Новому минералу, в честь профессора Гейдельбергского университета Гюнтера Моха, который впервые получил синтетическую фазу Cu₂SnS₃, дано название мохит (mohite).

Условия нахождения. Мохит образует мелкие, преимущественно удлиненные (до $10 \times 50 - 80$ мкм), реже изометричные (не более 30×40 мкм) выделения в тетраэдрите, наиболее часто приуроченные к границам тетраэдрита с оловосодержащим (до 4 - 6 мас.% олова) фаматинитом. Нередко в этих срастаниях отмечаются мелкие выделения курамита, моусонита и касситерита. Иногда мохит тесно ассоциирует с эмплектитом. Агрегаты этих минералов, а также касситерита располагаются среди тетраэдрита (рис. 1), замещающего голдфилдит и фаматинит.

О птические с войства и твердость. Цвет мохита под микроскопом серый с зеленоватым оттенком, весьма близок к цвету курамита. Двуотражение в воздухе для отдельных сечений мохита не улавливается. При скрещенных николях минерал обладает отчетливой анизотропией без явно выраженных цветовых оттенков. Изучение под микроскопом синтетической фазы Cu_2SnS_3 , любезно предоставленной нам профессором Г. Мохом, показало, что ее оптические свойства близки к свойствам мохита. Однако отметим, что под микроскопом в мелкозернистых агрегатах фазы Cu_2SnS_3 наблюдается слабое двуотражение, а при скрещенных николях — цветные эффекты анизотропии в зеленовато-голубых и бурокрасных тонах. В целом оптические свойства мохита близки таковым станниноподобных минералов. Это же можно сказать и о синтетической фазе Cu_2SnS_3 , что было отмечено и Г. Мохом, который писал, что под микроскопом фаза Cu_2SnS_3 и другие минералы группы станнина практически не различимы (Moh, 1975).

Исследование спектра отражения мохита выполнено на спектрофото-

Таблица 1

Зерно	Cu	Sn ·	Sb	S	Сумма		
1	$\begin{array}{c} 38.16\\ 2.05\end{array}$	35.65 1.03	Не обн.	$\begin{array}{c} 27.38\\ 2.92 \end{array}$	101.19 6		
2	$\begin{array}{c} 37.29\\ 1.99\end{array}$	$\begin{array}{c} 36.16\\ 1.03\end{array}$	Не обн. —	$\begin{array}{c} 28.15 \\ 2.98 \end{array}$	101.60 6		
3	38.04 2.03	35.31 1.01	Не обн.	$\begin{array}{c} 28.06 \\ 2.96 \end{array}$	101.61 6		
4	$\begin{array}{c} 37.45\\ 2.02 \end{array}$	$\begin{array}{r} 35.87 \\ 1.03 \end{array}$	Не обн. 	$\begin{array}{c} 27.62 \\ 2.95 \end{array}$	100.94 6		
5	$\begin{array}{c} 36.79 \\ 1.97 \end{array}$	$\begin{array}{c} 36.55\\ 1.04 \end{array}$	Не обн. —	$\begin{array}{c} 28.17 \\ 2.99 \end{array}$	101.01 6		
6	$\begin{array}{c} 38.34\\ 2.06 \end{array}$	$\substack{\textbf{32.35}\\0.93}$	3.72 - 0.10	$\begin{array}{c} 27.27\\ 2.91\end{array}$	101.67 6		
7	$\begin{array}{c} 37.75\\ 2.00 \end{array}$	34.14 0.96	0.97 0.03	28.74 3.01	101.60 6		
Синтетическая Cu ₂ SnS ₃	$\begin{array}{c} 37.37\\ 2.01\end{array}$	34.80 1.00	Не обн. —	$\begin{array}{c} 28.03 \\ 2.99 \end{array}$	100.20 6		
Теоретический состав	37.16 2.00	34.71 1.00		$\begin{array}{r} 28.13\\ 3.00 \end{array}$	100.00 6		
		1					

Химический состав мохита и синтетической фазы Cu₂SnS₃

Примечание. Для каждого ачализа верхняя строка — мас. $^{0}/_{0}$, нижняя — формульные единицы. Условия анализа: ускоряющее напряжение 20 кВ, ток образца 25 нА, диаметр зонда 1—2 мкм. Аналитические линии: $K_{\alpha_{1}} \rightarrow для Cu, Fe, Zn, As, S; L_{\alpha_{1}} \rightarrow для Sn и Sb. Эгалоны — чистые Sn, Sb и стехиометрические CuFeS₂ и NiAs. Время набора импульсов в точке 20 с, количество точек в одном зерне не менее 5—7. Пересчег измеренных интенсивностей в концентрации выполнен на ЭКВМ «Хьюллет-Паккард» по программе ИГЕМ АН СССР (Программа HP-1..., 1978).$

метре «ПИОР».² По результатам измерения (зерно 2 в табл. 1) величина R_{max} мохита при длинах волн в интервале 440—740 нм (через 20 нм) со-ответственно равна (%): 24.6, 24.7, 25.3, 25.6, 25.4, 25.5, 25.6, 25.7, 25.6, 25.7, 26.0, 25.9, 26.2, 26.4, 26.4, 26.7. На рис. 2 спектр R_{max} мохита (1) сопоставлен со спектрами курамита (2) и станнина (3). Спектры отражения этих минералов весьма сходны. Небольшие различия оптических свойств в ряду станнин-курамит-мохит заключаются в уменьшении величины отражения и некотором выполаживании широкого максимума в интервале 440-460 нм.

Твердость микровдавливания мохита (Н), измеренная в зернах 1-3 (n=10, P=20 г)³ 151—203 кгс/мм², $H_{\rm cp}$ =179 кгс/мм². Близкие значения имеет твердость синтетической фазы Cu₂SnS₃, измеренная в тех же условиях (151—190 кгс/мм² $H_{\rm cp}$ =166 кгс/мм²).

Химический состав нескольких зерен мохита и синтетической фазы Cu₂SnS₃ изучен на микрозонде MS-46 «Камека» (табл. 1). В со-

сурьмы. Полученные в результате анализа значения концентраций элементов в мохите и синтетической фазе Cu₂SnS₃ близки теоретическим значениям. Небольшое завышение концентраций олова по сравнению с теоретическим может быть обусловлено образованием окисной пленки на металлическом олове, которое использовалось в качестве эталона.

Рентгенометрическое изучение нового минерала, а также синтетической фазы Cu₂SnS₃ проведено методом порошка.⁴ Вследствие весьма мелких размеров зерен мохита материал для съемки порошкограмм извлекался из полированных шлифов с помощью ультразвукового пробоотборника «Микрон», разработанного Л. Н. Вяльсовым. Конструкция прибора позволяла осуществить контролируемый оптически, прицельный отбор пробы из зоны диаметром 15-20 мкм и глубиной 10-15 мкм. Предварительные эксперименты показали, что материала, отобранного из одного «кратера», недостаточно для получения качественной рентгенограммы. Поэтому для съемки дебаеграммы был использован материал (тонкодисперсный порошок) из нескольких «кратеров» (зерна 2, 3, 5 в табл. 1). В тех же условиях была снята рентгенограмма синтетического Cu₂SnS₃.

Дифракционные картины нового минерала и искусственной фазы Cu₂SnS₃ имеют большое сходство. По аналогии с синтетической фазой порошкограмма мохита была проиндицирована в триклинной ячейке (пространственная группа P1), предложенной Н. Вонгом (Wang, 1974). Параметры элементарной ячейки мохита — a=6.64, b=11.51, c=19.93 Å, $(c \simeq 3a), \ \alpha = \gamma = 90^{\circ}, \ \beta = 109^{\circ}45', \ Z = 12$ — идентичны таковым синтетического Cu₂SnS₃.

Сходимость $d_{_{изм}}$ и $d_{_{расч}}$, рассчитанных по этим параметрам, соответ-ствует точности промера рентгенограммы $\left(\Delta = \left| \frac{1}{d_{_{uzm}}^2} - \frac{1}{d_{_{pacv}}^2} \right| \leq 0.003 \frac{1}{\mathring{A}^2} \right)$.

² Опорные эталоны — кремний, аттестованный в НФЛ (Англия), и (W, Ti)C, аттестованный фирмой «Оптон» (ФРГ). ³ ПМТ-3, тарирован по NaCl (P=5 г, H=21 кгс/мм²).

⁴ Камера РКД-57.3, Fe излучение, без фильтра, рентгенограммы получены Г. В. Басовой.

Таблица 2

Мохит		Синтетическая фаза Cu ₂ SnS ₃									
			данные авто	ров	(Wang, 1974)						
I		I	d/n	hkl	I	d/n	hkl				
		1	6.6	100, 113							
		1	5.44	110	30	5.50	110				
		Ĩ	4.92	022	10	4.91	113				
		1	4.12	102	20	4.241	023				
1	3.66	1	3.66	$\overline{024}$	5	3.642	113				
1	3.34	1	3.34	122	Ϋ.	0.0					
10	3.13	10	$3.14 \\ 2.99$	006, 200	100*	3.141	200, 00 6				
		. –			10	2.884	040				
1	2.82]		10	2.848	$\overline{2}23$				
					5	2.750	220				
2	2.72	3	2.72	026	6Õ*	2.720	206				
ĩ	2.63	•		020	10	2.619	043				
$\overline{2}$	2.44				10	2.442	226				
-			1		ĨŎ	2.291	223				
		1	2.15	150	10	2.165	313, 150				
1	2.11	4	2.13	240	ĨŎ	2.125	046, 240				
1	2.06	1	2.07	310	10 ·	2 058	310				
-		Î Î	1 967	029	ÎÕ	1 969	029				
7	1 920	ĝ	1 923	206 060	100*	1 922	206 060				
1	1 878	1 1	1 883	00 10 062	10	1 888	243				
î	1 800	-	1.000	00.10, 002	5	1 790	313				
i	1 699				10	1.695	049				
i	1 642	7	1 640	260	80*	1 639	260 2 0 12				
-	1.012	• •	1.010	200	20*	1 569					
1	1.551				10	1.549	350				
•	1.001	2	1 360	282	30*	1 359	4 012				
4	1 320	1	1 318	280	10	1 320	373				
•	1.020	4	4 270	363	10	1.270	3512				
		1 <u>1</u>	4 949	2 2 10	30*	1 245	406 2 0 12				
4	1 212	2	4 227	196	10	4 215	379				
-	1.010	1 1	1 208	100		1.2.0					
1	1 1 82		1 186	284 0.0.46							
1	1 107	5	4 4 4 4 4	2814							
4	1.107	1	1 050	1 3 16							
1	1 044	1	1.055	0.0.18			1				
1	1.044		1.040	0.0.10		1	1				

Результаты расчета рентгенограмм мохита и синтетической фазы Cu₂SnS₃

Примечание. Звездочкой * отмечены субструктурные рефлексы, характеризующие структурную бливость триклинной ячейки низкотемпературной фазы Cu₂SnS₃ с кубической ячей-кой (а_{куб} = 5.43 Å) ее высокотемпературной модификации.

Индексы, полученные при расчете порошкограмм мохита и синтетического Cu_2SnS_3 для некоторых отражений (табл. 2), не совпадают с данными Н. Вонга для синтетической фазы. Этот факт может быть связан с наложением отдельных рефлексов, вызывающим смещение максимума. При достаточно больших размерах параметров b с триклинной ячейкой такое смещение может приводить к выбору ошибочных hkl. Для окончательной корректировки индексов отражения необходимо точное знание координат всех атомов в ячейке, т. е. полная расшифровка структуры соединения.

В заключение авторы выражают искреннюю признательность Т. Н. Шадлун и Г. В. Басовой за помощь в проведении исследований и благодарят профессора Г. Моха за переданные для изучения образцы синтетической фазы Cu₂SnS₃.

Полированные шлифы с мохитом хранятся в Минералогическом музее им. А. Е. Ферсмана АН СССР и в лаборатории минераграфии ИГЕМ АН СССР.

Литература

Программа HP-1. (1978). Статистическая обработка результатов измерения и расчета поправок при количественном рентгеноспектральном микроанализе для ЭКВМ «Hewlett-Packard». ЦНИГРИ, вып. 135. W ang N. (1974). The three ternary phases in the system Cu-Sn-S. N. Jb. Miner. Mh., N 9.

Moh G. (1975). Tin-containing mineral system. Part II: Phase relations and mineral assemblages in the Cu-Fe-Zn-Sn-S system. Chem. Erde, Bd 34, N 1.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) АН СССР, Москва. Поступила в редакцию 15 июня 1981 г.

УДК 549.334

Д. чл. Д. А. ОРСОЕВ, С. А. РЕЖЕНОВА, д. чл. А. Н. БОГДАНОВА

СОПЧЕИТ Ад₄Pd₃Te₄ — НОВЫЙ МИНЕРАЛ ИЗ МЕДНО-НИКЕЛЕВЫХ РУД МОНЧЕГОРСКОГО ПЛУТОНА¹

В процессе изучения сульфидных медно-никелевых руд Мончегорского плутона нами обнаружен минерал, главными компонентами которого являются теллур, серебро и палладий. Ранее близкий по составу и условиям нахождения теллурид серебра и палладия был описан в медно-никелевых рудах Садбери, Канада (Cabri, Laflamme, 1976). Однако в этой публикации не приводятся результаты рентгенометрического изучения и характеристики его физических свойств, что объясняется весьма малыми размерами зерен этой фазы $(0.012 \times 0.040 \text{ мм})$. Новому минералу предлагается название сопчеит (sopcheite) по месту находки.

Нахождение. Сопчеит встречен в сплошных халькопиритовых рудах массива Сопча. Эти руды характерны для контактовых зон сульфидных жил и для их апофиз. Главными минералами таких руд являются халькопирит, иногда пентландит, второстепенные и редкие минералы: магнетит, пирит, кубанит, маккинавит, нигглиит, станнопалладинит, сильванит, алтаит, гессит, майченерит, котульскит, мончеит, меренскиит и самородное золото.

Сопчеит образует мелкие ксеноморфные зерна в халькопирите обычно на контакте с прожилками и выделениями кварца, карбонатов и других нерудных минералов (рис. 1, 2). Размер его индивидов не превышает 0.02 мм. Часто имеют место срастания двух и более зерен сопчеита, и тогда размеры агрегатов достигают 0.1 мм (рис. 1). В качестве включений содержит очень мелкие зерна халькопирита, маккинавита и меренскиита. С меренскиитом образует мельчайшие субграфические срастания (рис. 2).

Условия нахождения и тесная ассоциация сопчеита с теллуридами и теллуровисмутидами платины и палладия позволяют предположить, что образование нового минерала происходило на заключительном этапе

Таблица 1

λ, HIM	440	460	480	500	520	540	560	580	600	620	640	6 6 0	68 0	700	720 720	740
R , %	39.6	40.3	41.6	42.4	42 .8	43.0	43.5	44 .4	45.2	45.8	46.6	47.3	48.0	48.5	48.5	48.3

Отражение (R, $0/_0$) сопчеита

Примечание. Измерение произведено Л. Н. Вяльсовым на приборе «ПИОР» в ИГЕМ АН СССР. Эталон — кремний, аттестованный в НФЛ (Англия).

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 25 октября 1980 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 24 февраля 1981 г.