Ч. СХ

1981

Вып. 3

НОВЫЕ МИНЕРАЛЫ И НАЗВАНИЯ МИНЕРАЛОВ

УДК 549.752 : 552.322.2

Д. чл. А. В. ВОЛОШИН, д. чл. Ю. П. МЕНЬШИКОВ, Я. А. ПАХОМОВСКИЙ

АЛЮМОТАНТИТ И НАТРОТАНТИТ НОВЫЕ МИНЕРАЛЫ ТАНТАЛА В ГРАНИТНЫХ ПЕГМАТИТАХ ¹

При изучении минерального состава альбитизированных участков гранитных пегматитов Кольского п-ова в ассоциации с симпсонитом, воджинитом, микролитом и другими танталовыми минералами установлены два новых минерала — алюмотантит и натротантит, названные по химическому составу.

Рис. 1. Срастания алюмотантита (At) и симпсонита (Smp). Cst — цезстибтантит. *a* — в отраженном поляризованном свете, увел. 200; *б* — растровая картина в поглощенных электронах участка, выделенного квадратом на рис. 1, *a*.

Алюмотантит пространственно тяготеет в пегматитах к участкам, сложенным пластинчатым голубым альбитом, и образует оторочки вокруг кристаллов симпсонита (рис. 1, 2). Встречены также кристаллы нового минерала, которые в сечении имеют ромбовидную или прямоугольную

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 11 поября 1979 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 31 мая 1980 г.

Вып. 3

форму. Такие кристаллы алюмотантита обычно окаймляют натриевый танталат — натротантит (по границе его с микролитом). Размеры выделений алюмотантита от 0.2 до 0.5 мм, наиболее мелкие размеры характерны для его кристаллов.

Алюмотантит бесцветный, прозрачный. Блеск алмазный. Спайность отсутствует. Отражение алюмотантита выше, чем у симпсонита, характерны хорошо выраженная анизотропия и двуотражение. Дисперсия отражения и значения твердости для алюмотантита приведены в табл. 1, где для сравнения помещены также соответствующие данные и для других танталовых минералов.

В ультрафиолетовых лучах алюмотантит не люминесцирует, но обладает сильной люминесценцией в катод- *Га* ных лучах и светится ярким голубым цветом. В отличие от симпсонита, который также светится голубым цветом

Рис. 2. Концентрационные кривые содержания Al и Ta в симпсоните и алюмотантите по профилю на участке, приведенном на рис. 1, 6.

в катодных лучах, свечение алюмотантита устойчивое и не затухает при длительном возбуждении.

Химический состав алюмотантита (рис. 1) приведен в табл. 2, где для сравнения показан также химический состав симпсонита, с которым он тесно ассоциирует.

Таблица 1

Минерал	R	Отражение (°/₀) для раз- ной λ, нм				Твердость (кгс/мм ²) при разных нагрузках, гс			
		486	551	589	656	20	40	100	
Микролит	R	12.8	12.7	12.4	11.5	900-990	860-890	670-760	
Симпсонит	Rg1	13.3	13.5	13.5	13.0	1760	1720	1650	
Цезстибтантит	R	12.7	13.6	13.0	12.4	930-1200	800-1050	670	
Воджинит	Rg ¹	14.8	15.0	15.2	14.5	1200-1400	1050	900—1020	
Натротантит	Rg ¹	14.4 15.0	14.4	14.7	12.0	1250	1270	Не опр.	
Алюмотантит	Rp ¹ Rg ¹	$13.6 \\ 15.6$	13.1 15.1	11.8 15.4	12.0	1840-2230	1950-2090	1650-1690	
Стибиотанталит	${f Rp^1} {f Rg^1}$	14.7 17.7	14.2 17.4	14.6 17.0	15.1 17.1	770	500	575	
1	Rpı	16.7	16.4	16.1	15.9		N 1		

Дисперсия отражения и твердость танталовых минералов

II р и м е ч а н и е. В отдельных сечениях значения твердости достигают 2300-2400 кгс/мм². Измерение коэффициентов отражения проведено на микроскопе Neophot-2 (Карл Цейсс, ГДР), источник света — ксеноновая лампа ХВО-101; для выделения участков спектра был использован набор интерференционных фильтров (Карл Цейсс, ГДР). Прием сигнала осуществлялся от фотоэлементя черев преобравователь ВК2-21 на потенциометр. Неwitt-Раскагd 7100 ВМ. Эталон — монокристалл кремния, плоскость (111). Объектив 50*, диаметр фотометрируемого участка 30-150 мкм. Твердость измерена на микроскопе Neophot-2 с приспособлением mhp-100.

Таблица 2

H. 110

Химический состав алюмотантита и симпсонита (мас.%) Алюмотантит Симпеонит Компоненты A_{K}^{13} A_{K}^{13} A_K^4 мас.% мас.% 3.23 0.99 74.86 2.97Ta₂O₅ 81.13 Nb_2O_5 Al_2O_3 0.80 0.050.020.96 0.06 0.98 23.00 3.96 18.47 3.19 Сумма 100.40 98.82

Примечание. A_{k}^{13} — коэффициенты атомов, рассчитанные на 13 О; A_{K}^{4} — коэффициенты атомов, рассчитанные на 4 О. Анализы алюмотантита, симпсонита и натротантита выполнены на микровонде MS-46 «Камека», ускоряющее напряжение 15 кВ, ток зонда 30 нА, аналитические линии для Na, Al и Ca — $K_{\alpha_{1}}$, для Ta, Nb и Pb — $L_{\alpha_{3}}$; эталоны: на Na — рамзаит, на Al — пироп и Y₂Al₅O₁₂, на Ca — диопсид, на Ta и Nb — соответственно металлы, на Pb — PbSe. Минералы проанализированы в нескольких образцах (выделениях) не менее чем в 10 точках (время одного измерения 10 с), на каждом зерне. Пересчет относительных интеисивностей на концентрации выполнен на ЭВМ «Наири-2» по оригинальной программе (Кравченко-Бережной и др., 1976). Онимбка определения главных элементов ~1 отн. 0_{0} , элементов-примесей ~2 отн. 0_{0} .

Количество алюминия в алюмотантите значительно ниже, а тантала соответственно значительно выше, чем в симпсоните, распределение Al и Та в зернах нового минерала равномерное (рис. 2). Соотношение содержания алюминия и тантала в алюмотантите предполагает только один вариант формулы — $Al_{0.98}Ta_{0.99}Nb_{0.02}O_4$. Идеальная формула минерала AlTaO₄. Алюмотантит практически не содержит элементов-примесей. Элементы с атомным номером больше 11, кроме указанных в табл. 2, в алюмотантите не обнаружены.

Для получения рентгенограммы порошка алюмотантита был разработан метод отбора минерала из полированного шлифа скалыванием алмазной пирамидой объектива микротвердометра. Предварительно на поверхность минерала был нанесен тонкий слой резинового клея. Собранный резиновый шарик содержал порошок минерала в количестве, вполне достаточном для получения надежной рентгенограммы.

Результаты расчета рентгенограммы порошка алюмотантита и для сравнения рентгенограмм стибиотанталита и симпсонита приведены в табл. З. Алюмотантит по структуре близок к синтетическим соединениям ромбической сингонии SbTaO₄, SbNbO₄, SbSbO₄, BiTaO₄ и BiNbO₄. Часть отражений на дебаеграмме минерала имеет аналогию и с природными стибиотанталитом и сервантитом. Полное совпадение отражений на рентгенограммах алюмотантита и указанных синтетических (а также природных) соединений невозможно прежде всего по той причине, что полиздрия, с одной стороны, алюминия (алюмокислородные октаздры) и, с другой стороны, висмута и сурьмы (трехгранная пирамида) существенно различны, а, таким образом, общими для этих структур являются только плоскости октаздрических построек тантала, ниобия и пятивалентной сурьмы. Тем не менее по химическому составу и общему мотиву кристаллической структуры алюмотантит можно считать алюминиевым аналогом стибиотанталита. Рентгенограмма алюмотантита проиндицирована в ромбической системе

с параметрами: $a_0 = 4.90 \pm 0.01$ Å, $b_0 = 11.58 \pm 0.02$ Å, $c_0 = 5.66 \pm 0.01$ Å. Обособления неправильной формы вокруг кристаллов симпсонита

часто представлены другим танталовым минералом — натротантитом, тесно срастающимся с микролитом (рис. 3). Часто по границам натротантита и микролита развиты кристаллы алюмотантита. Размеры выделений натротантита 0.01—0.03 мм, отдельные зерна его имеют размеры 0.1 мм.

Таблица З

	I	Результат	ы расчета	дебаегра	ммы алю	иотантита	1	
	Алюмо	тантит		C	тибиотантај (ASTM, 1966	Симпсонит (ASTM, 1965)		
I	d _{изм}	d _{pacy}	hkl	I	d	hkl	I	d
							10	6.29
٣	F 00	r 00	004	5	5.90	020		
5	5.00	5.66 4.50	110	6	4 53	110		
1	4.00	4.00		Ū	1.00	110	20	4.47
7 ш.	3.64	3.69	101	10	0 74		45	3.66
				40	3.51	111	20	3 19
10	3.13	3.12	121	100	3.12	121	20	0.10
1	3.04	3.03	130	4	3.07	130		
8	2.89	2.89	040	35	2.95	040	07	
1	2.05	4.05	002	20	2.700	002	85	2.84
2	2.683	2.672	131	$\frac{10}{20}$	2.687	131		
				_			25	2.59
-	0.700	9.150	900	6	2.506	022		o / o
3	2.459	2.400	200	14	2.450	200	20	2.43
J	4.000	2.000	210	1	2.363	112		
1	2.290	2.282	032	8	2.265	032	ļ	
3	2.238	2.248	201	0	9,000	400	15	2.24
4	2 195	2 207	214	2	2.232	122		
$\frac{1}{2}$	2.142	2.143	051	4	2.200	11	70	2.12
-				2	2.098	221		
1	2.068	2.068	230	0	0.050	400		
3 111	2 022	2 023	042	2	2.056	132		-
υш.	2.042	2.020	042	2	1.968	042		
				$\overline{2}$	1.950	231		
,	4.004	4 000	000	18	1.888	240	25	1.92
49	1.904	1.880	003					
$\frac{2}{3}$	1.861	1.862	013					
5				- 2	1.837	202	20	1.84
5	1.837	1.829	212	14	1.815	212		
				6	1.797	052	95	4.76
				20	1.735	161	50	1.70
1	1.754	1.760	103	10	1.728	103		
				6	1.709	113		
4	1 675	1 669	222	1		152	1	
5	1.649	1.654	070	12	1.004	232		
4	1,633	1.632	300				100	1.64
				2	1.627	251	, í	
1 n	1 597	1 594	062	2	1.622	310	10	4 50
1 p.	1.007	1.001	002	4	1.581	133	10	1.59
1 p.	1.563	1.560	242	4	1.559	242		
2	1.543	1.555	311	4	1.557	311	10	1.54
				2	1.536	260		
2 p.	1.528	1.516	162	ʻ k	1.000	1/1	25	1.50
3 ш.	1.483	1.482	213				20	1.46
<u>3 ш.</u>	1.448	1.447	080		· ·			
4	1.413	1.414	302 180				05	4 20
2	1.357	1.359	104				25	1.39
1	1.326	1.328	243				45	1.33
1	1.300	1.300	163	÷			20	1.30
	l i				1	1	1	1

	Алюмо	Гантит	,	Co	гибиотантај (ASTM, 1966	Симпсоныт (ASTM, 1965)		
I	d _{H3M}	d _{pacy}	hkl	I	d	hkl	I	d
1 2 1 р. 3 1 2 1 р. 3 ш. 3 ш. 1 р.	1.281 1.264 1.249 1.235 1.212 1.200 1.192 1.178 1.178 1.159 1.146	1.282 1.270 1.246 1.234 1.215 1.198 1.190 1.176 1.157 1.148	134 342 360 303 191 224 411 333 0.10.0 083 442			,	55 50 25 45 25 35 30	1.28 1.22 1.21 1.18 1.17 1.15 1.13
2 4 3 3 5 ш.	1.119 1.097 1.084 1.078 1.068	$1.118 \\ 1.102 \\ 1.098 \\ 1.083 \\ 1.079 \\ 1.069$	412 105 115 125 432 304				15 20 25	1.11 1.09 1.08
3 p. 1 p. 2 1 1 p. 2 p. 2 p.	$\begin{array}{c} 1.052 \\ 1.026 \\ 1.017 \\ 1.014 \\ 1.007 \\ 1.005 \\ 0.987 \\ 0.987 \end{array}$	1.051 1.027 1.017 1.012 1.010 1.003 0.986	324 403 055 1.11.1 390 344 0.10.3				35 50 55 90 40	1.06 1.05 1.04 1.02
4Ш.	0.980	0.979	500					

Таблица 3 (продолжение)

II римечание. Здесь и в табл. 4 условия съемки: камера РКУ-114.6 мм, Fe излучение без фильтра; ш. — широкая линия, р. — размытая линия.

Натротантит бесцветный, со слабым желтоватым оттенком. Прозрачный. Блеск алмазный, спайность отсутствует, излом неровный. В ультрафиолетовых лучах не люминесцирует, а в катодных обладает сильной люминесценцией и светится желто-зеленым цветом. В отраженном свете у натротантита сильно выражена анизотропия и двуотражение. Дисперсия отражения и значения твердости натротантита приведены в табл. 1.

Химический состав натротантита, мас. %: Ta₂O₅ 91.26, Nb₂O₅ 2.71, Na₂O 4.69, CaO 0.08, PbO 0.87; сумма 99.61. Минерал практически не содержит элементов-примесей (другие элементы с атомным номером больше 11, кроме указанных, в натротантите не обнаружены). Химический состав натротантита однозначно рассчитывается на формулу сложного окисла натрия и тантала с 8 атомами кислорода (Na_{1.04}Ca_{0.01}Pb_{0.03})(Ta_{2.84}Nb_{0.14}) O₈. Идеальная формула натротантита NaTa₃O₈.

Результаты расчета рентгенограммы натротантита (полученной тем же методом, что и для алюмотантита) и для сравнения соединения $Na_2Ta_4O_{11}(Na_2O \cdot 2Ta_2O_5)$ приведены в табл. 4. А. Рейсман (Reisman, 1962) при изучении системы Na_2O — Ta_2O_5 рентгенометрическими методами зафиксировал образование двух фаз $NaTa_3O_8(Na_2O \cdot 3Ta_2O_5)$ и $Na_2Ta_4O_{11}$ $(Na_2O \cdot 2Ta_2O_5)$, которые получались в зависимости от состава смеси исходных компонентов. Данные по рентгенограмме $NaTa_3O_8$ не приводятся, но сказано, что она полностью не индицируется, а структура фазы подобна ромбической искаженной решетке типа вольфрамовой бронзы (Reisman, 1962). Позднее С. Андерсоном (Andersson, 1967) была синтезирована фаза $NaNb_3O_8$, имеющая некоторое сходство по рентгенограмме с тетрагональ-

Рис. 3. Выделение натротантита по границе агрегатов симпсонита и микролита. a - в отраженном поляризованном свете, увел. 250; 6 - e - растровые картины в характеристиче- $ском излучении минералообразующих элементов натротантита участка аншлифа <math>250 \times 250$ мкм; $6 - Ta_{L_{\alpha}}$, $e - Na_{K_{\alpha}}$, $e - Al_{K_{\alpha}}$, $\theta - Ca_{K_{\alpha}}$, $e - Sn_{L_{\alpha}}$.

Таблица 4

соупьтаты расчета деодеграммы натрота	антита	натротанти	дебаеграммы	расчета	Результаты
---------------------------------------	--------	------------	-------------	---------	------------

Натротантит			Na₂T (JCPDS	'a.O.1 5, 1975)		Натротантит		Na ₂ T (JCPD)	Na ₂ Ta ₄ O ₁₁ (JCPDS, 1975)		
I	d _{H3M}	dpacy	hkl	I	d	I	d _{изм}	dpacy	hkl	I	d
4	6.12	6.13	002	50	6 10	2	1 466	1 4 4 6 9	04	1	1
3 ш.	5.21	5.19	200	45	5 16	2	1.400	1.400	241	5	1.461
1 ш.	4.66	4.66	1111	10	4 63	1	1.400	1.400	021		
1 ш.	3.50	3.50	202	Š	3 40	1 5	1.421	1.421	406		
7	3.06	3.065	004	45	3 05	4	1,404	1.404	136		
10 ш.	3.02	3 023	021	100	3.00	1	1,000	1.000	244	Í	
9 ш.	2.778	2,780	022	100	2 767	5	1.304	1.300	137		
2 p.	2.601	2 594	400	7	2.101	4	1.548	1.347	442		
6 ш.	2.474	2.004	023	25	2.000		1.314	1.316	045		
,	1 2.114	2.110	020	20	2.409		1.285	1.284	327		
				1 5	2.304	1	1.248	1.248	318		
1	2 4 9 9	2 116	200	5	2.319	1	1.238	1.238	822		
-	4.122	2.110	200		2.169	3	1.200	1.201	446		
4 111	2 038	2 020	120		2.035	1	1.181	1.181	408		
чш,	2.000	2.039	150	1 1 2	2.032	3	1.171	1.168	$60.\overline{10}$		i i
4	4 072	1 000	EAO		2.029	4	1 164	1 163	42 10	1	
5 117	1.070	1.909	000	5	1.958	2	1 155	1 1 1 58	254	Í .	
ош. 4	1.920	1.941	022	20	1.920	1	1 148	4 4 4 7	220		
2	1.004	1.000	400		1.894	1	1 1 1 20	1 4 4 4 0	249		
ош. Ст	1.049	1.800	133	5	1.859	1	1 1 1 2 1	1 4 4 9 9	019	Ì	
ош.	1.799	1.801	331	25	1.792	1	1.101	1.100	- <u>104</u>		
1	1.783	1.785	133	5	1.777		1.114	1.110	240		
· ·	4			5	1.743	1	1.097	1.094	71. <u>1</u> 0		
1	1.727	1.728	331	5	1.734	1	1.089	1.089	448_		1
0				5	1.720	1	1.075	1.074	10.02		
6ш.	1.707	1.709	315	30	1.702	1	1.067	1.069	550		
1	1.656	1.655	134	5	1.649	1	1.059	1.058	554		1
1	1.595	1.597	117	5	1.605	3 ш.	1.048	1.049	31.10		
2	1.576	1.574	227			1	1.037	1.037	$93\overline{2}$		
8	1.556	1.554	$60\overline{6}$	25	1.546	2	1.027	1.026	62 11		
8	1.548	1.547	041	15	1.540	3	1.024	1.025	062		
3 ш.	1.527	1.526	424	12	1.52	3	1.019	1 019	260		
2	1.509	1.511	042	6	1.514	$\tilde{2}$	1 017	1 015	10 22		
1	1.493	1.493	240	7 5	1.504 1.486	2 2 2	1.005 0.982	1.004 0.980	22. <u>12</u> 73. <u>10</u>		

ным соединением калиево-вольфрамовой бронзы. Приведенные данные по рентгенограмме порошка $NaNb_3O_8$ не имеют общих черт с таковыми для натротантита, а устанавливается структурная близость натротантита и соединения $Na_2Nb_4O_{11}$ (Andersson, 1967). Дж.-П. Чаминаде и соавторы (Chaminade, и др., 1972) приводят результаты расчета рентгенограммы соединения $Na_2Ta_4O_{11}$ ($Na_2O \cdot 2Ta_2O_5$), изоструктурного с $Na_2Nb_4O_{11}$, и предлагают рассматривать его в гексагональной системе с параметрами $a_0 = 6.208$ Å и $c_0 = 36.659$ Å. Проиндицированная рентгенограмма $Na_2Ta_4O_{11}$ ($Na_2O \cdot 2Ta_2O_5$) с этими параметрами находится и в картотеке JCPDS (Ne 25-862). Однако более просто и полно рентгенограмма $Na_2Ta_4O_{11}$ индицируется в моноклинной сингонии, как это предложено С. Андерсоном (Andersson, 1967) для $Na_2Nb_4O_{11}$.

Очевидная изоструктурность соединений Na₂Nb₄O₁₁ и Na₂Ta₄O₁₁ с натротантитом, как это видно из сравнения соответствующих рентгенограмм порошка, позволяет нам рассматривать натротантит в моноклинной сингонии, приняв для него пространственную группу C2/c (Andersson, 1967). Рентгенограмма натротантита при этих условиях полностью проиндицировалась (табл. 4): $a_0 = 10.819 \pm 0.02$ Å, $b_0 = 6.239 \pm 0.02$ Å, $c_0 = 12.781 \pm 0.02$ Å, $\beta = 106.43^\circ \pm 0.08^\circ$.

После установления изоструктурности натротантита с Na₂Ta₄O₁₁ нами был многократно проверен состав изученного нового минерала и он оказался близким к приведенной выше идеальной формуле NaTa₃O₈. Следует заметить, что указанные выше искусственные соединения натрия и тантала, натрия и ниобия ни в одной из цитируемых работ не анализировались, а их формулы получены расчетным путем по количеству участвующих в реакции компонентов.

Исследования взаимоотношений новых танталовых минералов с другими минералами в пегматитах позволяют сделать следующие выводы: 1) алюмотантит и натротантит являются поздними метастабильными минералами тантала, возникшими в минерализованных зонах гранитных пегматитов при автометасоматических процессах, обусловленных ортоклазитизацией (калиевый метасоматоз); 2) по времени образования натротантит, микролит и цезстибтантит, по-видимому, сингенетичны, а алюмотантит является более поздним по отношению к ним минералом.

Образцы с новыми минералами тантала — алюмотантитом и натротантитом — переданы на хранение в минералогический музей Геологического института Кольского филиала АН СССР.

Литература

Кравченко-Бережной Р.А., Медведева Э. М., Пахомов-ский Я. А., Полежаева Л. И., Реженова С. А., Чепка-ленко В. А. (1976). Использование ЭВМ в количественном рентгеновском микро-

анализе. Заводск. лаб., № 9. A m e r i c an Society on the Testing and Materials. ASTM. (1965). Fifteenth set inorganic of the Powder Difraction File. № 15-705. Philadelphia. A m e r i c an Society on the Testing and Materials. ASTM. (1966). Sixteenth set inorganic of the Powder Diffraction File. № 16-908. Philadelphia.

An dersson S. (1967). Phase analysis stadies on the NaNbO₃-Nb₂O₅, NaF-Nb₂O₅, NaNbO₃-Nb₂O₅-H₂O system. Acta chem. Scand., v. 21, N 7. Chaminade J.-P., Pouchard M., Hagenmuller P. (1972). Tantalates et oxyfluorotantalates de sodium. Revie Chem. miner., v. 9, N 4. Joint Committee on the Powder Diffraction Standarts. JCPDS. (1975). Set 25 of

the Powder Diffraction File. \mathbb{N} 25-862. Philadelphia. R e i s m a n A. (1962). Compound repetition in oxide systems. Solid phases in the system Li₂O-Ta₂O₅ and Na₂O-Ta₂O₅. J. Phys. Chem., v. 66, N 1.

Геологический институт Кольского филиала АН СССР, **г.** Апатиты.

УЛК 549.752 : 552.322.2

Д. чл. А. В. ВОЛОШИН, д. чл. Ю. П. МЕНЬШИКОВ, Я. А. ПАХОМОВСКИЙ, Л. И. ПОЛЕЖАЕВА

ЦЕЗСТИБТАНТИТ (Cs, Na) SbTa₄O₁₂ — НОВЫЙ МИНЕРАЛ ИЗ ГРАНИТНЫХ ПЕГМАТИТОВ¹

Новый танталат цезия и сурьмы установлен в гранитных пегматитах Кольского п-ова, минерал назван по химическому составу.

Цезстибтантит отмечается в интенсивно минерализованной альбитизированной зоне пегматитового тела в ассоциации с симпсонитом, стибиотанталитом, микролитом, воджинитом, танталитом и поллуцитом. Локализу-

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 7 октября 1979 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 21 мая 1980 г.