снятые с обр. 6 и 9. Они несколько отличаются по качеству ввиду различия размеров использованных препаратов. На порошкограмме, полученной с обр. 9, где препарат имел диаметр лишь 0.2 мм, отсутствуют несколько наиболее слабых линий.

Рентгенограмма паларстанида хорошо проиндицировалась в гексагональной сингонии с параметрами элементарной ячейки $a = 6.784 \pm 0.005$ Å и с=14.80+0.01 Å. Отсутствие ограничений в приведенных дифракционных индексах позволяет отнести паларстанид к одной из четырех дифракционных групп: 3P-, 3mP-1-, 6/mP-/-, 6mmm P-/--. В нашем случае по данным порошкограммы определить пространственную группу невозможно.

Судя по взаимоотношениям паларстанида с окружающими минералами, можно предположить его кристаллизацию вслед за минералами ряда (Pd, Pt)₃Sn--(Pt, Pd)₃Sn, полярит и золото-серебряные минералы образовались позднее нового минерала.

Образцы с новым минералом переданы на хранение в Минералогический музей им. А. Е. Ферсмана АН СССР и в минералогический музей МГРИ.

Литература

Бегизов В. Д., Мещанкина В. И., Дубакина Л. С. (1974). Палладоарсенид, Pd₂As — новый природный арсенид палладия из медно-никелевых руд Октябрьского месторождения. ЗВМО, вып. 1. Генкин А. Д., Евстигнеева Т. Л., Вяльсов Л. Н., Лапу-тина И. П., Тронева Н. В. (1974). Паоловит — Pd₂Sn — новый минерал из медно-никелевых сульфидных руд. ГРМ, № 1. Разин Л. В., Бегизов В. Д., Мещанкина В. И. (1973). Мате-риалы к минералогии платиновых металлов Талнахского месторождения. Тр. ЦНИГРИ,

вып. 108.

Разин Л. В., Дубакина Л. С. (1974). Первые находки арсеноантимонидов и арсеностаннидов палладия в платиновых месторождениях Советского Союза. ЗВМО, вып. 5.

Desborough G. A., Finney J. J., Leonard B. F. (1973). Mertieite a new palladium mineral from Goodnews Bay, Alaska. Amer. Miner., v. 58, N 1-2

Московский геологоразведочный институт.

УЛК 549.52.5/523

Д. чл. Н. К. МАРШУКОВА, А. Б. ПАВЛОВСКИЙ, д. чл. Г. А. СИДОРЕНКО, Н. И. ЧИСТЯКОВА

ВИСМИРНОВИТ $ZnSn(OH)_6$ И НАТАНИТ $FeSn(OH)_6$ — НОВЫЕ МИНЕРАЛЫ ОЛОВА¹

Висмирновит (vismirnovite) — цинковый гидростаннат — и натанит (natanite) — железистый гидростаннат — обнаружены в рудах оловянных месторождений Средней Азии. Первым из них был обнаружен натанит (Маршукова и др., 1969) в рудах полиформационного вольфрамооловянного месторождения Трудовое.

Рудные тела месторождения образуют крутопадающие секущие жильные и линейно-штокверковые зоны север-северо-восточного простирания

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 7 ноября 1979 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 9 июня 1980 г.

среди гранитов. Руды месторождения Трудовое формировались в обстановке частых подвижек и неоднократного поступления рудоносных растворов и представляют совокупность раздробленных, брекчированных ранних кварцево-вольфрамито-касситерито-станниновых ассоциаций с це-

а — натур. велич., б — увел. 10.

ментирующими их более поздними кварцево-турмалино-касситеритовыми образованиями.

По станнину под влиянием гипергенных процессов образуется целая гамма гидратных минеральных форм олова, таких как впервые установленные висмирновит и натанит, находящийся в стадии изучения гидростаннат меди с переменным содержанием цинка и железа и варламовит переменного состава. Кроме того, здесь же образуются брошантит, малахит, азурит, розазит, гетит, штромейерит и акантит. В последние годы висмирновит и натанит установлены также в рудах месторождения Мушистон, относимого к колчеданно-сульфидному типу оловянной формации (Павловский, 1974). Рудные тела месторождения образуют крутопадающие секущие жильные и линейно-штокверковые зоны среди палеозойских пород преимущественно карбонатного состава. Руды месторождения

Рис. 2. Натанит (*H*), развивающийся по окартиту (*Oк*). Увел. 400. **а** — во вторичных электронах; *б*—*д* — в характеристическом рентгеновском излучении соответственно олова (*б*), железа (*в*), серебра (*г*) и серы (*д*).

в неокисленной части сложены касситерито-станнино-кварцевой, сульфидно-полиметаллической и кварцево-карбонатной минеральными ассоциациями. Станнин в рудах резко преобладает над касситеритом. Первичные руды месторождения претерпели существенные изменения в результате гипергенных процессов и в подавляющей части превращены в окисленные кварцево-гидростаннато-варламовитые разновидности, про-

Рис. 3. Висмирновит (Bu) в массе малахита (Mx) и гётита (Г). Увел. 400. а — во вторичных электронах; б—д — в характеристическом рентгеновском излучении соответственно олова (б), меди (с), цинка (с) и железа (д).

слеживаемые до глубины 400—600 м. На месторождении Мушистон на долю олова, заключенного в гидростаннате меди, висмирновите и натаните, приходится до 80% от общего баланса олова в рудах при среднем его содержании 0.6%. Разработка рентабельных схем обогащения гидростаннатов позволила выделить кварцево-гидростаннато-варламовитовые руды в качестве нового промышленного типа оловянных руд, способствующего расширению сырьевой базы олова (Павловский и др., 1978). Натанит, кроме того, обнаружен среди продуктов окисления окартита в рудах месторождения Чат-Карагай оловянной формации, залегающей среди доломитизированных известняков среднего палеозоя.

Висмирновит назван по имени советского ученого, одного из первых оловянно-полиметаллических месторождений Средней исслепователей

Азии, академика Владимира Ивановича Смирнова. Натанит назван по имени профессора Натана Ильича Гинзбурга, оказавшего большое содействие при изучении минералогии зоны окисления оловорудных месторождений.

Висмирновит и натанит в массе вторичных минералов меди, цинка и железа, развивающихся по станнину, образуют агрегатные скопления, концентрически-зонально перемежающиеся между собой (рис. 1, a, b), и самостоятельные обособления. Мощность зон агрегатных скоплений как висмирновита, так и натанита на отдельных участках достигает 1.5 мм, чаще мощность зон не превышает 0.1 мм. Самостоятельные обособления натанита и висмирновита имеют неправильную лапчатую форму (рис. 2, 3). Размер их колеблется в пределах десятых долей микрона. Отдельные выделения достигают 1-2 мкм в поперечнике.

По данным расчета дифрактограмм, сингония висмирновита и натанита кубическая, пространственная группа Pn3m, a₀ натанита 7.69±0.01 Å,

Таблица 1

Таблица 2

Результаты расчета дифрактограммы висмирновита				Результаты расчета дифрактограммы натанита					
I	d _{əkcu}	dpacy	hhl	I	dэксп	dpacy	hkl		
2 10 3 2 2 7 1 9 8 2 4 1 4 5 6 11 р и м условия с се	4.440 3.840 2.728 2.439 2.309 2.217 1.774 1.728 1.570 1.372 1.287 1.227 1.117 1.031 гечание. мки: рентрезисти	4.450 3.860 2.730 2.441 2.328 2.228 1.771 1.726 1.576 1.365 1.286 1.221 1.164 1.114 1.031 3десь и в новский дифр	111 200 220 310 311 222 331 420 420 422 440 600 622 444 642 Taбл. 2 akromerp 3252	$2-3 \\ 9 \\ 7 \\ 2 \\ 2 \\ 5 \\ 3 \\ 2 \\ 10 \\ 7-8 \\ 1 \\ 2 \\ 3 \\ 1-2 \\ 3 \\ 2-3$	$\begin{array}{c c} 4.370\\ 3.729\\ 2.709\\ 2.439\\ 2.277\\ 2.221\\ 1.920\\ 1.760\\ 1.710\\ 1.563\\ 1.389\\ 1.295\\ 1.281\\ 1.214\\ 1.159\\ 1.112\\ 1.066\\ \end{array}$	$\begin{array}{r} 4.440\\ 3.840\\ 2.721\\ 2.433\\ 2.320\\ 2.221\\ 1.923\\ 1.765\\ 1.720\\ 1.571\\ 1.360\\ 1.300\\ 1.285\\ 1.216\\ 1.160\\ 1.110\\ 1.067\\ \end{array}$	$\begin{array}{c} 111\\ 200\\ 220\\ 310\\ 311\\ 222\\ 400\\ 331\\ 420\\ 422\\ 440\\ 531\\ 600\\ 620\\ 622\\ 444\\ 640\\ \end{array}$		
да 011-ш, го 10 k	n _α		r,,	4	1.031	1.028	642		

10 MA.

Z = 4, $\rho_{\text{рентт}} = 4.035$; ао висмирновита 7.72 ± 0.02 Å, Z = 4, $\rho_{\text{рентт}} = 4.073$. Некоторое расхождение значений межплоскостных расстояний $d_{\text{эксп}}$ и $d_{\text{расч}}$ (табл. 1, 2) связано с диффузностью линий, что обусловлено высокодисперсным состоянием вещества новых минералов. Висмирновит и натанит изоструктурны с викманитом (Moore, Smith, 1968), синтетическими гексагидростаннатами Fe, Mn, Co, Mg и Ca (Strunz, Contag, 1960) и Zn (XRDS, 1960), для которых решена кристаллическая структура, представляющая трехмерную вязь псевдооктаэдров (OH)₆.

В структуре по направлению (100) идет чередование октаэдров, заселенных оловом и двухвалентными катионами Zn, Fe, Mg, Mn, Co и Ca. Размер кубической элементарной ячейки (a_0) гексагидростаннатов находится в прямой зависимости от величины ионного радиуса двухвалентного катиона.

Цвет зерен висмирновита палевый, натанита зеленовато-коричневый. Под микроскопом в отраженном свете цвет висмирновита и натанита темно-серый, в шлифах почти бесцветный. Спектры отражения приведены на рис. 4. Блеск минералов стеклянный, черта висмирновита светложелтая, натанита серо-коричневая, спайность отсутствует.

Твердость микровдавливания висмирновита 173 кгс/мм², H_0 =3.9; натанита 315 кгс/мм², H_0 =4.7 (измерена в оптической лаборатории ВИМСа Е. Г. Рябевой на приборе ПМТ-3, нагрузка 50 гс; экспозиция 15 с). Плотность, рассчитанная для среднего химического состава висмирновита, 4.13 г/см³, натанита 4.04 г/см³. Висмирновит и натанит оптически изотропны, показатель преломления висмирновита 1.737, натанита 1.755. Минералы хорошо растворяются в разбавленной HCl и совершенно не реагируют на концентрированный раствор соды (Na₂CO₃), а также на кипячение в 25%-ном растворе щавелевой кислоты; в воде также нерастворимы.

ИК спектры поглощения висмирновита и натанита (UR-20, аналитик Л. С. Солнцева) получены в естественном состоянии и специальной нагревательной кювете конструкции Б. П. Солнцева, что позволило определить содержание сорбированной и гидроксильной воды.

Термический анализ («Termoflex», аналитик А. М. Урманова) показал, что при нагревании до 300° висмирновит и натанит полностью аморфизуются. При нагревании висмирновита и натанита до 750—800° кристаллизуются соответственно цинкооловянная шпинель+ касситерит и гематит+ касситерит.

Химический состав натанита и висмирновита изучен на рентгеновском микроанализаторе «Сатеbax». Аналитические линии — $Cu_{K_{\alpha_1}}$, $Fe_{K_{\alpha_1}}$, $Zn_{K_{\alpha_1}}$, $Sn_{L_{\alpha_1}}$ и $O_{K_{\alpha_1,2}}$. Стандарты — химически проанализированные минералы касситерит и халькопирит, а также синтезированные соединения SnS и ZnS. Ускоряющее напряжение 30 кВ (при измерении концентрации Fe, Cu и Zn), 20 кВ (Sn) и 10 кВ (O) при токе зонда примерно 10 нА, а при определении кислорода 100 нА. Измерения интенсивности проводились в 10—15 точках каждого зерна и для расчета концентраций использовались их усредненные значения. Расчет содержания элементов проводился по методу гипотетического состава с введением поправок на атомный номер и поглощение (Рыдник, Боровский, 1967) с использованием массовых коэффициентов поглощения К. Ф. Хейнриха (Heinrich, 1966).

При токах более 50 нА исследуемые минералы под зондом неустойчивы. В связи с этим измерение интенсивности аналитической линии кислорода проводилось при перемещении образца под зондом или при расфокусированном зонде диаметром 5—7 мкм. Содержание кислорода рассчитывалось по разработанной в ВИМСе методике (Авдонин и др., 1978). При этом учитывалось наложение линии $O_{K_{\alpha_{1,2}}}$ и $Zn_{L_{\alpha,\beta}}$ во втором порядке отражения.

8 Записки ВМО, вып. 4, 1981 г.

Качественный микрозондовый анализ показал, что основными минералообразующими элементами висмирновита являются цинк и олово, а натанита — железо и олово (рис. 2, 3). Распределение элементов в висмир-

Рис. 5. Характер распределения основных элементов по линии сканирования (АА) в агрегате натанита (1) и сопровождающих его минералов. 2.— самородное серебро, 3.— окартит, 4.— сульфид серебра, 5.— сфалерит, 6.— флюорит. а.— микрофото, увел. 340, 6.— концентрационные кривые.

новите и натаните, как показало линейное сканирование (рис. 5, 6), равномерное. В висмирновите в незначительном количестве определены также медь и железо. Они находятся в висмирновите в виде включений собственных минералов, диагностировать которые из-за малых размеров их выделений не удалось.

Результаты микрозондового анализа висмирновита и натанита и пересчет их на кристаллохимическую формулу приведены в табл. 3 (ан. 1—6) и 4 (ан. 1—3). Для сопоставления приведены также химические

Рис. 6. Характер распределения основных элементов по линии сканирования (AA) в агрегате висмирновита (1), находящегося в срастании с варламовитом (2) и малахитом (3).

а -- микрофото, увел. 450, б -- концентрационные кривые.

составы их синтетических аналогов (табл. 3, ан. 7 и табл. 4, ан. 4). Содержание водорода в новых минералах рассчитано по кислороду, связанному только с гидроксилом. Расчет формул проводился исходя из общего количества атомов в элементарной ячейке гидростаннатов, равного 8. Пересчет анализов привел к формулам ZnSn(OH)₆ для висмирновита и FeSn(OH)₆ для натанита. Следует отметить, что в природном висмирновите по сравнению с его теоретическим составом устанавливаются некоторый дефицит катионов группы Zn и незначительный избыток гидроксила, что, возможно, обусловлено аналитическими погрешностями в определении

Таблица З

Ч. 110

Химический состав висмирновита, мас.%

Анализ	Sn	Fe	Cu	Zn	он	Сумма	Кристаллохимическая формула
1 2 3 4 5 6 7	42.1 41.6 41.0 42.2 41.8 42.0 41.5	0.6 0.9 0.9 0.7 1.1 1.4	$\begin{array}{c} 0.3 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.5 \\ 0.3 \\ - \end{array}$	$\begin{array}{c} 20.4 \\ 21.0 \\ 21.4 \\ 20.6 \\ 19.7 \\ 19.6 \\ 22.9 \end{array}$	$\begin{array}{c} 35.9\\ 35.7\\ 36.6\\ 36.0\\ 35.9\\ 36.1\\ 35.6\end{array}$	99.3 99.5 100.1 99.6 99.0 99.4 100.0	$\begin{array}{l} (Zn_{0.90}Fe_{0.03}Cu_{0.01})_{0.94}Sn_{1.01}(OH)_{6.05}\\ (Zn_{0.92}Fe_{0.05}Cu_{0.01})_{0.98}Sn_{1.00}(OH)_{6.02}\\ (Zn_{0.92}Fe_{0.05}Cu_{0.01})_{0.98}Sn_{0.97}(OH)_{6.05}\\ (Zn_{0.90}Fe_{0.04}Cu_{0.01})_{0.95}Sn_{1.01}(OH)_{6.04}\\ (Zn_{0.86}Fe_{0.06}Cu_{0.02})_{0.94}Sn_{1.01}(OH)_{6.05}\\ (Zn_{0.86}Fe_{0.07}Cu_{0.01})_{0.94}Sn_{1.01}(OH)_{6.05}\\ Zn_{1.00}Sn_{1.00}(OH)_{6.00}\end{array}$

Таблица 4

Химический состав натанита, мас.%

Анализ	Sn	Fe	оң	Сумма	Кристаллохимическая формула
1 2 3 4	44.8 43.1 42.9 42.9	$18.7 \\ 20.5 \\ 20.3 \\ 20.2$	36.6 36.0 36.4 36.9	100.1 99.6 99.6 100.0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

кислорода. Химический состав природного натанита близок его теоретическому составу.

Эталонные образцы висмирновита и натанита переданы в Минералогический музей им. А. Е. Ферсмана АН СССР.

Литература

Авдонин А. С., Чистякова Н. И., Соловьев В. С. (1978). Кме-Авдонин А. С., чистякова п. п., соловьев в. С. (1910). пме-тодике количественного анализа кислорода в некоторых группах минералов рентгено-спектральным локальным методом. Тез. докл., т. 2. Новосибирск. Маршукова Н. К., Павловский А. Б., Сидоренко Г. А. (1969). Станнин и продукты его изменения в зоне окисления оловорудных месторожде-

(1995). Станий и продукты его изменения в зоне окисления оловорудных месторождений Восточной Киргизии. Геохимия, № 9. II а в л о в с к и й А. Б. (1974). Генетические типы и основные закономерности размещения оловорудных месторождений Тянь-Шаня. Сов. геол., № 8. II а в л о в с к и й А. Б., М а р ш у к о в а Н. К., К р ю ч к о в А. С. (1978). Нестандартные типы оловянной минерализации Тянь-Шаня. ГРМ, № 3. Р ы д н и к В. И., Б о р о в с к и й И. Б. (1967). К методике количественного рентсение деботочности.

рентгеноспектрального анализа. Заводская лаборатория, № 8. Неіпгісh К. F. J. (1966). Ray absorption incertainty. The electron micro-

probe, N 4.

Moore P. B., Smith J. V. (1968). Wickmanite, $Mn^{2}+Sn^{4}+(OH)_{6}$, a new mineral from longban. Ark miner. Geol., v. 4, N 5. Struns H., Contag B. (1960). Hexahydrostannate Fe, Mn, Mg, Ca, Sn(OH)₆,

und deren kristallstruktur. Acta Cristallogr., v. 13, N 8. XRDC. (1960). N 20-1455.

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС), Москва.