Die Gitterkonstanten von CaO, CaS, CaSe, CaTe.

Von

Ivar Oftedal.

(Eingegangen am 21. 5. 27.)

Da V. M. Goldschmidt für seine Arbeiten über die Eigenschaften der Kristalle neue unter sich vergleichbare Bestimmungen der Gitterkonstanten der Reihe CaO-CaS-CaSe-CaTe wünschenswert fand, habe ich als einer seiner Mitarbeiter Präzisionsmessungen an diesen Stoffen ausgeführt. Meine Ergebnisse sind bereits von ihm zitiert worden ¹).

Die benutzten Präparate wurden von V. M. Goldschmidt hergestellt; das Oxyd wurde im Acetylen-Sauerstoff-Gebläse gesintert, Sulfid, Selenid und Tellurid wurden durch Überleiten der Metalloiddämpfe über metallisches Calcium im Wasserstoffstrome dargestellt, bei einer Temperatur von etwa 500°C. Durch Anwendung eines grossen Überschusses von Wasserstoff wurde die Bildung von Polysulfiden nach Möglichkeit verhindert.

Die Messungen wurden mittels Pulveraufnahmen des zu untersuchenden Stoffes in Mischung mit einer Vergleichssubstanz (Verfahren von Wyckoff) ausgeführt. Als Vergleichssubstanz diente ein durchsichtiger mitteldeutscher Steinsalzkristall, dessen Gitterkonstante gleich 5.628 Å angenommen wird. Die Aufnahmen wurden im Mineralogischen Institut Oslo von den Herren E. Broch und K. Stenvik hergestellt.

Bemerkungen zu den Tabellen.

Unter 2d - s stehen die direkten Ergebnisse der Ausmessung mit Abzug der Stäbchendicke. φ' bezeichnet die aus 2d - s und "Kameradurchmesser" berechneten (rohen) Glanzwinkel. Der über jeder Tabelle

 $^{^{1\}rangle}$ Geochem. Verteilungsgesetze VIII, Vid. Akad. Skr. Oslo, I (1926) Nr. 8, S. 42 und 146.

angegebene "Kameradurchmesser" ist ein früher bestimmter Durchschnittswert für die betreffende Kamera. φ theor. bedeutet die aus der bekannten Wellenlänge und der bekannten Gitterkonstante berechneten Glanzwinkel für NaCl (Steinsalz). Durch Vergleich dieser w-Werte mit den entsprechenden φ' -Werten ergibt sich eine meistens variable) Korrektion, die durch Interpolation für jede der übrigen Interferenzstreifen festgelegt wird. So entsteht die Kolonne mit Überschrift φ korr., die also die korrigierten Glanzwinkel für den untersuchten Stoff enthält. Die übrigen Kolonnen dürften selbstverständlich sein. Bei der Berechnung der Konstante q (Mittelwert) ist den inneren und den unscharfen Interferenzstreifen ein geringeres Gewicht beigelegt worden. Bei der Berechnung der Fehlergrenzen sind dieselben Streifen fortgelassen worden. Von den wahrgenommenen Interferenzstreifen ist eine Anzahl aus den Tabellen fortgelassen worden, so sämtliche β -Linien, die ja die Ergebnisse nicht verbessern können; ebenso einige schwache von Verunreinigungen stammende Linien, besonders in der CaO-Aufnahme.

Um die volle Ausbeute dieser Wyckoffschen Methode zu erhalten, muss man dafür sorgen, dass die vom NaCl (Vergleichssubstanz) und die vom untersuchten Stoffe stammenden Linien nicht zu verschiedene Intensitäten aufweisen. Sonst werden die Messungsresultate nicht direkt vergleichbar. Das Auge beurteilt die Lagen einer starken und einer schwachen Linie nicht ganz in derselben Weise. Wie man aus Tabelle 3 sieht, befriedigt die benutzte Aufnahme von CaSe + NaClnicht gut diese Forderung; die NaCl-Linien sind bedeutend schwächer als die CaSe-Linien. Die Aufnahme war jedoch im übrigen sehr gut, und bei der Ausmessung wurden die erwähnten Verschiedenheiten der Intensitäten nach Möglichkeit berücksichtigt.

Die Kristallstrukturen von CaO, CaS und CaSe sind schon erforscht; sie gehören dem Typus NaCl an. Die in den Tabellen 1 bis 3 verzeichneten beobachteten Intensitäten bestätigen, wie man leicht sieht, diesen Strukturtypus. CaTe ist eine nicht früher untersuchte Verbindung. Aus diesem Grunde ist in Tabelle 4 eine Kolonne mit berechneten Intensitäten für CaTe beigefügt, und zwar sind die Intensitäten bei Voraussetzung der NaCl-Struktur berechnet. Wie man sieht ist die Übereinstimmung befriedigend. Die zweite Möglichkeit, die Zinkblendestruktur, muss verworfen werden; sie verlangt unter anderem, dass der Reflex 420 sehr viel schwächer als 422 sein soll. was der Beobachtung entschieden widerspricht.

$\begin{bmatrix} 2 d - s \\ in Milli \end{bmatrix} \cdot \varphi'$		Na Cl		CaO			Intensität
meter	in Grad	hkl	arphi theor.	φ korr.	$\sin^2 arphi = q \cdot x$	h k l	beob.
41.3	20.55	200	20.10				st.
48.5	24.12			23.70	$0.04040 \cdot 4$	200	st.
59.3	29.49	220	29.08				st.
70.7	35.16			34.71	$0.04055 \cdot 8$	220	st. +
74.4	37.00	222	36.53				s. +
85.4	42.46			41.95	$0.04063 \cdot 11$	311	st.
88.3	43.91	400	43.42				m.
90.0	44.75			44.25	$0.04057 \cdot 12$	222	st.
102.1	50.77	420	50.21				stst.
109.0	54.20			53.60	$0.04049 \cdot 16$	400	m.
116.6	57.98	422	57.33				stst.
124.9	62.10			61.38	$0.04055 \cdot 19$	331	m.

Tabelle 1. CaO + NaCl. Fe-Strahlung. $Fe_{\kappa_a} = 1.934$ Å. Kameradurchmesser 57.60 mm.

Tabelle 2. CaS + NaCl.

2d - s	q'	Nat	21	CaS			Intensität	
meter	in Grad	h k l	arphi theor.	φ korr.	$\sin^2\varphi = q \cdot x$	hkl	beob.	
32.5	16.16	200	15.87				stst. 1)	
46.4	23.08	220	22.75				stst.1)	
57.6	28.64	222	28.27	1			mst. 1)	
67.4	33.52	400	33.1 6				m. 1)	
75.5	37.54			37.19	$0.01827 \cdot 20$	420	st.	
76.5	38.05	420	37.70]		st.	
101.3	50.37			50.02	$0.01835 \cdot 32$	440	s.	
102.6	51.02	440	50.67				s.—m.	
110.0	54.70			54.27	$0.01830 \cdot 36$	600, 442	st.	
111.7	55.55	600, 442	55.12				st.	
119.2	59.28			58.86	$0.01832 \cdot 40$	620	m.—st.	
121.2	60.27	620	59.85				m.—st.	
	$q = 0.01831.$ $a = 5.686$ A. Fehlergrenzen ± 0.005 Å.							

¹) Infolge des kleinen Unterschieds zwischen den Kantenlängen von NaCl und CaS sind die inneren Interferenzstreifen Koinzidenzen. Wie man sieht müssen aber die äusseren Kanten dieser Streifen vom NaCl stammen; sie sind deshalb in die Tabelle mitgenommen. Ihre beobachteten Intensitäten sind freilich nicht sehr zuverlässig.

Cu-S	Strahlun	g. $Cu_{Ka} =$	= 1.539	Å. Kar	neradurchm	esser 57.60	0 mm.
2 d - s in Milli- φ'		Nac	NaCl		CaSe		
meter	in Grad	h k l	φ theor.	φ korr.	$\sin^2 \varphi = q \cdot x$	h k l	beob.
30.9	15.37			15.08	$0.01693 \cdot 4$	200	st.
32.5	16.16	200	15.87				8.
44.0	21.89			21.60	$0.01694 \cdot 8$	220	stst.
46.3	23.03	220	22.75				8.
52.1	25.91			25.61	$0.01699 \cdot 11$	311	s.
54.5	27.10			26.80	$0.01694 \cdot 12$	222	st.
57.3	28.50	222	28.27				s. ÷
72.3	35.95			35.60	$0.01694 \cdot 20$	420	stst.
76.5	38.05	420	37.70				s.
80.3	39.93	[39.58	$0.01692 \cdot 24$	422	stst.
96.2	47.84			47.44	$0.01695 \cdot 32$	440	m.
104.1	51.77			51.37	$0.01695 \cdot 36$	600, 442	stst.
1123	55.85	(600, 442)	(55.12)	55.45	$0.01695 \cdot 40$	620	st.
121.2	60.27	620	59.85				st.
	$q=0.01694.$ $\boldsymbol{a}=5.912~\mathrm{\hat{A}}.$ Fehlergrenzen $\pm 0.003~\mathrm{\hat{A}}.$						

Tabelle 3. CaSe + NaCl. u-Strahlung. $Cu_{Ke} = 1.539$ Å. Kameradurchmesser 57.60 mm.

Tabelle 4. CaTe + NaCl.

Uu -Strahlung. $Uu_{Ka} = 1.539$ A. Kameradurchmesser	Strahlung. Cu_{Ka}	= 1.539 Å.	Kameradurchmesser	57.40 r	mm.
---	----------------------	------------	-------------------	---------	-----

2d - s	φ'	N	aCl		Ca Te		Inte	ensität
meter	in Grad	h k l	φ theor.	φ korr.	$\sin^2 \varphi = q \cdot x$	h k l	ber.	beob.
29.0	14.47			14.02	$0.01467 \cdot 4$	200	10	m.
32.7	16.32	200	15.87		-			st.
41.2	20.56			20.01	$0.01465 \cdot 8$	220	10	st.
46.8	23.36	220	22.75					m.
48.7	24.31			23.68	$0.01467 \cdot 11$	311	3	ss.
50.9	25.40			24.75	$0.01461 \cdot 12$	222	5	m.
58.1	29.00	222	28.27					s.—m.
59.5	29.70			29.00	$0.01469 \cdot 16$	400	3	ss.
etwa 65.4					diffus	331	2	s?
67.2	33.54	$(4\ 0\ 0)$	(33-16)	32.84	Koinzidenz 1)	420	8	st.
74.4	37.13			36.27	$0.01471\cdot 24$	422	7	st.
76.9	38.38	420	37.70					st.
85.8	42.82	422	42.06					m.
88.2	44.02			43.26	$0.01468 \cdot 32$	440	3	s.

¹) Die NaCl-Linie 400 ist sehr schwach und kann somit die Intensität der mit ihr zusammenfallenden CaTe-Linie 420 nicht merkbar beeinflussen.

2d - s	¢'	No	a Cl		CaTe		Inte	ensität
meter	in Grad	h k l	φ theor.	φ korr.	$\sin^2 \varphi = q \cdot x$	h k l	ber.	beob.
93·5	46.67			45.91	$0.01474 \cdot 35$	531	2	s.—m.
95.0	47.41			46.65	$0.01469 \cdot 36$	$\{\begin{array}{c} 600, \\ 442 \end{array}\}$	6	st. +
101.9	50.86			50.10	$0.01472 \cdot 40$	620	4	st.
109.0	54.40			53.63	$0.01474 \cdot 44$	622	4	st. ÷
112.0	55.90	$\left\{ egin{smallmatrix} 6 & 0 & 0, \\ 4 & 4 & 2 \end{array} ight\}$	55 .12					st. +-
116.4	58.09			57.23	$0.01473 \cdot 48$	444	1	m.
121.8	60.79	620	59.85					st.
124.1	61.94			61.00	$0.01471 \cdot 52$	640	3	m.
$q = 0.01471.$ $a = 6.345$ Å. Fehlergrenzen ± 0.008 Å.								

Tabelle 4 (Fortsetzung).

Zusammenfassung.

I. Es wurden mittels Pulveraufnahmen Präzisionsmessungen der Gitterkonstanten von CaO, CaS, CaSe und CaTe ausgeführt. Die Ergebnisse seien hier zusammengestellt.

Formel	a	Fehlergrenzen
CaO	4.802 Å	$\pm 0.005 \text{ A}$
CaS	5.686 Å	$\pm 0.005 \text{ Å}$
CaSe	5.912 Å	$\pm 0.003 \text{ Å}$
CaTe	6.345 Å	$\pm 0.008 \text{ Å}$

Frühere Bestimmungen haben die folgenden Werte ergeben:

CaO	$a = 4.77 \pm 0.05$	W. Gerlach ¹)
	$a = 4.790 \pm 0.004$	W. P. Davey ²)
CaS	$a = 5.600 \pm 0.008$	S. Holgersson ³)
	$a = 5.686 \pm 0.006$	W. P. Davey ²)
CaSe	$a = 5.914 \pm 0.006$	W. P. Davey ²)
Ca Te	a = 6.343	V. M. Goldschmidt4)

II. Die Zugehörigkeit des CaTe- zum NaCl-Typus wurde bewiesen.

¹ Zeitschr. f. Physik 9, 184 (1922).

- ² Physik. Rev. 21, 213 (1923).
- ³ Zeitschr. f. anorg. Chemie **126**, 179 (1923).
- ⁴ Geochem. Verteilungsgesetze VIII, Vid. Akad. Skr. Oslo I (1926). Nr. 8, S. 42.

Oslo. Mineralogisches Institut der Universität.

Mai 1927.