O. V. YAKUBOVICH,* N. V. ZAYAKINA,** O. B. OLEINIKOV,** A. V. KOSTIN.** ESSENEITE FROM XENOLITHS IN DACITE LAVAS. CRYSTAL STRUCTURE AND GENESIS

* Moscow State University, Moscow, Russia ** Diamond and Precious Metal Geology Institute, Siberian Branch RAS, Yakutsk, Russia

Esseneite from xenoliths of ultrabasic rocks in dacite lavas of the Ten'-01 paleovolcano at the Lena-Vilyui watershed (East Yakutia) was studied. Empirical formula of the mineral has been obtained using electron microprobe analysis: $Ca_{0.99}Fe_{0.52}^{3+}Mg_{0.32}Fe_{0.06}^{2+}Ti_{0.05}Mn_{0.01}^{2+}Al_{0.71}Si_{1.34}O_6$. Its crystal structure was refined on the basis of the single-crystal X-ray diffraction data, R 0.0152). The resulting crystal chemical formula is Ca Ca M (Fe $_{0.48}^{3+}$ Mg $_{0.33}$ Ti $_{0.05}$ Al $_{0.14}$) T (Si $_{1.28}$ Al $_{0.68}$ Fe $_{0.04}^{3+}$)O₆. The monoclinic = 105.92(1)°, Z = 4, space group C2/c. The distribution of atoms over positions in the crystal structures of Ca-Fe-Al-clinopyroxenes and coordination polyhedra distortion reflect the conditions for the mineral genesis. Formation of the Yakutian esseneite took place in a highly oxidizing environment under a pressure of about 2 kbar and a temperature range of 1200—950 °C. Key words: esseneite, crystal structure, Ten'-01 paleovolcano, Yakutia.