 5\\ 5\\ 5, 5\\ 5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
68 -68 68	3 3 4	33.5 31.4 15.1* -15.3 5.2* 5.7	7 5 1 -7 5 1 7 5 2	51.2 48.6 52.4 49.6 24.0 23.4	-8 3 2 8 3 3 -8 3 3	20.2 -21.0 6.1* - 4.6 96.9 -99.5	-936 940 941	17.9 -17.7 16.3 -14.8 7.5* 7.3	-11 3 3 -11 4 2 -11 4 3	12.5* -12.9 4.8* 3.3 12.6 -13.3

 $(\sin \theta < 0.707, \, \mu < 45^{\circ})$ about both b and c axes, the radiation used being $CuK\alpha$.

Relative layer scale factors were calculated from cross-level data. Lorentz, polarization and absorption corrections were made, and also corrections for background, but no correction was applied for secondary extinction effects. The data were placed on an approximate absolute scale by means of a Wilson plot.

Atom xz \boldsymbol{y} As(1)0.12199 (10) 0.02060 (6) 0.76392(15)As(2)0.42373(10)0.86090 (6) 0.85582(15)As(3) 0.32051(10)0.87334 (7) 0.17716(14)As(4)0.04014(10)0.83917 (7) 0.71491 (14) S(1)0.34521(22)0.00604(14)0.70138(32)S(2) 0.21388 (22) 0.02299(14)0.11566(32)S(3) 0.23875(24)0.77413 (14) 0.63924(34)S(4) 0.10702 (24) 0.78976 (15) 0.05105 (34)

 Table 2a. (1) Fractional positional coordinates

 (standard deviations in brackets)

(2) Anisotropic temperature factors (estimated standard deviations in brackets) Temperature factors given by:

Atom	B ₁₁	B ₁₂	B ₁₃
As(1)	0.00903 (21)	0.00127 (11)	0.00720 (27)
As(2)	0.00767(21)	0.00036 (10)	0.01062 (28)
As(3)	0.00828 (21)	0.00053 (11)	0.00684 (27)
As(4)	0.00820(21)	00171 (11)	0.00634 (28)
S(1)	0.00881 (30)	00096 (25)	0.01136 (56)
S(2)	0.00842 (29)	0.00043 (24)	0.00829 (53)
S(3)	0.00999 (31)	00138 (25)	0.01049 (60)
S(4)	0.00901 (31)	00233 (26)	0.01176 (61)
Atom	B_{22}	B ₂₃	B ₃₃
As(1)	0.00301 (09)	0.00144 (15)	0.01723 (41)
As(2)	0.00315 (09)	00069(15)	0.01989 (42)
As(3)	0.00364(09)	0.00149 (16)	0.01522 (41)
As(4)	0.00369 (09)	00130 (17)	0.01828 (42)
S(1)	0.00284(11)	0.00163 (37)	0.01781 (59)
S(2)	0.00316 (12)	00209(33)	0.01570 (57)
S(3)	0.00299 (12)	00382(37)	0.01826 (62)

 $T = \exp\left[-\left(h^2 B_{11} + k^2 B_{22} + l^2 B_{33} + 2h k B_{12} + 2h l B_{13} + 2k l B_{23}\right)\right]$

	x	y	z
As(1)	0.118	0.024	0.759
As(2)	0.425	0.860	0.858
As(3)	0.318	0.873	0.181
As(4)	0.038	0.839	0.710
S(1)	0.346	0.008	0.705
S(2)	0.213	0.024	0.120
S(3)	0.245	0.775	0.637
S(4)	0.115	0.785	0.048

Table 2b. Fractional positional coordinates (ITO et al.¹)

Refinement of the structure

Attempts to solve the structure using a symbolic-addition programme were not successful, and the E maps produced contained many spurious peaks.

The coordinates of ITO and co-workers¹ were taken as input coordinates, and a refinement was carried out on these. The initial R factor for all the data with ITO's coordinates was 0.144. Five rounds of isotropic least-squares refinement, using a block-diagonal approximation, led to a R factor of 0.073. Reflections were given weights proportional to $1/\sigma^2$ where σ is the estimated standard deviation of the observed structure amplitude (F_0). Weights were highest for medium-value intensities, with a fall-off for strong and weak values. A minimum value of $F_0 > 12.0$ was used as a cut-off for low-value data, and only reflections with values greater than this minimum (1205 reflections) were used in the refinement. 320 reflections were omitted: of these all except 24 had values of $F_0 < 2\sigma$, and 24 had values of $F_0 < 3\sigma$.

Refinement was then continued anisotropically for five more rounds (1205 reflections), and the R factor dropped to 0.045. At this stage the shifts indicated for the positional coordinates and the anisotropic temperature factors were negligible compared with their standard deviations.

The final R factor for all reflections (1525), both observed and unobserved, was 0.055. A listing of structure factors is given in Table 1. The final coordinates and temperature factors are given in Table 2a. Coordinates obtained by ITO *et al.*¹ are given in Table 2b for comparison.

Bond distances and angles, together with their estimated standard deviations, were calculated by means of a programme, and these appear in Table 3. In Table 4 are listed the parameters defining the temperature ellipsoids of the atoms.

(Svanuar deviavions in practices)											
a) Intramolecular bond distances											
	a)										
As(1)-S(1)	2.242 (2) Å	As(3)-S(4)	2.238 (2) Å								
As(1)— $S(2)$	2.232(2)	As(4)-S(3)	2.231 (2)								
As(2)— $S(1)$	2.243(2)	As(4)-S(4)	2.228(2)								
As(2)-S(3)	2.238(2)	As(1) - As(4)	2.571 (1)								
As(3)— $S(2)$	2.247 (2)	As(2)- $As(3)$	2.566 (1)								
b) Intramolecular bond angles											
S(1)-As(1)-S(2) 95.03 (7)° $As(2)-As(3)-S(2)$ 99.24 (6)°											
S(1) - As(2) - S(3)	94.51 (8)	As(2) - As(3) - S(4)	99.32 (6)								
S(2) - As(3) - S(4)	95.11 (7)	As(1) - As(4) - S(3)	99.85 (6)								
S(3) - As(4) - S(4)	94.92 (8)	As(1) - As(4) - S(4)	99.99 (7)								
As(4) - As(1) - S(1)	98.67 (6)	As(1) - S(1) - As(2)	101.26 (8)								
As(4) - As(1) - S(2)	99.07 (6)	As(1) - S(2) - As(3)	101.23 (8)								
As(3) - As(2) - S(1)	99.55 (6)	As(2) - S(3) - As(4)	100.87 (8)								
As(3) - As(2) - S(3)	99.17 (6)	As(3)-S(4)-As(4)	100.76 (8)								
c)]	Intramolecular n	on-bonded distances									
As(1) - As(2)	3.467 (1) Å	As(1)-S(3)	3.681 (2) Å								
As(1) - As(3)	3.462(1)	As(1) - S(4)	3.682 (2)								
As(2) - As(4)	3.445 (1)	As(2) - S(2)	3.673 (2)								
As(3) - As(4)	3.439 (1)	As(2) - S(4)	3.668 (2)								
S(1) - S(2)	3.299 (3)	As(3) - S(1)	3.678 (2)								
S(1) - S(3)	3.291 (3)	As(3) - S(3)	3.664 (2)								
S(2) - S(4)	3.309 (3)	As(4) - S(1)	3.657 (2)								
S(3) —S(4)	3.285 (3)	As(4)-S(2)	3.661 (2)								
	d) Intermole	cular distances									
S(4)— $As(3)II$	3.793 (2) Å	S(1)— $As(2)III$	3.587 (2) Å								
As(4) - As(3)II	3.505 (1)	S(2)— $As(2)III$	3.685 (2)								
As(4)- $As(2)II$	3.563 (1)	As(1)-S(3)IV	3.669 (2)								
S(3) - As(2)II	3.518 (2)	As(4) - As(1)III	3.628 (1)								
S(4) - As(2)II	3.615 (2)	As(1) - As(1)III	3.621 (1)								
S(4) - S(3)II	3.743 (2)	S(2)-As(4)III	3.442 (2)								
S(1)— $As(3)III$	3.410 (2)	S(2)—As(1)III	3.492(2)								

Table 3. Bond distances and angles (standard deviations in brackets)

(I, II, III, IV refer to symmetry related general positions: $x, y, z; \frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z; -x, -y, -z; \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z$ respectively, or their cell-shifted equivalents).

55

Atom		Arria			Dir	ection cosi	ines
	< b >	AXIS	Б	u	$\cos(1)$	$\cos(2)$	$\cos(3)$
As(1)	2.62 Å ²	1	3.02 Å ²	.196	.795	388	466
		$\overline{2}$	2.06	.162	- 263	.000	-312
		3	2.76	.187	547	.125	.828
1~(9)	9 57	4	0.09	100	0.0.7		0.00
AS(2)	2.07	1	2.03	.100	.835	474	279
		Z	2.40	.174	.477	.877	061
		3	3.28	.204	.274	082	.958
As(3)	2.58	1	2.59	.181	.925	373	073
		2	2.88	.191	.355	.778	.518
		3	2.27	.169	136	505	.853
]		
As(4)	2.77	1	2.24	.169	.667	.668	.330
		2	3.12	.199	440	.710	550
		3	2.94	.193	602	.222	.767
8(1)	9.40		0.75	100	040	a=0	
6(1)	2.49	1	2.55	.180	.613	679	404
		2	1.70	.147	.539	.734	414
		3	3.21	.202	.577	.036	.816
S(2)	2.47	1	2.69	.185	.791	.597	134
		2	1.90	.155	427	.696	.577
		3	2.82	.189	.438	399	.805
					}		1
S(3)	2.71	1	2.72	.186	.820	.336	463
		2	1.81	.151	054	.851	.522
		3	3.59	.213	.569	403	.716
S(4)	2.75	1	1.63	.144	.677	.595	433
		2	3.38	.207	735	.535	415
		3	3.24	.203	015	.599	.800

Table 4. Parameters defining temperature ellipsoids of the atoms (Isotropic temperature factors B; u = thermal displacement parameters)

Results and discussion

The structure obtained by refinement is essentially that of ITO *et al.*¹. This may be described as consisting of cradle-like, covalentlybonded As_4S_4 molecules (Fig. 2), held together by van der Waals forces. The unit cell contains four such molecules.

Ito *et al.* give the following description of the As_4S_4 unit: "four sulphur and four arsenic atoms, covalently bonded, form a square and a tetrahedron respectively. The sulphur square cuts through the arsenic tetrahedron in the middle." This is clearly seen in the [001] projection

Fig. 2. As₄S₄ molecule showing cradle shape. [100] projection. (Bond distances in Å, angles in degrees)

in Fig.1. This figure also shows that planes of weak van der Waals forces exist normal to the b axis giving rise to a fair cleavage on (010).

The As₄S₄ molecule has eight independent As—S bond distances, ranging from 2.228(2) Å to 2.247(2) Å and two As—As bond distances of 2.566(1) Å and 2.571(1) Å. The S—As—S angles range from 94.5° to 95.1°, the As—As—S angles from 98.7° to 100.0°, and the As—S—As angles from 100.8° to 101.3°.

b

Intermolecular contacts are all greater than 3.4 Å, the shortest being S(1)—As(3)III of 3.410(2) Å, S(2)—As(4)III of 3.442(2) Å and S(2)—As(1)III of 3.492(2) Å.

The sum of the van der Waals radii for sulfur and $arsenic^4$ is of the order of 3.85 Å, and therefore intermolecular contacts in excess of this value are not given in Table 4, being considered as non-bonding distances.

The shape of the molecule in the solid state is similar to its gaseous configuration, as described by LU and DONOHUE⁵, and ALLEN and SUTTON⁶. The mean values of the intramolecular bond distances As—S and As—As are 2.237 Å and 2.569 Å respectively, while in the gas the corresponding distances are 2.23 Å and 2.49 Å. The mean bond angles in solid and gas also show close agreement, being as follows for the crystal and gas respectively: As—S—As, 101.03° and 101°; As—As—S, 99.36° and 100°; and S—As—S, 94.89° and 93°.

II. Orpiment, As₂S₃

Experimental

Crystal data: $a = 11.475 \pm 0.005$ Å, $b = 9.577 \pm 0.004$ Å, $c = 4.256 \pm 0.002$ Å, $\beta = 90^{\circ} 41' \pm 5'$; V = 467.7 Å³; F(000) = 456.0; Z = 4; λ (CuK α) = 1.54718; linear absorption coefficient, μ (CuK α) = 298.8 cm⁻¹.

The material from which a single crystal was chosen for data collection came also from Binnatal. Orpiment is a pale yellow mineral with perfect (010) cleavage. This cleavage led to difficulties in obtaining a suitable crystal, giving rise to streaking of spots in many cases.

The crystal used for data collection was a small, approximately cylindrical needle with a diameter of 0.014 mm and a length of 0.127 mm. Cell dimensions were obtained from measurements on backreflection Weissenberg photographs, and a least-squares programme was used to obtain the best set of cell parameters from the measurements.

 $\mathbf{58}$

⁴ L. PAULING, The nature of the chemical bond. Ithaca: Cornell Univ. Press, p. 260 (1960).

⁵ C. S. LU and J. DONOHUE, An electron diffraction investigation of sulfur nitride, arsenic disulfide (realgar), arsenic trisulfide (orpiment) and sulfur. J. Amer. chem. Soc. 66 (1944) 818-827.

⁶ P.W. ALLEN and L. E. SUTTON, Tables of interatomic distances and molecular configurations obtained by electron diffraction in the gas phase. Acta Crystallogr. 3 (1950) 46-72, p. 67.

The space group is $P2_1/n$, with hol absent when h + l = 2n + 1and 0k0 absent when k = 2n + 1.

Intensity data were collected on a Supper-Pace two-circle diffractometer, $\operatorname{Cu} K \alpha$ radiation being used. A total of 836 independent reflections $(\sin \theta < 0.707, \mu < 48^{\circ})$ were measured about the α (needle) axis (layers 0kl—11 k l).

The intensities were adjusted to take account of background, and Lorentz and polarization corrections were made. Absorption corrections appropriate for a cylindrical crystal were applied, but no correction was made for secondary extinction effects.

Refinement of the structure

A preliminary comparison of the structure amplitudes (F_0) with those of MORIMOTO² showed no agreement whatever. A closer inspection revealed that the data were related by the transformation h = H, k = K, l = -L, where H, K, L refer to MORIMOTO's indices. Using MORIMOTO's coordinates as input for a structure-factor calculation, an initial R factor of 0.81 was obtained. The index transformation above indicates mis-indexing of the data by MORIMOTO, using (unintentionally) an unconventional cell with an acute angle β , although the cell dimensions are quoted conventionally². This error probably arises because the angle β is measured as 90.5° \pm 0.5° and is very close to 90°. Since $\beta \sim 90°$, the errors in calculated structure factors and in final positional parameters, as given by MORIMOTO, will be negligible.

Applying the above transformation (x = X, y = Y, z = -Z) to MORIMOTO's coordinates (X, Y, Z), and using the coordinates x, y, z as input for a structure-factor calculation, an initial and acceptable R factor of 0.23 was obtained.

Five rounds of isotropic least-squares refinement (block-diagonal approximation) using 586 reflections (and omitting the remainder, of which 224 had values of $F_0 < \sigma$ and 26 had values of $F_0 < 2\sigma$) reduced the *R* factor to 0.100. At this point, layer scales were adjusted with reference to calculated structure factors, since data about one axis only were available and no cross-level scaling could be applied. One further round of isotropic least-squares refinement reduced *R* to 0.094, since small adjustments only were required for the layer scale factors. Refinement was then continued anisotropically for a further six rounds, and the final *R* factor was 0.064. At this stage, all parameter shifts were negligible compared with the corresponding standard deviations.

Table 5. Comparison of F_0 and F_c values for orpiment * denotes unobserved reflections ($F_0 < 3\sigma$)

									-,		
Ь	k	1	F _o F _c	h k l	F _o F _c	h k 1	F _o F _c	h k l	F ₀ F _c	h k 1	F Fc
0	0	2	72.6 67.7	1 5 3	17.2* -21.8	-2 6 1	35.8 -42.2	364	29.2 -29.4	-4 8 1	8.5* 5.1
0		4	45.0 -43.6	-1 5 3	3.0* 2.9	262	24.4* -17.0	-364	$0.2^* - 2.5$	482	7.5* - 2.4
	•	2	121.8 126.5	-154	24.8* -20.4	263	1.8* 3.8	371	72.8 74.3	4 8 3	14.6* -17.7
		3	79.4 -76.7	160	32.9 -31.5	-2 6 3	23.0* -21.0	-3 7 1	21.2* 19.1	-4 8 3	5.3* 4.7
		5	24.1* -27.2	-1 6 1	13.9* 14.8	-2 6 4	6.9* - 4.9	-3 7 2	15.6* -15.7	490	5.9* - 1.6
0	2	Ō	177.8 -190.0	162	49.3 48.1	270	26.2* -29.9	3 7 3	24.1* -20.7	-4 9 1	12.5* -11.5
		2	109.9 111.3	-162	12.8* 10.9	-2 7 1	20,1* 22.3	-373	58.7 57.4 7.5* - 5.8	492	43.9 -46.8
		3	39.9 39.2	-163	36.7 -37.7	272	32.1 -32.7	-3 7 4	18.2* 18.2	4 10 0	9.0* 5.4
		4	64.4 57.5 39.8 -37.0	164	30.7 30.1	-272	48.1 46.9	380	18.9* - 17.3	4 10 1	44.0 -41.3
0	3	í	95.5 -99.6	1 7 0	8.4* 3.5	-2 7 3	33.1 ~34.4	-3 8 1	71.5 -72.0	4 10 2	18.3* -17.6
		2	40.1 -43.6	1 7 1	27.0* 27.1	274	26.0 -29.4	382	10.0* 7.4	-4 10 2	29.1 -25.8
		4	14.3* 12.0	1 7 2	38.8 -38.1	2 8 0	9.4* 5.7	383	45.4 45.7	5 0 1	8.2 ⁻ - 7.4 38.9 39.4
		5	31.7 32.1	-1 7 2	32.1* 30.8	281	52.5 58.5	-383	20.0* 14.9	-5 0 1	0.2* -13.3
U	4	1	112.0 -114.1	-1 7 3	0.2* ~ 7.2	281	22.8* 25.8	391	33.9 -34.2	-503	32.2 -31.9 42.8 -42.0
		2	42.3 -38.3	174	11.6* -12.7	-282	23.5* -19.2	-3 9 1	18.9* 2.0	5 1 0	56.3 56.7
		3	35.0 -31.6 24.9* -24.2	-174	0.2* - 1.2 10.8* - 12.2	283	28.6 30.3	392	12.8* 15.8	5 1 1	7.1* - 5.9
0	5	i	165.3 166.4	1 8 1	35.6 -39.7	2 9 0	5.3* 4.0	393	24.8 25.2	5 1 2	26.6* 25.6
		2	49.2 -53.3	-1 8 1	26.7* 29.0	2 9 1	22.0* -14.2	-393	35.4 -34.6	-5 1 2	22.3* 18.5
		4	9.1* 11.0	-1 8 2	32.5* 29.7	2 9 2	10.9* 21.2	3 10 1	6.2* 12.4	-5 1 3	27.1* -27.2
0	6	0	75.3 78.1	183	9.0* 13.1	-2 9 2	0.2* - 0.9	-3 10 1	45.4 44.4	514	0.2* - 4.0
		2	48.7 48.3	190	55.4 52.0 41.1 -42.9	-293	22.5* 21.8	-3 10 2	29.0 ~24.9	-214	15.5* 11.8
		3	4.4* 7.5	191	6.9* 6.2	2 10 0	28.9 -23.6	3 11 0	21.5* 21.3	5 2 1	54.0 -52.3
0	7	4	55+9 -54+9 46-3 -50-1	-191	42.8 - 47.0 $0.2^* - 2.2$	2 10 1	36.4 - 38.8	-3 11 1	19.8* 21.1	-5 2 1	7.5* ~15.0
•	•	2	86.9 83.5	-1 9 2	7.2* - 5.4	2 10 2	14.5* -11.8	4 0 2	96.1 -93.7	-5 2 2	42.0 43.2
		3	5.4* 1.6	193	31.3 -31.2	-2 10 2	2.2* 10.6	-402	92.8 -90.4	523	0.2* 3.3
0	8	0	71.1 -73.1	1 10 0	7.5* 10.5	2 11 1	0.2* 2.5	-4 0 4	96.2 -90.1	524	18.4* -22.4
		1	13.6* 12.6	1 10 1	11.8* 12.8	-2 11 1	12.9* 15.4	4 1 0	12.2* - 5.3	-524	11.9* -10.6
		ž	10.8* 7.8	1 10 2	29.8 -28.8	-301	199.5* 214.1	-4 1 1	77.4 78.3	5 3 1	79.2 -78.2
0	9	.1	44.6 -43.2	-1 10 2	23.9 -17.6	3 0 3	60.2 ~58.4	4 1 2	149.5 150.2	-5 3 1	46.2 -48.5
		3	44.0 -45.4	1 11 1	39.0 37.5 10.0* - 7.1	-303	23.9* -22.1	-4 1 2	144.2 142.4	532	34.5 - 36.7 6.6* - 6.4
0	10	ó	69.9 69.1	-1 11 1	0.2* 1.3	-3 0 5	45.6 -46.7	-4 1 3	12.5* -10.6	5 3 3	17.8* 23.4
		1	35.6 -37.5	202	48.1 -46.4	3 1 0	35.8 37.0	4 1 4	0.2* 1.0	-533	8.3* 2.7
0	11	î	27.8 26.9	204	12.5* - 5.4	-3 1 1	49.0 -49.2	4 2 0	86.9 -96.1	-5 -3 4	7.5* - 7.5
1	0	1	128.0 132.2	-204	8.1* 6.5	3 1 2	51.0 -53.5	4 2 1	91.4 94.8	540	33.8 37.9
-1	ŏ	3	8.4* - 6.3	2 1 1	9.7* ~13.3	313	28.4 -19.1	4 2 2	22.6* 21.7	-541	22.6* 22.8
-1	0	3	100.2 -92.2	-2 1 1	20.9* 26.3	-3 1 3	51.7 50.0	-4 2 2	25.2* 28.3	542	23.4* -20.6
-1	0	5	21.8 -18.7	-2 1 2	17.1* -15.3	~3 1 4	2).1* -21.6	423	42.9 41.7	-542	0.7* - 9.2 33.8 30.6
1	1	ō	29.7* 30.5	2 1 3	26.8* -20.0	3 1 5	44.9 -48.0	4 2 4	48.0 46.2	-543	37.8 34.8
-1	1	1	47.0 46.8	-2 1 3	14,1* 12.0	-315	25.7 -29.0	-424	40.5 40.4	544	6.6* 7.3
1	1	2	21.8* 17.0	-2 1 4	9.7* - 9.0	3 2 1	11.0* - 8.4	4 3 1	91.7 -93.4	550	14.9* 15.3
~1	1	2	45.6 ~48.2	215	5.4* - 4.7	-321	105.3 -111.8	-4 3 1	91.7 -92.9	5 5 1	25.8* -30.2
-1	ì	5	0.2* -10.7	2 2 0	12.3* 6.8	-3 2 2	86.6 87.3	-4 3 2	42.7 -45.7	5 5 2	13.6* 12.3
_1	1	4	21.5* -18.4	221	76.8 -78.4	323	56.1 51.3	4 3 3	69.4 68.9	-552	28.4 -30.7
ī	i	5	11.1* - 7.1	2 2 2	30.0 34.9	324	56.6 -61.0	434	4.0* - 5.4	-553	2.9* - 8.3
-1	1	5	22.3 -20.8	-222	41.7 -40.5	-3 2 4	16.6* 26.9	-4 3 4	0.2* 3.6	5 5 4	28.2 -29.3
i	2	1	76.5 -79.7	-2 2 3	62.5 61.0	-3 2 5	37.9 37.9	4 4 1	99.1 -102.3	-2 5 4 5 6 0	22.3* -29.0
-1	2	1	51.3 48.1	2 2 4	6.9* 7.7	3 3 0	116.0 -123.3	-4 4 1	119.3 -123.7	5 6 1	27.6 28.0
-1	2	2	41.8 43.5	225	20.9* -18.7 24.4 -25.7	-3 3 1	42.8 -40.8	-4 4 2	17.0* 22.6	-561	22.3* 18.9
1	2	3	0.2* - 3.1	-2 2 5	14.5* 17.5	332	74.8 76.7	4 4 3	59.9 -59.5	-562	19.4* -12.3
-1	2	4	23.8* 23.2	2 3 0	32.3 33.6	-> > 2 3 3 3	26.4* 22.6	-443	08.7 -03.1 19.9* 20.6	503 -561	15.9* ~17.1
-1	2	4	28.5* -28.6	-2 3 1	38.5 -36.1	-3 3 3	34.8 -30.6	-4 4 4	25.5* 22.4	564	13.0* 15.3
-1	2	5	13.3= 11.7	232	/9.7 82.6 46.5 -46.6	334	20.4" 24.3 67.1 60.0	450	22.2* -17.7	-564	20.5 -25.2
1	3	ó	46.4 -50.9	2 3 3	36.1 35.4	340	112.2 -119.1	-4 5 1	3.4* 4.9	5 7 1	21.0* -17.7
-1	3	1	26.6 -24.5	-233	26.7* -19.8	341	16.1* -16.6	452	50.9 -50.7	-5 7 1	46.2 47.9
ī	3	2	33.9 -36.5	-2 3 4	35.5 -32.6	342	65.4 -63.6	453	93.5 -95.0	-572	16.3* 12.0
-1	3	2	103.4 104.1	-2 3 5	0.2* - 1.7	-342	63.6 -64.2	-4 5 3	94.0 -88.8	573	8.5* - 2.8
-1	3	3	49.0 -48.3	240	28.4 -28.5 2.1* -10.4	-343	0.2* 2.7	454	9.0* 10.8	-573	6.7* 6.2 42.8 30.2
1	ž	4	38.8 40.4	-2 4 1	9.7* 10.5	344	70.7 67.9	4 6 0	98.1 98.5	581	48.9 -47.9
-1	3	4	40.0 37.5	242	11.5* ~ 8.7 16.1* 13.8	-344	10.5* -14.0	461	57.3 57.7	-581	21.8* -23.6
-1	ś	5	8.4* 4.7	2 4 3	11.3* 12.1	551	65.1 -66.8	4 6 2	1.8* - 0.8	-582	0.2* 5.9
1	4	0	70.0 72.5	-243	9.7* ~ 8.9	-351	7.4* - 6.5	-462	5.0* 4.2	583	8.2* - 6.5
-i	i	1	44.6 -45.4	-2 4 4	29.9 22.7	-3 5 2	67.4 66.7	-4 6 3	37.3 32.4	590	5.6* 0.6
1	4	2	84.3 -84.5	2 5 0	36.9 -38.9	3 5 3	3.8* - 8.9	464	25.4 -24.9	591	16.2 15.2
-1	4	3	2.6* 9.8	-2 5 1	16.8* 14.4	->>>3	≥3.3* -21.4 5.9* 2.0	470	29.6 -27.0 8.7* 4.1	591	15.7* -15.2
-1	4	3	10.0* -12.3	252	39.6 -40.1	-354	42.8 -42.7	4 7 1	0.2* - 0.6	-5 9 2	21.3* 19.8
-1	4	4	32.3* 26.5	-2 5 2 2 5 3	0.2* - 1.6 19.3* - 14.5	360	92.3 95.1	-471	11.4* 13.9	5 10 0 5 10 1	$0.2^* - 5.1$ 15.7* 13.0
1	5	ō	28.4* 35.1	-2 5 3	24.9* 23.2	-3 6 1	57.9 59.2	-4 7 2	70.4 70.2	-5 10 1	10.9* -11.0
-1	5	1	28.2* -27.5	254	0.2* - 2.4 10.2* 11.6	362	42.3 45.4	473	21.2* 21.6	-5 10 2	13.3* -13.4
i	5	2	48.2 46.3	260	19.6* 26.5	<u> 3 6 3</u>	60.0 -62.9	4 8 0	84.8 -87.6	-6 0 2	44.4 41.1
-1	5	2	81.0 -80.6	261	5.4* 8.6	-363	38.2 -31.9	481	4.5* 1.7	604	22.7* 26,1

60

Table 5. (Continued)

h k 1	P _o P _e	h k. 1	F. F.	h k l	F _o P _c	h k l	F F	h k l	F _o F _e
-6 0 4	27.0 -23.5	691	0.2* 1.4	780	3.3* 4.0	-881	3.6* - 7.7	10 2 1	32.7 31.0
6 1 1	20.0 -19.1	692	7.3* 5.1	-7 8 1	68.8 -68.3	-8 8 2	9.7* 8.3	10 2 2	48.0 46.4
-611	11.9* 18.8	-692 6100	17.7* 10.5	782	1.7* 2.0	890	3.3* - 5.4	~10 2 2	48.2 -50.0
-6 1 2	9.5* 8.7	6 10 1	14.2* -10.6	7 9 0	19.4* -13.2	-8 9 1	18.7* -17.0	-10 2 3	27.8* 26.6
-613	8.6* - 7.9	-6 10 1 7 0 1	10.6* - 7.9 71.7 -67.8	791	50.2 -46.9 4.0* - 7.9	901	16.6* 16.1 14.6* 9.7	10 3 0	15.7* -13.5
614	37.8 -40.5	-7 0 1	82.8 89.2	-7 9 2	0.2* 0.6	903	24.8 23.4	-10 3 1	49.5 -47.6
6 2 0	14.2* 15.6	-703	31.2 -31.7	8 0 2	15.7* -14.9 19.2* 18.6	-903 910	10.3* 9.8	10 3 2	14.7* 15.7
6 2 1	85.7 85.4	7 1 0	58.4 63.3	-802	13.6* 5.3	911	0.1* - 4.2	10 3 3	37.5 38.2
6 2 2	35.8 33.4	-7 1 1	61.1 60.9	-804	28.7 -33.4	9 1 2	22.7* -22.4	10 4 0	13.3 - 9.4
-622	12.0* - 19.1	7 1 2	15.3* -16.6	8 1 0	$0.2^* - 3.6$	-9 1 2	23.5* -24.1	10 4 1	29.4 -26.2
-6 2 3	10.2* 7.6	7 1 3	25.8* -28.0	-8 1 1	20.3* 21.4	-9 1 3	8.1* 14.0	10 4 2	9.5* 0.7
-624	19.1* -22.1 24.4* 17.8	-713	114.8 102.5	8 1 2 -8 1 2	59.9 59.1 49.3 53.6	920	34.2 39.2 14.6 15.0	-10 4 2	9.9* - 1.1 18 6* - 35 3
6 3 0	68.6 -69.8	-7 1 4	14.9* - 9.6	8 1 3	26.0* -26.4	-9 2 1	27.9 27.9	10 5 0	28.1 -25.3
-6 3 1	51.9 52.0 47.7 -47.7	720	86.8 89.4 15.6* 18.0	-813	23.9* -22.4 25.5 -26.3	922	35.5 39.8	10 5 1	48.0 -46.4
632	22.7* -22.6	-7 2 1	80.4 -82.6	-8 1 4	23.1* -22.2	9 2 3	4.9* - 4.1	10 5 2	4.7* - 3.8
6 3 3	5.6* 7.5	-7 2 2	43.6 41.5	821	47.7 46.2	930	23.3 25.1	-10 5 2	$14.9^* - 11.4$ 22.8* 16.1
-633	6.4* - 7.7	.723	72.0 70.5	-8 2 1	36.0 39.1	9 3 1	26.1 -24.5	10 6 1	4.2* - 2.3
-6 3 4	0.2* 0.2	7 2 4	22.4 -23.5	-8 2 2	9.2* 4.0	932	15.5* 17.0	10 6 2	30.9 -28.9
640	11.3* -16.9 50.5 -52.2	-724	$0.2^* - 0.8$	823	7.6* 12.7	-9 3 2	26,1 23.9	-10 6 2	29.3 34.8
-6 4 1	51.1 48.2	7 3 1	55.8 -56.2	8 2 4	28.2 30.4	-9 3 3	11.1* 14.4	10 7 1	7.8* 7.8
-642	0.2* 14.6	-7 3 1	1.7* 10.1	-824	26.5* 25.3 5.5* 11.5	940	1.6* - 1.9 26.6 -27.9	-10 7 1	14.4* -18.0
643	41.4 36.9	-7 3.2	60.6 -59.9	8 3 1	63.1 -63.4	-941	42.3 -47.0	-11 0 1	85.4 97.7
-043	17.0* 16.8	-7 3 3	18.0* -10.7	-8 3 1	50.3 -57.8 11.3* -14.3	-942	8.8* - 5.8 10.3* - 5.8	-11 0 3	$0.2^* - 8.5$ 12.1* 10.3
-644	0.2* 4.2	7 3 4	25.6 26.0	-8 3 2	0.2* -14.5	943	14.2* - 5.4	11 1 1	95.6 97.3
6 5 1	34.1 -32.0	740	51.0 -53.8	-8 3 3	44.5 41.8	950	9.1* 3.1	11 1 2	23.2 - 19.8 34.6 - 34.4
-651	23.9* 26.3	741	18.8* 17.1	-834	15.1* 14.0	951	4.6* - 3.7	-11 1 2	11.2* 1.6
-6 5 2	26.7* -28.8	7 4 2	49.6 -51.0	8 4 1	61.0 -59.7	952	15.2* 20.7	11 2 0	23.7 24.0
653	5.9* 2.2 10.0* 9.4	-742	100.5 -96.2	-841	40.9 -40.9	-952	0.1* 2.6	11 2 1	11.4* - 8.7
654	16.9* 20.5	-7 4 5	20.8* 19.9	-8 4 2	11.3* - 7.9	-9 5 3	16.2* -13.3	11 2 2	14.1* 13.9
-054	10.5" -13.2	-744	39.9 46.3 27.5 -30.4	-843	22.5* -23.9 8.7* - 5.5	960	19.5* -18.1 10.8* -10.9	-11 2 2	48.7 49.1
6 6 1	15.8* 12.1	7 5 0	29.4 26.6	8 5 0	2.9* 1.6	-961	8.1* - 0.5	11 3 1	15.8* -14.0
6 6 2	42.5 -41.3	-7 5 1	18.8* -18.2	-8 5 1	74.7 73.3 55.6 55.6	-962	4.6* 5.1	-11 3 1	11.1* -12.7 53.5 48.5
-662	19.7* 16.2	752	104.6 -106.1	8 5 2	21.4* -17.5	970	5.2* 19.3	-11 3 2	21.3 -19.5
-663	21.7* 18.9	7 5 3	12.9* 14.4	8 5 3	19.2* -19.8	-9 7 1	17.0* -15.6	11 4 1	13.5* -10.0
670	66.4 66.1 26.7 29.5	-7 5 3	29.3 -32.5	-853	28.7 -27.2	972	15.5* -13.5	-11 4 1	19.9* -17.8
-671	18.4* 23.7	7 6 1	11.3* 10.3	861	16.0* 13.1	980	3.3* - 1.3	-11 4 2	34.2* -28.3
-672	21.7* 20.7 7.2* - 5.7	-7 6 1	74.4 73.9 6.7* 7.5	-861 862	30.0 33.4 13.5* -19.0	981 -981	10.8* 16.1 23.0 22.0	11 5 0	67.0 65.5 30.5 -29.4
673	0.2* - 8.7	-7 6 2	77.6 73.2	-8 6 2	0.2* - 4.6	10 0 2	81.3 -77.9	-11 5 1	0.2* 0.1
680	4.8* - 6.6	-763	10.2* - 7.0	-863	5.4* /.9 9.0* 2.0	10 1 0 2	40.6 44.4	-11 5 2	11.2* -10.9 34.2* 31.9
681	2.3* - 6.1	770	3.3* - 2.0	870	0.2* - 0.6	10 1 1	19.2* -18.6	11 6 0	46.2 47.3
682	19.7* 17.2	-7 7 1	4.9* - 6.2	-8 7 1	15.4* -13.0	10 1 2	28.1 -26.6	-11 6 1	2.0 ⁻ - 7.9 32.9 35.6
-682 683	29.9 -28.6 6.4* -11.3	772	32.0 32.5 11.9* -13.0	872	40.1 37.6	-10 1 2	24.4 21.4		
-6 8 3	14.9* 18.9	773	4.1* 3.8	8 8 0	50.9 -50.8	-10 1 3	13.6* 8.2		
690	38.8 -36.8	-773	23.4 30.8	881	24.6* 24.3	10 2 0	0.2* - 5.4		

The final R factor for all 836 reflections was 0.089. Table 5 is a listing of structure factors. The final coordinates and temperature factors are given in Table 6a, and MORIMOTO's coordinates, for comparison, appear in Table 6b. Bond distances and angles are given in Table 8.

Results and discussion

The structure obtained by refinement is basically the same as that determined by MORIMOTO². It is essentially a layer-like structure of covalently-bonded arsenic and sulfur atoms (Fig. 4). The layers are normal to the [010] direction and are held together by van der Waal's forces. Perfect cleavage thus occurs normal to the [010] direction. The

(standard deviations in brackets) Atom z x \boldsymbol{y} As(1)0.26469(15)0.19171 (22) 0.86274 (41) As(2)0.48677 (15) 0.32122 (22) 0.36072 (41) S(1) 0.40151 (39) 0.12128 (47) 0.50811 (98)

Table 6a. 1. Fractional positional coordinates

2. Anisotropic temperature factors (estimated standard deviations in brackets) Temperature factors given by:

0.39723 (51)

0.29354 (48)

0.01011 (105)

0.55896 (96)

Atom	B ₁₁	B ₁₂	B ₁₃		
As(1)	0.00372 (25)	- 0.00025 (34)	- 0.00344 (56)		
As(2)	0.00397 (25)	-0.00029(34)	-0.00338(54)		
S(1)	0.00461 (41)	0.00167 (70)	0.00022(145)		
S(2)	0.00446 (41)	0.00109 (67)	- 0.00656 (155)		
S(3)	0.00388 (40)	0.00073 (66)	- 0.00465 (141)		
Atom	B ₂₂	B ₂₃	B ₃₃		
As(1)	0.00633 (36)	0.00187 (89)	0.02790 (170)		
As(2)	0.00596 (34)	- 0.00169 (85)	0.02775 (171)		
S(1)	0.00516 (53)	- 0.00085 (175)	0.02551 (255)		
S(2)	0.00602 (60)	0.00055 (181)	0.03064 (262)		
S(3)	0.00629 (62)	0.00547 (173)	0.02758 (256)		
	• •				

 $T = \exp\left[-\left(h^2 B_{11} + k^2 B_{22} + l^2 B_{33} + 2hk B_{12} + 2hl B_{13} + 2kl B_{23}\right)\right]$

Table 6b. Fractional positional coordinates (MORIMOTO²)

	x	y	z*
As(1)	0.267	0.190	0.857
As(2)	0.484	0.323	0.357
S(1)	0.395	0.120	0.500
S(2)	0.355	0.397	0.987
S(3)	0.125	0.293	0.590

* z coordinates converted from MORIMOTO's cell to cell defined in this study.

layers themselves are considered by MORIMOTO² to be composed of As—S—As—S chains with a sulfur bridge between arsenic atoms in parallel neighbouring chains. These chains lie parallel with the c direction (Fig. 4).

Six independent As—S distances occur in the As_2S_3 layers, ranging from 2.243(5) Å to 2.308(5) Å. The shortest non-bonded contacts

S(2)

S(3)

0.34738 (39)

0.12234 (37)

Atom	<i></i>	Axis	В	u	cos(1)	$\cos(2)$	$\cos(3)$
As(1)	2.10\AA^2	1	1.63\AA^2	.144	.716	093	.691
(-)		2	2.19	.167	.518	.735	438
		3	2.49	.178	467	.672	.575
As(2)	2.10	1	2.42	.175	.704	.211	678
		2	2.22	.168	334	.941	054
		3	1.66	.145	.626	.265	.733
S(1)	2.06	1	2.62	.182	.889	.456	042
		2	1.68	.146	414	.840	.350
		3	1.87	.154	.195	294	.936
S(2)	2.26	1	2.99	.195	.748	.192	635
		2	2.24	.168	.053	.937	.346
		3	1.56	.141	.661	292	.691
-							
S(3)	2.12	1	2.68	.184	.350	654	671
		2	2.33	.172	.744	.629	226
		3	1.35	.131	.570	420	.706

Table 7. Parameters defining temperature ellipsoids of atoms (Isotropic temperature factors B; u = thermal displacement parameters)

Table 8. Bond distances and angles

(estimated standard deviations in brackets)

a) Covalent-bond distances

As(1)-S(1) As(1)-S(2) As(1)-S(3)	2.292 (5) Å 2.270 (5) 2.289 (5)	As(2)—S(1) As(2)—S(2) As(2)—S(3)II	2.243 (5) Å 2.293 (5) 2.308 (5)
	b) Bon	d angles	
$\begin{array}{l} As(1) - S(1) - As(2) \\ As(1) - S(2) - As(2) \\ As(1) - S(3) - As(2) II \\ S(1) - As(1) - S(2) \end{array}$	103.7 (2) ° 101.0 (2) 87.9 (2) 98.6 (2)	$\begin{array}{l} S(2)-As(1)-S(3)\\ S(3)-As(1)-S(1)\\ S(1)-As(2)-S(2)\\ S(2)-As(2)-S(3)II\\ S(3)II-As(2)-S(1)\\ \end{array}$	94.6 (2)° 104.1 (2) 98.6 (2) 105.0 (2) 92.8 (2)
	c) Non-bone	ded distances	
$\begin{array}{l} As(1)As(2)II\\ As(1)As(2)\\ As(1)As(2)\\ S(1)S(2)\\ S(1)S(2)\\ S(2)S(3) \end{array}$	3.191 (2) Å 3.568 (3) 3.521 (3) 3.440 (6) 3.459 (6) 3.350 (6)	S(2)-S(3) S(3)-S(1)II S(3)-S(1)II As(1)-S(2)IV S(1)-S(1)III	3.641 (6) Å 3.295 (6) 3.527 (6) 3.475 (5) 3.242 (6)

Fig. 4. Orpiment layer structure. [010] projection

between the layers are distances of 3.242(6) Å between S(1)—S(1)III and 3.475(5) Å between As(1)—S(2)IV.

An interesting feature of the structure is the large difference between the bond angle of the sulfur atom bridging the spiral chains [S(3)] and the bond angles of the other two sulfur atoms. The angle As(1)—S(3)—As(2) is 87.9(2)°, while the angles As(1)—S(1)—As(2) and As(1)—S(2)—As(2) are 103.7(2)° and 101.0(2)° respectively.

Comparison of the structure of realgar and orpiment

Realgar shows certain striking structural similarities to orpiment, although these are not apparent from a cursory inspection of the two structures. Realgar consists of discrete As_4S_4 units, while orpiment is a layer-like structure. However, ITO *et al.* have shown¹ that both structures may be built from the same basic (As_2S_2) structural units, giving rise to similar bond distances and angles in both cases (as a comparison of Table 4 with Table 8 will show). In the case of orpiment an additional sulfur atom is added to each As_2S_2 unit to account for the required stoichiometry.

The sulfides of arsenic also bear comparison with arsenic oxides. Thus arsenolite, As_4O_6 , also has a cradle-type structure, with additional oxygen atoms attached to the arsenic atoms, while the other modification of As_2O_3 (claudetite) has an infinite layer structure.

Acknowledgements

Calculations during these refinements were carried out on an IBM 1620 machine using programmes written by Dr. N. JONES and by Mr. A. EDENHARTER, and on a Bull-Gamma 30S machine using programmes written by Dr. P. ENGEL. Thanks are due to Dr. ENGEL for his useful advice. The work was carried out with financial support from the Swiss National Foundation (project no. 2.188.69) and the Stiftung Entwicklungsfonds Seltene Metalle.

Z. Kristallogr. Bd. 136, 1/2