Д. члены Е. Н. ЗАВЬЯЛОВ, В. Д. БЕГИЗОВ

СУЛЬФОЦУМОИТ Ві₃Те₂S — НОВЫЙ ВИСМУТОВЫЙ МИНЕРАЛ ¹

При исследовании образцов из месторождения Эргелях (Якутская ACCP) установлен сульфотеллурид висмута, химический состав которого не похож ни на один из известных ранее и соответствует химической формуле, близкой к стехиометричной Bi₃Te₂S (табл. 1).

Таблица 1

	Номер		C	одержат						
Минерал	Линерал образ- ца н		Pb	те	s	Se	сумма	лимическая формула 		
Сульфоцумоит	766 88	70.1 67.7		$\begin{array}{c} 27.0\\ 28.6 \end{array}$	3.2 3.4	0.5	100.8 99.7	$\begin{array}{c} {\operatorname{Bi}}_{{3.08}}{\operatorname{Te}}_{{1.94}}({\operatorname{S}}_{{0.92}}{\operatorname{Se}}_{{0.06}})_{{0.98}}\\ {\operatorname{Bi}}_{{2.97}}{\operatorname{Te}}_{{2.06}}{\operatorname{S}}_{{0.97}}\end{array}$		
Жозеит-В	76б 88 48	$75.1 \\ 72.8 \\ 74.9$	1.1	22.0 23.1 21.8	$2.6 \\ 2.8 \\ 3.1$	0.5	100.2 99.8 99.8	$\begin{array}{l} \mathrm{Bi}_{4.06}\mathrm{Te}_{1.95}(\mathrm{S}_{0.92}\mathrm{Se}_{0.07})_{0.99} \\ (\mathrm{Bi}_{3.92}\mathrm{Pb}_{0.06})_{3.98}\mathrm{Te}_{2.04}\mathrm{S}_{0.98} \\ \mathrm{Bi}_{4.01}\mathrm{Te}_{1.91}\mathrm{S}_{1.08} \end{array}$		
Цумоит	76a	62.7		36.5			99.2	${ m Bi}_{2.05}{ m Te}_{1.95}$		

Химический состав исследованных минералов

Примечание. Условия анализа: рентгеновский микроанализатор МАР-2, эталоны — химически чистый висмут, галенит, синтетические РbТе и Bl₂Te₃. Количественные анализы проводились при ускоряющем напряжении 35 кВ по линиям L_{α_1} (Bi и Te) и K_{α_1} (S и Se). При пересчете относительных интенсивностей на концентрации вводились поправки на поглощение и атомный номер (Springer, 1967).

Данные порошковых рентгенограмм нового минерала, сходные в общих чертах с рентгенограммами известных теллуридов и сульфотеллуридов висмута, позволили выявить его структурные особенности, в частности, определить, что минерал имеет двенадцатислойную структуру, т. е. изотипную со структурой теллурида висмута цумоита (Shimazaki, Оzawa, 1978). Изотипия их структур отражена в названии нового минерала — сульфоцумоит (sulphotsumoite). При рентгеновском изучении сульфоцумоита учитывалось, что дифракционные картины дебаеграмм слоистых халькогенидов висмута, структурно гомотипных (Strunz, 1963; Стасова, Карпинский, 1967), имеют общие черты, выражающиеся присутствием линий подструктуры (трехслойная упаковка) и сверхструктуры (распределение атомов по слоям и группировка слоев). Относительное расположение на дебаеграммах двух наиболее интенсивных линий подструктуры с индексами (011l₀) и (0112l₀) и характеристической линии сверхструктуры (0001,) использовано нами для определения характера индицирования данных дебаеграмм соединений этой группы (Завьялов и др., 1976). По сильным линиям дебаеграмма сульфоцумоита наиболее близка к дебаеграмме жозеита-В, но отличается от нее смещением и исчезновением ряда средних и слабых линий, а также появлением новых слабых линий (табл. 2). Кроме того, рассчитанные индексы линий подструктуры у нового минерала кратны четырем, а параметр гексагональной решетки c_0 отвечает 12-слойной структуре, так же как у цумоита (табл. 2 и 3). У жозеита-В кратность индексов подструктуры равна семи,

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 29 октября 1979 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 24 января 1981 г.

Таблица 2

Сульфоцумоит					Жозеит-В Цумоит							
oop. 766 oon. 88					<u>обр</u> //	8						
			1	hkil			 		1			
I 	d/n	I			I		hkil	I	d/n	hkil		
								1	4.82	0005		
3	4.68	3	4.67	0005	2	4 54	0009	-		0000		
≤ 1	3.68	2	3.69	1010	5 1	3.71						
_ 1	0.07	1	0.01	1013	1	5.41	000.12			Tota		
10	3.16	10	3.16	1014	10	3.17	<u>10</u> 17	10	3.23	1014		
$<^{1}$	$2.70 \\ 2.49$	2	2.70	1016 1017	2	2.65	101.11					
1 8	$\begin{array}{c} 2.35\\ 2.31\end{array}$	6	2.32	$\begin{array}{r} 000.10\\ 10\overline{1}8 \end{array}$	17	2.42	101.13 101.14	7	2.37	1018		
1	2.16	5	2.16	1120	2	2.27	000.18	2	2.21	1120		
2	2.14	1	2.15	1019	3	2.12	101.16	י ג	2.00	000.42		
1 3	1.987	1	1.989	101.10	1	4.055	101.17	4	2.00	000.12		
$\frac{3}{2}$	1.854	3 2	1.855	101.11	3 1	1.955	$20\overline{2}3$			- · - ·		
2	1.781	4	1.779	$20\bar{2}4$	13	1.828	$\begin{array}{r} 2025\\ 20\overline{2}7\end{array}$	2	1.827	2024		
1	1.681	- 1	1.685	2026	1	1.679	202.11	1	1.666	101.13		
2	1.628	1	1.627	101.13	2	1.613	202.13.	3	1.615	2028		
2	1.587	1	1.588	112 10	2	1 580	$10\overline{1.23}$ $\overline{202.44}$	5				
2	1.574	3	1.577	2028	3	1.571	000.26,					
2	1.530	1	1.533	101.14	2	1.519	112.18 000.27,					
<1	1.521	1	1.518	$11\bar{2}.11$	2	1.504	$\frac{202.16}{101.25}$					
3	1.448	3	1.449	<u>1</u> 12.12	4	1.451	112.21	5	1.486	112.12		
<1	1.405	1	1.407	202.11				$\frac{2}{2}$	1.408	$12\overline{3}4$ $\overline{1}01.16$		
2	1.370	4	1.367	$12\overline{3}4$	3 1	$1.380 \\ 1.366$	$12\overline{3}7$ 000.30	- 1	1.357	112.14		
	-				1	1 344	101.28	-	1.001			
1	1.324 1 299	1	1.323	112.14 202.13	1	1.329	123.11	1	1.330	$20\overline{2}.13$		
2	1.200	2	1.200	449.45	$\frac{1}{2}$	1.294 1.278	202.22 $21\overline{3}.14$	2 1	1.304 1.276	112.15 $30\overline{3}0$		
1	1.203 1.245	$\frac{5}{2}$	1.208 1.240	$30\overline{3}2,$	4	1.244	000.33,	. 1	1.263	101.18		
1	1.231	1	1.231	$1239 \\ 10\overline{1.18}$	1	1.213	$\begin{array}{c c} 112.27 \\ 10\overline{1}.32 \end{array}$					
_				_				1	$1.190 \\ 1.182$	$11\overline{2}.17$ $20\overline{2}.16$		
2	1.174	2	1.172	$\overline{1}01.19, \\ 30\overline{3}7$	1	1.168	213.20	-				
<1	1.162	1	1.162	112.17	1	1.156	$11\overline{2}.30,$ $20\overline{2}.28$					
					3	1.148	123.20	1	1.147	$\frac{10\overline{1}.20}{\overline{2}02.47}$		
_1	1 1 1 1	4	4 1 1 1	202 47	1	1.117	$10\overline{1}.35$	1	1.139	202.17		
	1.111	1	1.111	202.17	1	1.110	213.23	1	1.104	303.11		
<1	1.099	1	1.098	303.10	1 1	1.096 1.084	$\begin{array}{r} 303.18\\2\underline{2}\overline{4}0\end{array}$	1	1.096	$22\overline{4}3$		
2	1.078	2	1.077	303.11, 2242	2	1.074	$12\bar{3}.25$	2	1.077	$22\overline{4}5$		
2	1.069	1	1.069	$10\overline{1}.21$	1	1.059	$\bar{2}02.32$					

Результаты расчета дебаеграмм исследованных минералов

Продолжение

Сульфоцумоит					Жозеит	-В	Цумоит				
обj	p. 760	0 0	p. 88			обр. 4	18	обр. 76а			
I	d/n	I	d/n	hkil	I	d/n	hkil	I	d/n	hkil	
2	1.049	2	1.048	123.15	1	1.054	303.21	2	1.043	1 23.16	
$\frac{2}{2}$	1.018	$\frac{1}{2}$	1.018	112.20 000.23, $12\overline{3}.16$	$\frac{2}{2}$	1.016	$13\overline{4}9, 20\overline{2}.34$	1	1.017	$\overline{2}02.20$	
1	$0.999 \\ 0.984$	1	0.999	202.20 101.23	1	1.004	134.11 134.14	2	1.001	1348	
-	0.001			101120	-	0.000					

Примечание. Условия съемки: $Fe_{K_{\alpha}}$ — излучение, камера РКД'= 57.3, диаметр (мм) пре-паратов, изготовленных по методу С. Химстре (Hiemstra, 1956): 0.5 (обр. 76а, 766 и 48) и 0.3 (обр. 88). При расчете дебаеграмм вводились поправки, полученные по эталонным веществам (NaCl, PbS, Bi₂Te₃).

а параметр c_0 соответственно показывает 21-слойную структуру (табл. 2 и 3), так же как у жозеита-А (Peacock, 1941), верлита (Завьялов и др., 1978), раклиджита (Завьялов, Бегизов, 1977), лайтакарита (Vorma, 1959, 1960) и икунолита (Kato, 1959). Параметры решетки изученных образцов уточнены по всем линиям дебаеграмм с помощью ЭВМ при допустимом расхождении измеренных и вычисленных значений межплоскостных расстояний не более 0.1%.

В изученных образцах сульфоцумоит входит в состав мелкозернистых листоватых агрегатов.

Таблица З

Структурные параметры исследованных минералов									
Параметр	Сульфоцумо- ит	Цумоит	Жозеит-Е						
а (Å) с (Å) V (Å ³) Z Р _{Рнч} (г/см ³) Пространственная группа	4.316 23.43 377.97 2 8.13 P3m1?	4.427 24.06 408.35 3 8.26 P3m1	4.338 41.06 669.14 3 8.31 <i>R</i> 3 <i>m</i> ?						

 \mathbf{c}

Примечание. Около половины линий дебаеграммы сульфо-пумоита имеют индексы, не отвечающие условию ромбоэдричности (h-k+l=3n), у жозеита-В — три линии.

Таблица 4

1	Іисперсия	отражения	исследованных	минералов
۲	quonoponn	orpunctum	noonogobumbuk	minicipation

	$R_{g'}$ и $R_{p'}$ (°/0) при различных λ (нм)														
Минерал	420	440	460	480	500	52 0	540	560	580	600	620	640	660	680	700
Сульфоцумоит (обр. 76б)	53.8 51.8	$54.1 \\ 51.8$	$54.7 \\ 52.0$	$55.3 \\ 52.3$	$56.0 \\ 52.7$	$56.7 \\ 53.2$	$57.3 \\ 53.6$	57.8 53.8	$58.0 \\ 53.9$	$58.0 \\ 53.8$	$58.0 \\ 53.7$	$58.0 \\ 53.6$	$57.9 \\ 53.6$	$57.9 \\ 53.6$	$57.8 \\ 53.6$
Жозеит-В (обр. 48)	$59.0 \\ 54.8$	$59.1 \\ 54.6$	$59.3 \\ 54.4$	$59.6 \\ 54.3$	${}^{60.0}_{54.2}$	$60.6 \\ 54.1$	$\begin{array}{c} 61.2 \\ 54.2 \end{array}$	$\frac{61.7}{54.3}$	$\frac{62.1}{54.3}$	$\substack{62.3\\54.2}$	${}^{62.3}_{54.0}$	$\begin{array}{c} 62.2 \\ 53.8 \end{array}$	${}^{62.1}_{53.7}$	${}^{62.0}_{53.6}$	$\substack{62.0\\53.5}$
Цумоит (обр. 76а)	61.9 59.5	62.1 59.4	$62.3 \\ 59.3$	$62.6 \\ 59.3$	63.0 59.5	63.6 59.5	64.1 59.6	$64.4 \\ 59.8$	64.7 60.0	65.0 60.1	$\begin{array}{c} 65.2 \\ 60.4 \end{array}$	65.6 60.8	$65.9 \\ 61.1$	$\substack{66.2\\61.5}$	66.5 61.7

Примечание. Исследовано с помощью Т. Н. Чвилевой (ИМГРЭ). Измерено на двухлучевом микроспектрорефлектометре «Блеск». Объектив 20× с A = 0.65. Эталон — кремний.

Обр. 76 — «Тетрадимит» (минералогический музей ЛГИ, № 31/7, фрагмент образца получен нами от В. И. Степанова, ИМГРЭ), Магаданская обл. Мелкозернистая кайма (около 1 мм толщиной) вокруг широких (до 40×25 мм) пластинок цумоита (табл. 1—5).

Обр. 88 — «Теллурид висмута» (коллекция кабинета минераграфии ИМГРЭ, нами получен от М. С. Безсмертной, ИМГРЭ), Эргелях, Якутская АССР. Агрегат сульфотеллуридов (до 6×3 мм) в интерстиции Таблица 5

между зернами кварца. Макроскопически новый минерал

ничем не отличается от других сульфотеллуридов висмута, которые вообще весьма похожи и имеют близкие физические и оптические свойства. Сульфоцумоит имеет серебристо-белый цвет, металлический блеск, весьма совершенную спайность в одном направлении, по плоскостям спайности легко расщепляется на гибкие, но неупругие листочки, немагнитный, очень мягкий и хрупкий, плохо полируется. По твердости микровдавливания сульфоцумоит на некоторых сечениях не отличается от жозеита-В, по сравнению с цумо-

Таблица 5 Твердость по микровдавливанию исследованных минералов

Кгс/мм ²						
Hcp	3σ <u>∏</u>					
63.9	18.3					
66.2 49.0						
85.3	9.0					
	Krc/z H _{cp} 63.9 66.2 49.0 66.5 85.3					

Примечание. Условия измерения: ПМТ-3 с приспособлением для автоматического нагружения (тарирован по NaCl при P = 5 г, $H_{NaCl} = 21$ кгс/мм²), нагрузка 5 г, исследовались неориентированные сечения в обр. 766.

итом он значительно мягче (табл. 5). В полированных шлифах под микроскопом видно, что изученные агрегаты состоят из оптически неотличимых зерен сульфотеллуридов, на фоне которых несколько бо́льшим отражением выделяются включения цумоита (обр. 76). Сульфотеллуриды по сравнению с цумоитом бледно-серые (табл. 4, рис. 1), при скрещенных николях хорошо видно блочное строение агрегатов (рис. 2), у всех зерен сульфотеллуридов одинаковые четкие цветные эффекты анизотропии от красно-

вато-коричневого до голубовато-серого.

В образце из месторождения Эргелях (табл. 1 и 2) в сульфоцумоите установлены включения (около 0.2 мм) жозеита-В.

Рис. 1. Спектры отражения сульфоцумоита (1), жозеита-В (2) и цумоита (3).

Для сравнения с сульфоцумоитом нами исследован эталонный жозеит-В. Обр. 48 — жозеит-В (минералогический музей ИМГРЭ, поступило от Р. М. Томпсона, Ванкуверский университет, через Н. Д. Синдееву, ИМГРЭ, нами получен от В. И. Степанова), Хедли, Британская Колумбия, Канада. Листоватые агрегаты (до 5×1.5 мм), сложенные жозеитом-В и его срастаниями с самородным висмутом в интерстициях среднезернистого кварца.

В изученных образцах впервые получены химические составы, отвечающие теоретической формуле жозеита-В Bi₄Te₂S (табл. 1).

Таким образом, установлено, что в обр. 76 крупная пластинка цумоита окаймлена мелкозернистым полиминеральным агрегатом, состоящим из двух сульфотеллуридов висмута, один из которых жозеит-В, второй структурно изотипен с цумоитом, но ввиду их совместного существования, а также индивидуальности химического состава является самостоятельным минералом. Аналогичная изотипия структур наблюдается и у других теллуридов и соответствующих им сульфотеллуридов висмута (теллуровисмутит Bi₂Te₃-тетрадимит Bi₂Te₂S; верлит Bi₄Te₃-жозеит-А Ві₄TeS₂ и жозеит-В Ві₄Te₂S).

Рис. 2. Срастание сульфоцумоита (1), жозеита-В (2) и цумоита (3) в мелкозернистом агрегате обр. 76. Увел. 63. Ник. скрещ.

В заключение авторам приятно выразить благодарность М. С. Безсмертной и В. И. Степанову за предоставленные образцы и внимание к работе.

Литература

Завьялов Е. Н., Бегизов В. Д., Нечелюстов Г. Н. (1976), Новые данные о хедлиите. ДАН СССР, т. 230, № 6. Завьялов Е. Н., Бегизов В. Д. (1977). Раклиджит (Ві, Рb)₃Te₄ — новый минерал из золоторудных месторождений Зод и Кочкарь. ЗВМО, вып. 1. Завьялов Е. Н., Бегизов В. Д., Степанов В. И. (1978). Пере-определение верлита, первая находка цумоита в СССР. ЗВМО, вып. 5.

Стасова М. М., Карпинский О. Г. (1967). О слойности в структурах селенидов и теллуридов висмута и теллуридов сурьмы. ЖСХ, т. 8, № 1.

H i e m s t r a S. A. (1956). An easy method to obtain X-ray diffraction patterns of small amounts of material. Maer. Miner., v. 41, N 5-6.

K a t o A. (1959). Ikunolite, a new mineral from the Ikuno mine, Japan. Miner. v. 2. N 6. Peacock M. A. (1941). On joseite, grünlingite, oruetite. Univ. Toronto Stud.,

Geol. ser., v. 46.

Geol. ser., v. 46.
S h i m a z a k i H., O z a wa T. (1978). Tsumoite, BiTe, a new mineral from the Tsumo mine, Japan. Amer. Miner., v. 63, N 11-12.
S p r i n g e r G. (1967). Die Berechnung von Korrekturen für die quantitative Elektronenstrahl. Mikroanalyse. Fortsch., v. 45, N 1.
S t r u n z H. (1963). Homöotypic Bi₂Se₂-Bi₂Se₃-Bi₃Se₄-Bi₄-Se₅ u. s. w. Platynit, Ikunolit, Laitakariit. Ns. Jb. Miner. Monatshefte, N 7.
V o r m a A. (1959). Laitakarite, a new Bi-Se mineral in Orijarvi. Geologi, v. 11, N 2

N 2. Abstract in Amer. Miner., v. 44, N 7-8.

Vorma A. (1960). Laitakarité, a new Bi-Se mineral. Bull. Comm. geol. Finlande, N 188.

Московский геологоразведочный институт.

320