Wang N. (1974). The three ternary phases in the system Cu-Sn-S. N. Jb. Miner. Mh., N 9.

M o h G. (1975). Tin-containing mineral system. Part II: Phase relations and mineral assemblages in the Cu-Fe-Zn-Sn-S system. Chem. Erde, Bd 34, N 1.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) АН СССР, Москва.

Поступила в редакцию 15 июня 1981 г.

УДК 549.334

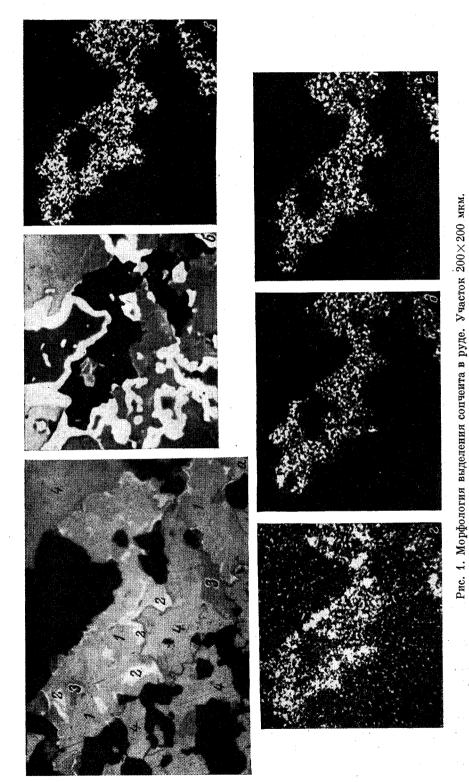
Д. чл. Д. А. ОРСОЕВ, С. А. РЕЖЕНОВА, д. чл. А. Н. БОГДАНОВА

СОПЧЕИТ $Ag_4Pd_3Te_4$ — НОВЫЙ МИНЕРАЛ ИЗ МЕДНО-НИКЕЛЕВЫХ РУД МОНЧЕГОРСКОГО ПЛУТОНА ¹

В процессе изучения сульфидных медно-никелевых руд Мончегорского плутона нами обнаружен минерал, главными компонентами которого являются теллур, серебро и палладий. Ранее близкий по составу и условиям нахождения теллурид серебра и палладия был описан в медно-никелевых рудах Садбери, Канада (Cabri, Laflamme, 1976). Однако в этой публикации не приводятся результаты рентгенометрического изучения и характеристики его физических свойств, что объясняется весьма малыми размерами зерен этой фазы $(0.012 \times 0.040 \text{ мм})$. Новому минералу предлагается название сопчеит (sopcheite) по месту находки.

Нахождение. Сопчеит встречен в сплошных халькопиритовых рудах массива Сопча. Эти руды характерны для контактовых зон сульфидных жил и для их апофиз. Главными минералами таких руд являются халькопирит, иногда пентландит, второстепенные и редкие минералы: магнетит, пирит, кубанит, маккинавит, нигглиит, станнопалладинит, сильванит, алтаит, гессит, майченерит, котульскит, мончеит, меренскийт и самородное золото.

Сопчеит образует мелкие ксеноморфные зерна в халькопирите обычно на контакте с прожилками и выделениями кварца, карбонатов и других нерудных минералов (рис. 1, 2). Размер его индивидов не превышает 0.02 мм. Часто имеют место срастания двух и более зерен сопчеита, и тогда размеры агрегатов достигают 0.1 мм (рис. 1). В качестве включений содержит очень мелкие зерна халькопирита, маккинавита и меренскиита. С меренскиитом образует мельчайшие субграфические срастания (рис. 2).


Условия нахождения и тесная ассоциация сопчеита с теллуридами и теллуровисмутидами платины и палладия позволяют предположить, что образование нового минерала происходило на заключительном этапе

 ${
m T}\,{
m a}\,{
m f}\,{
m i}\,{
m i}\,{
m i}\,{
m a}\,{
m f}\,{
m i}\,{
m i}$

λ, ειμ	440	460	480	500	520	540	560	580	600	620	640	66 0	680	700	720	740
R, º/0	39.6	40.3	41.6	42.4	42.8	43.0	43.5	44.4	45.2	45.8	46.6	47.3	48.0	48.5	48.5	48.3

Примечание. Измерение произведено Л. Н. Вяльсовым на приборе «ПИОР» в ИГЕМ АН СССР. Эталон — кремний, аттестованный в НФЛ (Англия).

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 25 октября 1980 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 24 февраля 1981 г.

a — микрофотография: I — сопчеит, z — меренскиит, z — маккинавит, d — халькопирит, черное — нерудные минералы. Полир. шлиф. увел, 760; δ — то же, в поголожения рентреновских пучах Te_{L_a} : z — B_{L_a} : d — B_{L_a} : d

формирования наиболее медистых жильных халькопиритовых руд Мончегорского плутона и отнести его надо к платино-теллуридной минеральной ассоциации.

Оптические свойства. В отраженном свете сопчеит имеет серый цвет с коричневым оттенком. Анизотропный с цветным эффектом от

желтовато-красного до голубоватого. Отражение умеренное, близкое пирротину (табл. 1). Внутренние рефлексы отсутствуют. Спектр отражения сопчеита (рис. 3) имеет аномальный характер с небольшим перегибом в области 460—540 нм.

Твердость сопчеита (ПМТ-3, тарированный по PbS, нагрузка 10 г, n=5) 134—209 кгс/мм², $H_{\rm cp}=$ =170 ±35.4 кгс/мм². Результаты количественного и качественного анализов на микрозонде (табл. 2, рис. 1) свидетель-

Рис. 2. Взаимоотношения сопчеита (1), меренскиита (2), маккинавита (3) и халькопирита (4) в руде.

Черное — нерудные минералы. Полир. шлиф, увел. 720, желтый фильтр.

ствуют о том, что зерна сопчеита однородны и довольно постоянны по химическому составу. Сопчеит по содержанию основных компонентов близок к фазе ${\rm Ag_4Pd_3Te_4}$ из Садбери и несколько отличается от нее по содержанию элементов-примесей

(табл. 2).

Рентгенометрическое изучение минерала проводилось методом порошка. Материал извлекался с поверхности полированного шлифа с помощью

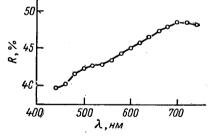


Рис. 3. Спектр отражения сопчеита.

твердометра ПМТ-3 (размер площади извлечения 0.1×0.03 мм). В табл. З приведена рентгенограмма сопчеита, индицирование которой произведено доктором А. Като (Япония). Согласно его расчетам, набор линий на рентгенограмме сопчеита отвечает ромбической сингонии: $a=9.645,\ b=7.906,\ c=11.040\ \text{Å},\ Z=4,\ \rho_{\text{рентг}}=9.948\ \text{г/см}^3.$

Эталонный образец минерала передан в Минералогический музей Геологического института Кольского филиала АН СССР, г. Апатиты.

Авторы выражают глубокую признательность доктору А. Като за помощь в расчете рентгенограммы минерала, Л. Н. Вяльсову за измерения коэффициентов отражения, И. С. Бартеневу, любезно предоставившему дополнительные образцы руд, и Ю. Н. Яковлеву за постоянный интерес и помощь в период проведения исследований.

Химический состав сопчеита (мас.%)

Ана- лиз	Ag	Pd	Fe	Cu	Ni	Те	Bi	As	Сумма	Минерал
1 2 3	32.62 33.56 33.6	25.26 23.92 25.2	0.80 2.13 Не обн.		0.03 Не обн. » »	41.32 42.13 40.1	0.17 Не обн. » »	Не обн. » » 0.29	100.29 101.74 99.19	Сопчеит » Фаза Ag ₄ Pd ₃ Te ₄ (Cabri, Laf- lamme, 1976)

Формула

 $\begin{array}{c} 1 \longrightarrow (\mathrm{Ag_{3.78}Fe_{0.18}Cu_{0.02}Ni_{0.01})_{3.99}Pd_{2.96}(\mathrm{Te_{4.04}Bi_{0.01}})_{4.05},} \\ 2 \longrightarrow (\mathrm{Ag_{3.79}Fe_{0.21})_{4.00}(\mathrm{Pd_{2.74}Fe_{0.25}})_{2.99}\mathrm{Te_{4.02}},} \\ 3 \longrightarrow \mathrm{Ag_{3.95}Pd_{3.00}(\mathrm{Te_{3.99}As_{0.05}})_{4.05}} \\ \mathrm{II} \ \mathrm{pu} \ \mathrm{me} \ \mathrm{uah} \ \mathrm{ue}. \ \mathrm{yc,nobus} \ \mathrm{auahusa:} \ \mathrm{MS-46} \ \mathrm{cCameca}, 29 \ \mathrm{kB}, 40 \ \mathrm{hA}; \ \mathrm{atahush} \ \mathrm{bi_{2}Te_{3}} \ \mathrm{(ha} \ \mathrm{Bi} \ \mathrm{ut}), \ \mathrm{nahke} \ \mathrm{uucth} \ \mathrm{Pt} \ \mathrm{u} \ \mathrm{Ag_{3.95}Ph_{2}} \ \mathrm{(ha} \ \mathrm{Pd}), \ \mathrm{vahke} \ \mathrm{uuth} \ \mathrm{uth} \ \mathrm{vahke} \ \mathrm{uucth} \ \mathrm{Pt} \ \mathrm{u} \ \mathrm{Ag_{3.95}Ph_{2}} \ \mathrm{uth} \ \mathrm{uth$

Таблица 3 Результаты расчета рентгенограммы порошка сопчента

I	$d_{ t M3M}$	$d_{ m pac}$ ų	hkl	I	$d_{{ t H}3{ t M}}$	$d_{ m pacq}$	hkl	
4 10* 1 5 6	4.12 3.33 3.15 2.70 2.56	4.117 4.096 3.337 3.153 2.694 2.563	210 112 013 113 023 031	7 ш. 1 ш. 3 4 ш. 2	1.805 1.687 1.586 1.541 1.515	1.804 1.808 1.684 1.585 1.541 1.515	241 106 340 144 531 613	
5 ш.	2.30	$2.306 \\ 2.309$	410 132	3	1.441	1.440	236	
4	2.15	$2.153 \\ 2.142$	105 033	4	1.371	1.372 1.372	620 426	
4 2 ш.	2.03 ,1.859	2.024 1.861	314 042	3	1.330	1.332 1.332	622 506	

Примечание. РКД-57.3, Fe излучение (без фильтра), 45 кВ, 16 мА, 5 ч, резиновый шарик. Звездочкой отмечена линия сопчеига, совпадающая с отражением ассоциирующего с ним кварца.

Литература

Кравченко-Бережной Р. А., Медведева Э. М., Пахомовский Я. А., Полежаева Л. И., Реженова С. А., Чепкаленко В. А. (1976). Использование ЭВМ в количественном рентгеновском микроанализе. Заводская лаборатория № 9, т. 42.
Сарті L. J., Laflamme J. H. G. (1976). The mineralogy of the platinumgroup elements from some copper-nickel deposits of the Sudbury area. Ontario. Econ. Geol., v. 71, N 7.

Геологический институт Кольского филиала АН СССР (ГИ Кол Φ АН), Апатиты.

Поступила в редакцию 28 апреля 1981 г.