Ч. CII

1973

Вып. 1

УДК 549.3; 553.062

Т. Л. ЕВСТИГНЕЕВА, А. Д. ГЕНКИН, Н. В. ТРОНЕВА, А. А. ФИЛИМОНОВА и А. И. ЦЕПИН

ШАДЛУНИТ — НОВЫЙ СУЛЬФИД МЕДИ, ЖЕЛЕЗА, СВИНЦА, МАРГАНЦА И КАДМИЯ ИЗ МЕДНО-НИКЕЛЕВЫХ РУД¹

Новый минерал обнаружен при изучении сплошных богатых медью руд Талнахского и Октябрьского месторождений (Норильский район). Исследование состава и свойств показало, что минерал является новым сульфидом меди, железа, свинца и кадмия — (Cu, Fe)₈ (Pb, Cd) S₈. В честь известного исследователя в области минераграфии и рудных месторождений проф. Татьяны Николаевны Шадлун минерал назван нами шадлунитом (shadlunite). Обнаружен также минерал, несколько отличающийся по свойствам и составу от шадлунита. В формуле этого минерала марганец преобладает над свинцом: (Cu, Fe)₈ (Mn, Pb, Cd) S₈. Этот минерал назван марганецсодержащим шадлунитом, или Mn-шадлунитом.

У словия нахождения. Шадлунит и Мп-шадлунит встречены в пентландито-кубанито-талнахитовых и пентландито-кубанито-моихукитовых рудах. Специфической особенностью этих руд является необычный состав слагающих их минералов группы халькопирита и пентландита. Как талнахит $Cu_{18}Fe_{16}S_{32}$ (Будько, Кулагов, 1963; Cabri, Harris, 1971), так и моихукит $Cu_9Fe_9S_{16}$ (Муравьева и др., 1972; Cabri, Hall, 1972) относятся к недосыщенным серой сульфидам меди и железа. Пентландит, представленный в рудах преимущественно крупными порфировидными выделениями, отличается весьма высокой железистостью (Fe/Ni=1.65, содержание Fe до 41.1 вес %), обусловливающей большой размер его элементарной ячейки (a-10.16-10.17 Å).

Новый минерал образует в рудах зерна неправильной формы размером от сотых долей до 0.3—0.4 мм и прожилки шириной не более 0.1 мм, наиболее часто располагающиеся среди кубанита (рис. 1 и 2), но наблюдающиеся также в талнахите и моихуките, а иногда и в пентландите.

Наряду с общими чертами в развитии шадлунита и Мп-шадлунита в пентландито-кубанито-талнахитовых (рудник Маяк, Талнахское месторождение) и в пентландито-кубанито-моихукитовых (Октябрьское месторождение) рудах установлены и некоторые различия.

Для руд Маяка характерна приуроченность описываемого минерала к прожилковидным образованиям кубанита, возникающим путем замещения талнахита. В этих же прожилках наблюдаются сфалерит, галенит, самородное серебро и минералы платиновой группы (плюмбопалладинит Pd₃Pb₂). В срастаниях шадлунита со сфалеритом сфалерит развивается обычно в виде кайм вокруг шадлунита (рис. 3). Весьма интересно нахождение шадлунита в виде мелких (0.03-0.06 мм) включений овальной формы (рис. 4) среди джерфишерита (Генкин и др., 1969).

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 24 марта 1972 г.

Рис. 1. Зерна шадлунита (серое) в кубаните (светло-серое). Полир. шлиф, увел. 165. Рис. 2. Прожилок Мп-шадлунита (серое) в кубаните (светло-серое). Полир. шлиф, увел. 280.

- Рис. 3. Мелкие зерна шадлунита (1) в кубаните (2) окружены тонкой каймой сфалерита (*темно-серое*), 3 талнахит. Полир. шлиф, увел. 280.
- Рис. 4. Мелкие овальные включения шадлунита (cepoe) в джерфишерите (*темно-серое*). Светло-серое — кубанит, черное — валлериит. Полир. шлиф, увел. 280.

Рис. 5. Мирмекитовые включения Мп-шадлунита (серое) в пентландите (белое). Окружающий серый фон — кубанит. Полир. шлиф, увел. 165.

Рис. 6. Алабандин (1) окружается каймой пентландита (2), на который нарастает Мп-шадлунит (3) с включениями галенита (белое); 4 — моихукит. Полир. шлиф, увел. 165.

Рис. 7. Прожилковидное выделение Мп-шадлунита (серое) и сфалерита (темно-серое) в кубаните (светло-серое). Полир. шлиф, увел. 280.

Рис. 8. Кристаллики Мп-шадлунита (серое) в валлерните (темно-серое, почти черное), образующем прожилок в кубаните (светло-серое). Белое — пентландит. Полир. шлиф, увел. 320.

В пентландито-кубанито-моихукитовых рудах Октябрьского месторождения установлен лишь Мп-шадлунит, который развит в виде весьма многочисленных мелких и мельчайших зерен и прожилков, пересекающих моихукит, пентландит и кубанит. Мельчайшие выделения минерала в кубаните часто нарастают на пентландит по его границе с кубанитом. Местами Mn-шадлунит замещает пентландит вдоль границ его порфировидных зерен или скрытых трещинок с появлением своеобразных графических мирмекитоподобных срастаний (рис. 5). Показательно, что наряду с Mn-шад-

Рис. 9. Кривые дисперсии отражения.

1 — шадлунит (обр. 71), 2 — Мп-шадлунит (обр. 2047), 3 — серебросодержащий пентландит (Шишкин и др., 1971), 4 медистый пентландит, 5 — пентландит. лунитом в этих рудах присутствует сульфид марганца — алабандин (Генкин и др., 1971). Прожилковидные образования этого минерала в кубаните и моихуките постоянно окружены каймами пентландита, на который нарастает Mnшадлунит (рис. 6). Мп-шадлунит, образующий прожилки, обычно находится в срастании со сфалеритом (рис. 7), галенитом, самородным серебром и валлериитом. Наблюдается замещение Mn-шадлунита валлериитом, но иногда Mn-шадлунит слагает в валлериите и хорошо образованные кристаллики (рис. 8), что позволяет предполагать близкое время кристаллизации обоих минералов.

Оптические свойства. В отраженном свете в полированных шлифах шадлунит и Мп-шадлунит серовато-желтоватые, по сравнению с изредка находящимися с ними в срастании джерфишеритом более светлые, но заметно темнее кубанита; слабоанизотропные; в скрещенных ни-

колях постоянно выделяется полисинтетически двойниковое строение их зерен. Слабо проявленное двуотражение наблюдается лишь в иммерсии. Внутренние рефлексы отсутствуют. Дисперсия отражения минералов, измеренная Л. Н. Вяльсовым на спектрофотометре «Пиор», приведена в табл. 1. На рис. 9 изображены кривые дисперсии отражения шадлунита и Мп-шадлунита, а также для сравнения — серебросодержащего пентландита, медистого пентландита и пентландита. Полученные данные позволяют сделать следующие выводы: Мп-шадлунит на всем измеренном диапазоне волн обладает значением R, бо́льшим на 2.5—4 абс. %, чем у шадлу-

Таблица 1

Дисперсия отражения (R, в %) шадлунита и Мп-шадлунита

- 			R			R				
• 's - 1	х (в нм)	шад- лунит	Мп-шад- лунит	λ (В НМ)	шадлу- нит	Мп-шад- лунит	λ (в нм)	шад- лунит	Mn-шад- лунит	
	440 460 480 500 520 540	19.0 20.1 20.9 22.5 23.4 24.8	21.2 22.7 24.7 26.5 27.9 29.0	560 580 600 620 640 660	25.8 26.8 27.5 28.3 29.1 30.0	29.9 30.8 31.2 32.3 32.9 33.8	680 700 720 740	30.8 31.0 31.3 31.3	34.5 34.6 35.2 35.2	

Рис. 10. Картины сканирования шадлунита (a, б) и Мп-шадлунита (a, г) в рентгеновых лучах. $a - \operatorname{Pb}_{L_{\alpha}}, \ \boldsymbol{\delta} - \operatorname{Cd}_{L_{\alpha}}, \ \boldsymbol{s} - \operatorname{Mn}_{K_{\alpha}}, \ \boldsymbol{s} - \operatorname{Pb}_{L_{\alpha}}.$

5*

нита; кривые дисперсии отражения шадлунита, Mn-шадлунита, серебросодержащего пентландита, медистого пентландита и пентландита близки по форме; в перечисленной выше последовательности увеличивается отражение минералов.

Твердость минералов была измерена на ПМТ-З при нагрузке 20 Г. Прибор тарирован по каменной соли: $H_{\text{NaCl}}=21 \text{ к}\Gamma/\text{мm}^2$ при $P=5 \Gamma$. Для шудлунита $H_{\text{ср.}}=210 \text{ к}\Gamma/\text{мm}^2$ (по 7 замерам), а для Мп-шадлунита $H_{\text{ср.}}==195 \text{ к}\Gamma/\text{мm}^2$ (по 5 замерам).

Химический состав. Изучался на электронном зонде «Камека». Качественным анализом в шадлуните установлены медь, железо, свинец, кадмий и сера, а в Мп-шадлуните помимо этих элементов — марганец. Серебро, цинк, ртуть, мышьяк, сурьма и висмут отсутствуют при чувствительности обнаружения 0.1-0.2%. Путем сканирования и профилирования в рентгеновых лучах свинца, марганца и кадмия было установлено равномерное распределение всех этих элементов в зернах изученных минералов. Картины сканирования по площади 200×200 мкм² зерен шадлунита в рентгеновском излучении $Pb_{L_{\alpha}}$ и $Cd_{L_{\alpha}}$, а также Мп-шадлунита в лучах Мп_{Ка} и $Pb_{L_{\alpha}}$ приведены на рис. 10.

Эталоны сравнения при количественном анализе: чистые металлы — Cu, Fe, Mn и Cd, а также соединения PbS, FeS₂, CuFeS₂ и CdS. Измерения проводились в 20—30 точках в.3—4 зернах размером не менее 50 мкм при напряжении 20 кв и токе 20 на. Поправки вводились путем расчета на ЭВМ БЭСМ-6.

Результаты количественного анализа минерала в трех полированных шлифах, приведенные в табл. 2, показывают постоянство содержаний и соотношений в нем меди и железа и переменность его состава в отношении свинца, марганца и кадмия. Характерной особенностью шадлунита является высокое содержание в нем свинца (до 16 вес. %) и кадмия (до 4.6 вес. %). Мп-шадлунит отличается присутствием марганца (до 4.6 вес. %). Следует подчеркнуть, что помимо собственных минералов кадмия — гринокита, хоулиита, кадмоселита, отавита и монтепонита ни в одном из известных сульфидов не были обнаружены такие высокие содержания кадмия, как в шадлуните.

Таблица 2

				Mn-шадлунит					
		шадлун	ит — оор. 71	0	5p. 75	обр. 2047			
Компоненты		вес. %	атомные количества	вес. %	атомные количества	вес. %	атомные количества		
Cu Fe Pb Mn Cd S		27.524.116.63.927.4	$\begin{array}{r} 0.433 \\ 0.432 \\ 0.080 \\ \hline 0.035 \\ 0.854 \end{array}$	29.8 26.4 8.2 3.2 1.3 29.4	$\begin{array}{c} 0.469 \\ 0.473 \\ 0.040 \\ 0.058 \\ 0.012 \\ 0.917 \end{array}$	31.1927.214.84.61.031.46	$\begin{array}{c} 0.490 \\ 0.487 \\ 0.023 \\ 0.084 \\ 0.009 \\ 0.979 \end{array}$		
	Сумма Σ Ме: S	99.5 —	9.18:8	98.3	9.18:8	100.26	8.92:8		

Химический состав шадлунита и Мп-шадлунита

Примечание. Обр. 71 и 75 — рудник Маяк, Талнахское месторождение, обр. 2047 — Октябрьское месторождение.

Данные анализа шадлунита и Mn-шадлунита свидетельствуют об оригинальности их состава. До настоящего времени сульфиды меди и железа со свинцом, марганцем и кадмием не были известны в природе.

Рентгеновское исследование. Как уже отмечалось, все агрегаты шадлунита и Мп-шадлунита представлены полисинтетически

Таблица З

Шадлунит — обр. 71		. Мп- шадлунит — обр. 2047		Ад-пентлан- дит (Шишкин и др., 1971)		Сu-пент- ландит (Митенков и др., 1970)		Пентландит (Berry, Thompson, 1962)				
I	$\frac{d}{n}$	$\frac{d}{n}$ Buy.	I	$\frac{d}{n}$	$\frac{d}{n}$ выч.	I	$\frac{d}{n}$	I	$\frac{d}{n}$	I	$\frac{d}{n}$	hkl
3 4 10 2 1 1 4 9 1	5.42 3.84 3.29 3.16 2.72 2.45 2.23 2.11 1.925 1.845	5.46 3.85 3.29 3.15 2.73 2.47 2.23 2.10 1.929 1.844	$ \begin{array}{c} 1 \\ 2 \\ 10 \\ 3 \\ 1 \\ 2 \\ 1 \\ - \\ 3 \\ 9 \\ - \\ 1 \\ 1 \end{array} $	5.34 3.78 3.23 3.08 2.69 2.46 2.40 2.07 1.894 1.793 1.706	5.36 3.80 3.23 3.10 2.68 2.46 2.40 2.07 1.898 1.788 1.698		3.80 3.18 3.04 2.38 2.03 1.863 -	$ \begin{array}{c} 4 \\ 1 \\ 10 \\ 4 \\ 1 \\ 4 \\ 1 \\ 4 \\ 10 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	5.99 5.21 3.72 3.13 2.99 2.61 2.38 2.32 2.11 1.994 1.833 1.755 	$ \begin{array}{c} 3 \\ 1 \\ 1 \\ 8 \\ 4 \\ 1 \\ 3 \\ 1 \\ - \\ 5 \\ 10 \\ 1 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	5.78 5.01 3.54 3.03 2.90 2.51 2.30 2.25 	$\begin{array}{c} 111\\ 002\\ 220\\ 131\\ 222\\ 400\\ 133\\ 240\\ 422\\ 333, 115\\ 440\\ 135\\ 600\\ 260\\ \end{array}$
2 1	1.575	1.664 1.576	2	1.638 1.546	1.638 1.550	3	1.596	$ \frac{2}{2} $	1.586	1 1 	1.530 1.514 	533 226 444
2 1 1 1 1	1.424 1.359 1.292 1.147 1.115 1.105	1.421 1.364 1.289 1.144 1.114 1.098	$\begin{vmatrix} 2\\ 2\\ -1\\ -4\\ -2\\ \end{vmatrix}$	1.397 1.345 1.236 1.097 1.088	1.398 1.341 1.239 	0.5 5 4 - 1 1 1 1 5 p. -	1.434 1.371 1.319 	1 2 2 5 	1.455 1.389 1.351 1.298 	$ \begin{array}{c} - \\ - \\ 2 \\ 2 \\ - \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	$\begin{array}{c}\\ 1.307\\ 1.255\\\\ 1.160\\ 1.052\\ 1.026\\\\ 0.9704\\ 0.8878\\ 0.8068\\ 0.7941 \end{array}$	711, 551 426 731, 553 800 660 555, 157 139 448 771 773 955

Результаты	расчета	дебаеграмм	шадлунита	, Mn-шадлунита,
Ад-пе	нтландит	а, Си-пентла	андита и по	ентландита

Примечание. Обр. 71 и 2047 сняты Г. В. Басовой в лаборатории минераграфии ИГЕМа АН СССР. Асимметричная закладка пленки.

сдвойникованными зернами очень небольшого размера. Поэтому монокристальное изучение минерала провести не удалось. Образцы для съемки рентгенограмм готовились по описанной ранее методике (Генкин, Королев, 1961). Порошкограммы (табл. 3) получены на УРС-55 в РКД-57 на неотфильтрованном Fe излучении. При визуальном сравнении (рис. 11) хорошо видна структурная однотипность шадлунита и Мп-шадлунита. Попытка отыскать для них структурный аналог среди известных сульфидов привела нас к пентландиту (Fe, Ni)₉S₈ или к так называемой π фазе — Co₉S₈. На штрихдиаграмме (рис. 11) легко заметить закономерное увеличение межплоскостных расстояний в ряду пентландит—Мп-содержащий шадлунит—шадлунит при сохранении в каждом случае интенсивностей и размещения линий относительно друг друга. Это обстоятельство позволило проиндицировать полученные дебаеграммы с помощью «опорных» отражений (131), (333) и (440) пентландита (соответственно d/n 3.29, 2.11 и 1.923 Å для шадлунита и 3.23, 2.07 и 1.894 Å для Мп-шадлунита). На основании индицирования рассчитаны параметры кубических ячеек шадлу-

Таблица 4

9. 102

Параметр элементарной ячейки для соединений со структурой π-фазы

Минерал, соединение	а (в Å)	Источник
Синтетическая π -фаза — Co ₉ S ₈	9.928 10.16 10.38 10.56 10.73 10.91	Lundgvist и др., 1936 Данные авторов Митенков и др., 1970 Шишкин и др., 1971 Данные авторов » »

нита и Мп-шадлунита (10.91 и 10.73 Å). В табл. 4 помещены значения a_0 всех известных в настоящее время минералов со структурой π -фазы. Заметное увеличение элементарной ячейки минералов в этом ряду от π -фазы до шадлунита объясняется объемным фактором: в каждый последующий минерал входит все более крупный металлический атом. При этом играет роль и суммарный эффект совместного вхождения в минерал железа, меди, марганца, кадмия и свинца, увеличивающих a_0 больше, чем железо, никель и серебро.

Рис. 11. Штрихдиаграммы минералов со структурой π -фазы. 1 — пентландит, $a_0 = 10.02$ Å (Berry, Thompson, 1962); 2 — медистый пентландит, $a_0 = 10.38$ Å (Митенков и др., 1970); 3 — серебросодержащий пентландит, $a_0 = 10.56$ Å (Шишкин и др., 1971); 4 — марганецсодержащий шадлунит, $a_0 = 10.73$ А; 5 — шадлунит, $a_0 = 10.91$ А.

В структуре π -фазы (рис. 12) атомы металлов распределяются по двум позициям следующим образом: 4 (e) — 1/9 атомов и 32 (f) — 8/9. 4-кратные позиции — центры октаэдров из атомов серы, а 32-кратные — тетраэдров. В ячейке Co_9S_8 все эти позиции заняты атомами кобальта, а в пентландите (Fe, Ni,) $_9S_8$ железо занимает и тетраэдрические, и октаэдрические положения, а никель — только тетраэдрические (Lundqvist и др., 1936). Отсутствие материала, пригодного для монокристального изучения, не позволило окончательно решить вопрос о структуре новых минералов.² На дебаеграммах не отмечается отражений, которые могли бы свидетельствовать об упорядоченном размещении атомов по тетраэдрическим положениям и связанной с ним сверхструктуре. Наиболее вероятно поэтому предположение о статистическом распределении атомов железа и меди по позициям 32 (f) с координатами xxx (x \simeq 0.125). Тогда более крупные Pb, Cd и

² Попытка «сухого» синтеза (Fe, Cu)₈PbS₈ не увенчалась успехом. Отметим, что при изучении системы Cu—Fe—Pb—S (Craig, Kullerud, 1965—1966) не были получены ни фаза (Fe, Cu, Pb)₉S₈, ни какие-либо другие тройные или четверные соединения меди, железа, свинца и серы.

Мп займут центры октаэдров (1/2 1/2 1/2) в гранецентрированной кубической ячейке (Fm 3m). Чтобы оценить вероятность такой структурной модели, был проведен ее обсчет по программе Р-4 на ЭВМ БЭСМ-3 в вычислительном центре АН СССР. Экспериментальным материалом послужили интенсивности ряда отражений дебаеграмм, оцененные с помощью марок почернения с шагом $\sqrt[4]{2}$. Поглощение, фактор повторяемости и поляризационный фактор рассчитывались по стандартным формулам (Миркин, 1961). Кривые атомного рассеяния для шадлунита и Мп-шадлунита учи-

тывали состав соединений (для каждой атомной позиции брался усредненный «атом»). Фактор недостоверности структуры при указанном выше распределении атомов равен 34% для. шадлунита и 26.7% для Мп-шадлунита. ³

Другим доказательством справедливости выдвинутых положений является отношение ионных радиусов металлов и серы, по величине которого можно судить о координационном многограннике катиона. Для соединений с плотнейшей упаковкой или близких к ним рассчитаны пределы устойчивости различных координационных многогранников по значениям отношений r_{катиона}/r_{аниона} (Бокий, 1962). Простой анализ величин $r_{Me^{n+}}/r_{S^{2-}}$ (табл. 5) показывает, что Ni²⁺ и Co²⁺ с наибольшей вероятностью могут располагаться в тетраэдрах (координационное число 4). Fe²⁺ и Cu²⁺ вследствие

Рис. 12. Структура п-фазы (Co_9S_8) .

Положения атомов показаны для четверти элементарной ячейки (Lundqvist и др., 1936).

«пограничного» значения $r_{
m Fe^{2+}}/r_{
m S^{2-}}$ и $r_{
m Cu^{2+}}/r_{
m S^{2-}}$ могут быть как в тетраздре, так и в октаздре, а Mn²⁺, Cd²⁺ и Pb²⁺ должны занимать только октаэдрические позиции.⁴ Этот вывод полностью подтверждает сделанные ранее предположения.

Таблица 5

Ион	Ионный радиус	^r Men+/ ^r S ²	Наиболее вероятное координаци- онное число	Координационный многогранник
$\begin{array}{c} Ni^{2+} & \dots & \\ Cu^{2+} & \dots & \\ Ca^{2+} & \dots & \\ Fe^{2+} & \dots & \\ Fe^{2+} & \dots & \\ Cu^{+} & \dots & \\ Cd^{2+} & \dots & \\ Cd^{2+} & \dots & \\ Ag^{+} & \dots & \\ Pb^{2+} & \dots & \\ S^{2-} & \dots & \\ \end{array}$	$\begin{array}{c} 0.74\\ 0.80\\ 0.78\\ 0.80\\ 0.91\\ 0.96\\ 0.99\\ 1.13\\ 1.26\\ 1.74 \end{array}$	$\begin{array}{c} 0.40\\ 0.435\\ 0.424\\ 0.435\\ 0.495\\ 0.522\\ 0.538\\ 0.614\\ 0.685\end{array}$		Тетраэдр Тетраэдр—октаэдр Тетраэдр Гетраэдр Октаэдр » » » » »

Значение r_{Men+}/r_{S^{2-}</sub> и координационный многогранник для различных</sub>} катионов, встречающихся в соединениях со структурой π-фазы

Исходя из предложенной структурной модели мы определили примерные расстояния Me—S в шадлуните и Mn-шадлуните (табл. 6). Пля сравнения рядом помещены значения этих расстояний для других соединений с подобной структурой.

³ Недостаточное количество линий на дебаеграммах и наложение некоторых отражений не позволили получить лучшие результаты. 4 Аналогичное мнение высказано в работе Н. Н. Шишкина и др. (1971) о поло-

жении Ag в серебросодержащем пентландите.

Таблица б

9. 102

Кооплинационный	Расстояния Me—S (в Å)							
полиэдр	π-фаза	пентлан- медистый дит пентландит		серебросо- держащий пентландит	Mn-шад- лунит	шадлу- нит		
Октаэдр Тетраэдр	2.48 1.752	2.54 1.794	2.595 1.831	$\begin{array}{c} 2.64 \\ 1.866 \end{array}$	2.682 1.900	2.72 1.930		

Расстояние Ме-S в соединениях со структурой л-фазы

Интересно отметить, что в галените (PbS) и алабандине (MnS), где Pb и Mn также «сидят» в октаэдрах плотнейшей кубической упаковки из атомов серы, расстояния Pb—S и Mn—S равны 2.96 и 2.605 Å. Значения (Pb, Cd)—S и (Mn, Pb, Cd)—S нашего минерала (2.72 и 2.68 Å) попадают в интервал между этими величинами. Очевидно, этот факт объясняется сложностью состава, так как в оба минерала входят и свинец, и кадмий.

Оптическая анизотропия шадлунита и Mn-шадлунита может вызываться двумя причинами: существованием механических напряжений в минеральных агрегатах и небольшим искажением кубической структуры. В природе известны и другие случаи оптической анизотропии кубических минералов: гранаты — уграндиты, алмаз, куприт, арсенолит и т. д.

О возможной формуле минерала. В приведенной выше таблице химического состава (табл. 2) легко увидеть, что содержание железа и меди во всех исследованных образцах примерно постоянно. Наиболее значительны колебания по Pb (от 16.6 до 4.6 вес. %), Mn (от 0 до 4.6 вес. %) и Cd (от 4.6 до 1 вес. %). В свете предположений о структуре минерала наиболее подходящим вариантом формулы может быть вариант, объединяющий в одну группу свинец, марганец и кадмий. В этом случае получим для шадлунита обр. 71 ($Cu_{4.06}Fe_{4.05}$). 11 ($Pb_{0.74}Cd_{0.37}$). $cr_{5}S_8$ и для Mn-шадлунита обр. 2047 ($Cu_{4.00}Fe_{3.98}$). $m_{0.69}$ Pb_{0.19}Cd_{0.07}). $gr_{5}S_8$.

Интересно, что для всех изученных образцов отношение [Fe]: [Cu] практически постоянно и равно 1: 1. Этот факт, очевидно, можно будет объяснить, уточнив структуру минерала по монокристальным данным. В настоящее время можно только предположить, что еще одним вариантом формулы является Cu₄Fe₄ (Pb, Mn, Cd) S₈. Полученные данные показывают, что «шадлуниты» — минералы с переменным составом в отношении свинца и марганца. Кадмий присутствует во всех образцах и является дополнительным компонентом к свинцу и марганцу. Поэтому при наименовании минералов руководящим признаком должно быть соотношение свинца и марганца. Собственно шадлунитом следует называть минералы с преобладанием свинца, Мп-шадлунитом — минералы с преобладание марганца.

Характерной особенностью химического состава минералов рассматриваемой ассоциации является присутствие таких необычных для главных рудообразующих минералов элементов, как свинец, марганец, қадмий, Bun. 1

цинк и серебро. Второй существенной особенностью является закономерное изменение содержания некоторых элементов в минералах. сосуществующих в срастаниях. В табл. 7 по данным электронного зонда приведены химические составы сфалеритов, находящихся в срастании с шадлунитом и Mn-шадлунитом. В обр. 71 марганец отсутствует и в шадлуните, и в сфалерите, в то время как в обр. 2047 и Мп-шадлунит, и сфалерит, находящиеся в ассоциации с алабандином, обладают максимальными содержаниями марганца. В обр. 75 Mn-шадлунит с меньшим содержанием марганца ассоциирует с менее марганцевистым сфалеритом. Одновременно с возрастанием содержания марганца в сфалеритах увеличивается и содержание железа. Следует отметить присутствие во всех сфалеритах, как и в срастающихся с ними шадлуните и Mn-шадлуните, больших количеств кадмия, превышающих даже максимальные содержания для сфалерита, приводимые в литературе («пршибрамит», 2.46% Сd — Минералы, 1960). Показанное выше соответствие составов новых минералов и сфалерита может служить дополнительным подтверждением принадлежности их к одной парагенетической ассоциации.

Таблина 7

Химический	состав	сфалеритов,	сосуществующих	с	шадлунитом
		и Mn-ша	длунитом		•

-		Обр. 71		Обр. 75			Обр. 2047		
Элементы	Bec. %	вес. % в пере- счете на 100%	атом- ные коли- чества	Bec. %	вес. ⁰ / ₀ в пере- счете на 100 ⁰ / ₀	ато м- ные коли- чества	Bec. %	вес. ⁰ / ₀ в пере- счете на 100 ⁰ / ₀	атом- ные коли- чества
Zn Fe Mn Cd S	$56.7 \\ - \\ - \\ 2.2 \\ 0.8 \\ 30.9$	$58.3 \\ 6.9 \\$	$\begin{array}{c} 0.899\\ 0.112\\ \hline \\ 0.021\\ 0.013\\ 0.992 \end{array}$	$54.3 \\ 7.8 \\ 1.2 \\ 1.3 \\ 1.5 \\ 31.2$	$55.8 \\ 8.0 \\ 1.2 \\ 1.3 \\ 1.5 \\ 32.1$	$\begin{array}{c} 0.854 \\ 0.143 \\ 0.022 \\ 0.012 \\ 0.024 \\ 1.001 \end{array}$	$50.6 \\ 9.9 \\ 4.2 \\ 3.0 \\ 31.2$	51.2 10.0 4.3 3.0 31.6	0.783 0.179 0.078 0.027 0.986
Сумма	97.3		_	97.3		_	98.9		

Свинец, марганец и кадмий находятся в следующих минералах, ассоциирующихся с шадлунитом и Mn-шадлунитом: Рb — в галените и плюмбопалладините, Mn — в алабандине и сфалерите, Cd — в сфалерите. Эти элементы отсутствуют во всех главных рудообразующих сульфидах. Образование самостоятельных минералов этих элементов или их вхождение в значительных количествах в сульфиды становится возможным лишь в последние моменты формирования руд в результате накопления их в остаточных растворах. Эти растворы содержали, по-видимому, также щелочные металлы, в частности калий, о чем могут свидетельствовать упоминавшиеся выше срастания шадлунита с джерфишеритом. Оба минерала близки по времени образования. Сопоставление состава шадлунита (Си, Fe)₈ (Pd, Mn, Cd) S₈ и джерфишерита K₃Cu₃ (Fe, Ni)₁₁ S₁₄ показывает, что они содержат два типа элементов: 1) медь и железо, унаследованные от от главных рудообразующих сульфидов, при замещении которых они образовались, и 2) свинец, кадмий, марганец и калий, накапливающиеся в остаточных растворах.

Литература

Бокий Г. Б. (1962). Кристаллохимия. Изд. МГУ.

Будько И. А., Э. А. Кулагов. (1963). Природный кубический халько-пирит. ДАН СССР, т. 152, № 2. Генкин А. Д., Н. В. Королев. (1961). К методике определения неболь-ших зерен минералов в рудах. Геол. рудн. месторожд., № 5.

Генкин А. Д., Н. В. Тронева, Н. Н. Журавлев. (1969). Первая находка в рудах сульфида калия, железа и меди — джерфишерита. Геол. рудн. месторожд., № 5.

Генкин А. Д., А. А. Филимонова, И. П. Лапутина. (1971). Первая находка алабандина в медно-никелевых сульфидных рудах. ДАН СССР, т. 200, .№ 5.

Минералы, т. І. (1960). Изд. АН СССР. Миркин Л. И. (1961). Справочник по рентгеноструктурному анализу поликристаллов. Гос. изд. физ.-мат. лит. Митенков Г. А., И. А. Будько, В. А. Михайлова, А. М. Кар-

пенков. (1970). Медистый пентландит в рудах Талнахского месторождения. Зап.

Всс. Малов. (1972). Первая находка моихукита в медно-никелевых рудах Октябрь-

В. С. Малов. (1972). Первая находка мойхукита в медно-никелевых рудах Октябрь-ского месторождения (Норильский район). Геол. рудн. месторожд., № 3. Шишкин Н. Н., Г. А. Митенков, В. А. Михайлова, Н. С. Ру-дашевский, А. Ф. Сидоров, А. М. Карпенков, А. В. Кондратьев, И. А. Будько. (1971). Богатая серебром разновидность пентландита. Зап. Все-союзн. минер. общ., ч. 100, вып. 2. Веггу L. G., R. М. Т hompson. (1962). X-ray powder data for ore minerals: the peacock atlas. N. Y.

Cabri L. J., S. R. Hall. (1972). Mooihoekite and haycokite, two new cooperiron sulfides and their relationship to chalcopyrite and talnakhite. Amer. Miner., v. 62, № 5-6.

Nº 5-0. Cabri L. J., D. S. Harris. (1971). New compositional data for talnakhite — Cu₁₈(Fe, Ni)₁₆S₃₂. Econ. Geol., v. 66, № 4. Craig J. R., G. Kullerud. (1965-1966). The Cu-Fe-Pb-S-system. Carnegie Inst. Washington, Year Book 65. Lundqvist M., D. Lundqvist, A. Westgren. (1936). The cristal tructure of Co₉S₈ and of pentlandite (Ni, Fe)₉S₈. Svensk. Kem. Tidskr., v. 48.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ЙГЕМ) АН СССР, Москва.