Д. члены Е. Н. ЗАВЬЯЛОВ, В. Д. БЕГИЗОВ

СУЛЬФОЦУМОИТ Bi_3Te_2S — НОВЫЙ ВИСМУТОВЫЙ МИНЕРАЛ ¹

При исследовании образдов из месторождения Эргелях (Якутская АССР) установлен сульфотеллурид висмута, химический состав которого не похож ни на один из известных ранее и соответствует химической формуле, близкой к стехиометричной Bi_3Te_2S (табл. 1).

Таблица 1 Химический состав исследованных минералов

	Номер		C	одержат				
Минерал	образ- ца	Bi	Pb	те	s	Se	сумма	Химическая формула
Сульфоцумоит	766 88	70.1 67.7		27.0 28.6	$\frac{3.2}{3.4}$	0.5	100.8 99.7	$\begin{array}{c} {\rm Bi_{3.08}T_{e_{1.94}}(S_{0.92}Se_{0.06})_{0.98}} \\ {\rm Bi_{2.97}T_{e_{2.06}}S_{0.97}} \end{array}$
Жозеит-В	76б 88 48	75.1 72.8 74.9	1.1	22.0 23.1 21.8	2.6 2.8 3.1	0.5	100.2 99.8 99.8	$\begin{array}{c} \mathrm{Bi}_{4.06}\mathrm{Te}_{1.95}(\mathrm{S}_{0.92}\mathrm{Se}_{0.07})_{0.99} \\ (\mathrm{Bi}_{3.92}\mathrm{Pb}_{0.06})_{3.98}\mathrm{Te}_{2.04}\mathrm{S}_{0.98} \\ \mathrm{Bi}_{4.01}\mathrm{Te}_{1.91}\mathrm{S}_{1.08} \end{array}$
Цумоит	76a	62.7		36.5			99.2	$\mathrm{Bi_{2.05}Te_{1.95}}$

Примечание. Условия анализа: рентгеновский микроанализатор МАР-2, эталоны — химически чистый висмут, галенит, синтетические PbTe и Bi₂Te₃. Количественные анализы проводились при ускоряющем напряжении 35 кВ по линиям L_{α_1} (Ві и Te) и K_{α_1} (S и Se). При пересчете относительных интенсивностей на концентрации вводились поправки на поглощение и атомный номер (Springer, 1967).

Данные порошковых рентгенограмм нового минерала, сходные в общих чертах с рентгенограммами известных теллуридов и сульфотеллуридов висмута, позволили выявить его структурные особенности, в частности, определить, что минерал имеет двенадцатислойную структуру, т. е. изотипную со структурой теллурида висмута цумоита (Shimazaki, Ozawa, 1978). Изотипия их структур отражена в названии нового минерала — сульфопумоит (sulphotsumoite). При рентгеновском изучении сульфоцумоита учитывалось, что дифракционные картины дебаеграмм слоистых халькогенидов висмута, структурно гомотипных (Strunz, 1963; Стасова, Карпинский, 1967), имеют общие черты, выражающиеся присутствием линий подструктуры (трехслойная упаковка) и сверхструктуры (распределение атомов по слоям и группировка слоев). Относительное расположение на дебаеграммах двух наиболее интенсивных линий подструктуры с индексами $(01\bar{1}l_0)$ и $(01\bar{1}2l_0)$ и характеристической линии сверхструктуры $(000l_s)$ использовано нами для определения характера индицирования данных дебаеграмм соединений этой группы (Завьялов и др., 1976). По сильным линиям дебаеграмма сульфоцумоита наиболее близка к дебаеграмме жозеита-В, но отличается от нее смещением и исчезновением ряда средних и слабых линий, а также появлением новых слабых линий (табл. 2). Кроме того, рассчитанные индексы линий подструктуры у нового минерала кратны четырем, а параметр гексагональной решетки c_0 отвечает 12-слойной структуре, так же как у цумоита (табл. 2 и 3). У жозеита-В кратность индексов подструктуры равна семи,

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 29 октября 1979 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 24 января 1981 г.

Таблица 2 Результаты расчета дебаеграмм исследованных минералов

		ультат Іьфоцум		ета деоае	грамм исследованных минералов Жозеит-В Цумоит						
обр. 766 обр. 88			1		· · · · · · · · · · · · · · · · · · ·		обр. 76а				
	1	ļ	1	hkil		обр. 4	8		00p. 7	ba	
I	d/n	I	d/n		I	d/n	hkil	I	d/n	hkil	
								1	4.82	0005	
3	4.68	3	4.67	0005	3	4.54	0009	•	1.02	0000	
<1 <1	3.68 3.37	$\frac{2}{1}$	3.69 3.37	10 <u>1</u> 0 10 <u>1</u> 3	1	3.71 3.41	$10\overline{1}2$ $10\overline{1}5$				
`.	0.07	1	0.07	1013	1	3.41	000.12	40	3.23	ī014	
10 2	$\frac{3.16}{2.70}$	10	3.16	1014	10	3.17	1017	10	3.23	1014	
<1	2.49	2	2.70	1016 1017	2	2.65	101.11				
1 8	$2.35 \\ 2.31$	6	2.32	000.10 1018	1 7	2.42 2.31	101.13 101.14	7	2.37	1018	
1	2.16	5	2.16	11 20	2 3	$2.27 \\ 2.17$	000.18 $11\overline{2}0$	3	2.21	1120	
2	2.14	1	2.15	1019	3	$2.12 \\ 2.03$	101.16 101.17	4	2.00	000.12	
$\begin{array}{c}1\\3\\2\end{array}$	1.987 1.954	1 3	1.989 1.960	$\overline{1}01.10$ 000.12	3	1.955	000.21	_			
	1.854	2	1.855	101.11	1	1.862 1.828	$\frac{20\bar{2}3}{\bar{2}025}$	2	1.827	$20ar{2}4$	
$\frac{2}{1}$	1.781 1.681	4	1.779 1.685	$\frac{20\bar{2}4}{20\bar{2}6}$	3	1.792 1.679	$ \begin{array}{r} 20\overline{27} \\ \overline{2}02.11 \end{array} $	4	1.02.		
2	1.628	1	1.627	101.13		1.075	202.11	1	1.666	101.13	
_	1.000	•	1.02	101.10	2	1.613	$20\overline{2}.13,$	3	1.615	$\bar{2}028$	
$rac{2}{2}$	1.587 1.574	1 3	1.588 1.577	$\frac{11\bar{2}.10}{\bar{2}028}$	3	1.580	$\frac{10\overline{1}.23}{\overline{2}02.14}$			-	
2	1.530	1	1.533		3	1.571	000.26, 112.18				
				107.14	2	1.519	$000.27, \\ 202.16$				
<1	1.521	1	1.518	112.11	2	1.504	101.25	5	1.486	$11\bar{2}.12$	
$\stackrel{3}{<1}$	1.448 1.405	3 1	1.449 1.407	$ \begin{array}{c c} 11\overline{2}.12 \\ \overline{2}02.11 \end{array} $	4	1.451	11 2.21	2	1.408	_1234	
9	4.000				3	1.380	$12\overline{3}7$	2	1.398	T01.16	
2	1.370	4	1.367	1234	1	1.366	$000.30, \\ \bar{1}01.28$	1	1.357	$11\overline{2}.14$	
1	1.324	1	1.323	112.14	1 1	1.344 1.329	$11\overline{2}.24$ $12\overline{3}.11$	1	1.330	$20ar{2}.13$	
1	1.299	1	1.295	$20\bar{2}.13$	1 2	1.294 1.278	$20\overline{2}.22$ $21\overline{3}.14$	2 1	1.304 1.276	$11\overline{2}.15$ $30\overline{3}0$	
$\frac{3}{1}$	$1.268 \\ 1.245$	$\frac{3}{2}$	1.268 1.240	112.15 $30\overline{3}2$	4	1.244	000.33,	Î.	1.263	101.18	
1	1.231	1	1.231	$12\overline{3}9$ $10\overline{1.18}$	1	1.213	$\begin{array}{c} 11\overline{2}.27 \\ 10\overline{1}.32 \end{array}$	•			
					1	1.210	101.52	1 1	1.190 1.182	$11\overline{2}.17$ $20\overline{2}.16$	
2	1.174	2	1.172	$\overline{1}01.19, \\ 30\overline{3}7$	1	1.168	$21\overline{3}.20$	1	1.102	202.10	
<1	1.162	1	1.162	112.17	1	1.156	$11\bar{2}.30$,			*	
					3	1.148	$20\overline{2}.28$ $12\overline{3}.21$	1	1.147	101.20	
_A	1.111	4	4 444	$\bar{2}02.17$	1	1.117	101.35	1	1.139	$\bar{2}02.17$	
<1		1	1.111		1	1.110	213.23	1	1.104	303.11	
<1	1.099	1	1.098	303.10	1 1	1.096 1.084	$30\overline{3}.18$ $22\overline{4}0$	1	1.096	$22\bar{4}3$	
2	1.078	2	1.077	$30\overline{3}.11, \\ 2242$	2	1.074	12 3 .25	2	1.077	$22\overline{4}5$	
2	1.069	1	1.069	101.21	1	1.059	$\bar{2}02.32$				

Продолжение

Сульфоцумоит						Жозеит	-В	Цумоит				
обр	o. 766	обр	o. 88			обр. 4	8	обр. 76а				
I	d/n	I	d/n	hkil	I	d/n	hkil	I	d/n	hkil		
2	1.049	2	1.048	123.15	1	1.054	303.21	2	1.043	1 23.16		
2 2	1.030 1.018	1 2	1.030	$11\overline{2}.20 \ 000.23, \ 12\overline{3}.16$	$\frac{2}{2}$	1.025	$egin{array}{c c} 31ar{4}7 & 13ar{4}9, \ 20ar{2}.34 & \end{array}$	1	1.017	$\bar{2}$ 02.20		
1	0.999	1	0.999	202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20 202,20	1	1.004	134.11	2	1.001	13 48		
1	0.984		[101.23	1	0.982	134.14					

Примечание. Условия съемки: Fe_{K_α} — излучение, камера РКД'= 57.3, диаметр (мм) препаратов, изготовленных по методу С. Химстре (Hiemstra, 1956): 0.5 (обр. 76а, 766 и 48) и 0.3 (обр. 88). При расчете дебаеграмм вводились поправки, полученные по эталонным веществам (NaCl, PbS, Bi_2Te_3).

а параметр c_0 соответственно показывает 21-слойную структуру (табл. 2 и 3), так же как у жозеита-А (Peacock, 1941), верлита (Завьялов и др., 1978), раклиджита (Завьялов, Бегизов, 1977), лайтакарита (Vorma, 1959, 1960) и икунолита (Kato, 1959). Параметры решетки изученных образцов уточнены по всем линиям дебаеграмм с помощью ЭВМ при допустимом расхождении измеренных и вычисленных значений межплоскостных расстояний не более $0.1\,\%$.

В изученных образцах сульфоцумоит входит в состав мелкозернистых листоватых агрегатов.

Таблица 3 Структурные параметры исследованных минералов

Параметр	Сульфоцумо- ит	Цумоит	Жозеит-В
а (Å) c (Å) V (Å ³) Z Р _{Выч} (г/см ³) Пространственная группа	4.316 23.43 377.97 2 8.13 P3m1?	4.427 24.06 408.35 3 8.26 $P\overline{3}m1$	4.338 41.06 669.14 3 8.31 $R^{\frac{1}{2}}m$?

Примечание. Около половины линий дебаеграммы сульфонумоита имеют индексы, не отвечающие условию ромбоэдричности (h-k+l=3n), у жозеита-В — три линии.

Таблица 4 Дисперсия отражения исследованных минералов

	$R_{g'}$ и $R_{p'}$ (°/o) при различных λ (нм)														
Минерал	420	440	460	480	500	52 0	540	560	580	600	620	640	660	680	700
Сульфоцумоит (обр. 76б)	53.8 51.8	54.1 51.8	$54.7 \\ 52.0$	55.3 52.3	56.0 52.7	$56.7 \\ 53.2$	57.3 53.6	57.8 53.8	58.0 53.9	$58.0 \\ 53.8$	$58.0 \\ 53.7$	$58.0 \\ 53.6$	5 7. 9 53.6	57.9 53.6	57.8 53.6
Жозеит-В (обр. 48)		$59.1 \\ 54.6$													
Цумоит (обр. 76a)	61.9 59.5	62.1 59.4	$62.3 \\ 59.3$	$62.6 \\ 59.3$	63.0 59.5	$63.6 \\ 59.5$	$64.1 \\ 59.6$	64.4 59.8	64.7 60.0	65.0 60.1	$65.2 \\ 60.4$	65.6 60.8	65.9 61.1	66.2 61.5	66.5 61.7

П р и м е ч а н и е. Исследовано с помощью Т. Н. Чвилевой (ИМГРЭ). Измерено на двухлучевом микроспектрорефлектометре «Блеск». Объектив $20\times$ с A=0.65. Эталон — кремний.

Обр. 76 — «Тетрадимит» (минералогический музей ЛГИ, \mathbb{N} 31/7, фрагмент образца получен нами от В. И. Степанова, ИМГРЭ), Магаданская обл. Мелкозернистая кайма (около 1 мм толщиной) вокруг широких (до 40×25 мм) пластинок цумоита (табл. 1-5).

Обр. 88 — «Теллурид висмута» (коллекция кабинета минераграфии ИМГРЭ, нами получен от М. С. Безсмертной, ИМГРЭ), Эргелях, Якут-

ская АССР. Агрегат сульфотеллуридов (до 6×3 мм) в интерстиции

между зернами кварна.

Макроскопически новый минерал ничем не отличается от других сульфотеллуридов висмута, которые вообще весьма похожи и имеют близкие физические и оптические свойства. Сульфоцумоит имеет серебристо-белый цвет, металлический блеск, весьма совершенную спайность в одном направлении, по плоскостям спайности легко расщепляется на гибкие, но неупругие листочки, немагнитный, очень мягкий и хрупкий, плохо полируется. По твердости микровдавливания сульфоцумоит на некоторых сечениях не отличается от жозеита-В, по сравнению с цумо-

Таблица 5 Твердость по микровдавливанию исследованных минералов

Кгс/мм²							
H_{cp}	3 σ _ <u>H</u>						
63.9 66.2	18.3 8.1						
49.0	3.9						
85.3	9.0						
	63.9 66.2 49.0 66.5						

Примечание. Условия измерения: ПМТ-3 с приспособлением для автоматического нагружения (тарирован по NaCl при P=5 г, $H_{\rm NaCl}=21$ кгс/мм²), нагружка 5 г, исследовались неориентированные сечения в обр. 766.

итом он значительно мягче (табл. 5). В полированных шлифах под микроскопом видно, что изученные агрегаты состоят из оптически неотличимых зерен сульфотеллуридов, на фоне которых несколько большим отражением выделяются включения цумоита (обр. 76). Сульфотеллуриды по сравнению с цумоитом бледно-серые (табл. 4, рис. 1), при скрещенных николях хорошо видно блочное строение агрегатов (рис. 2), у всех зерен сульфотеллуридов одинаковые четкие цветные эффекты анизотропии от красно-

вато-коричневого до голубовато-се-

рого.

В образце из месторождения Эргелях (табл. 1 и 2) в сульфоцумоите установлены включения (около 0.2 мм) жозеита-В.

Рис. 1. Спектры отражения сульфоцумоита (1), жозеита-В (2) и цумоита (3).

Для сравнения с сульфоцумоитом нами исследован эталонный жозеит-В. Обр. 48 — жозеит-В (минералогический музей ИМГРЭ, поступило от Р. М. Томпсона, Ванкуверский университет, через Н. Д. Синдееву, ИМГРЭ, нами получен от В. И. Степанова), Хедли, Британская Колумбия, Канада. Листоватые агрегаты (до 5×1.5 мм), сложенные жозеитом-В и его срастаниями с самородным висмутом в интерстициях среднезернистого кварца.

В изученных образцах впервые получены химические составы, отвечающие теоретической формуле жозеита-В $\mathrm{Bi_4Te_2S}$ (табл. 1).

Таким образом, установлено, что в обр. 76 крупная пластинка цумоита окаймлена мелкозернистым полиминеральным агрегатом, состоящим из двух сульфотеллуридов висмута, один из которых жозеит-В, второй структурно изотипен с цумоитом, но ввиду их совместного существования, а также индивидуальности химического состава является самостоятельным минералом. Аналогичная изотипия структур наблюдается и у других теллуридов и соответствующих им сульфотеллуридов висмута (теллуровисмутит Bi₂Te₃—тетрадимит Bi₂Te₂S; верлит Bi₄Te₃—жозеит-А Bi_4TeS_2 и жозеит-В Bi_4Te_2S).

Рис. 2. Срастание сульфоцумоита (1), жозеита-В (2) и цумоита (3) в мелкозернистом агрегате обр. 76. Увел. 63. Ник. скрещ.

В заключение авторам приятно выразить благодарность М. С. Безсмертной и В. И. Степанову за предоставленные образцы и внимание к работе.

Литература

Завьялов Е. Н., Бегизов В. Д., Нечелюстов Г. Н. (1976). Новые данные о хедлиите. ДАН СССР, т. 230, № 6. Завьялов Е. Н., Бегизов В. Д. (1977). Раклиджит (Ві, РЪ)₃Те₄ — новый минерал из золоторудных месторождений Зод и Кочкарь. ЗВМО, вып. 1. Завьялов Е. Н., Бегизов В. Д., Степанов В. И. (1978). Переопределение верлита, первая находка цумоита в СССР. ЗВМО, вып. 5.

Стасова М. М., Карпинский О. Г. (1967). О слойности в структурах селенидов и теллуридов висмута и теллуридов сурьмы. ЖСХ, т. 8, № 1.

Hiemstra S. A. (1956). An easy method to obtain X-ray diffraction patterns of small amounts of material. Maer. Miner., v. 41, N 5-6.

K a to A. (1959). Ikunolite, a new mineral from the Ikuno mine, Japan. Miner.

v. 2. N 6.
Peacock M. A. (1941). On joseite, grünlingite, oruetite. Univ. Toronto Stud., Geol. ser., v. 46.

Geol. ser., v. 46.

Shimazaki H., Ozawa T. (1978). Tsumoite, BiTe, a new mineral from the Tsumo mine, Japan. Amer. Miner., v. 63, N 11—12.

Springer G. (1967). Die Berechnung von Korrekturen für die quantitative Elektronenstrahl. Mikroanalyse. Fortsch., v. 45, N 1.

Strunz H. (1963). Homöotypic Bi₂Se₂—Bi₂Se₃—Bi₃Se₄—Bi₄—Se₅ u. s. w. Platynit, Ikunolit, Laitakariit. Ns. Jb. Miner. Monatshefte, N 7.

Vorma A. (1959). Laitakarite, a new Bi—Se mineral in Orijarvi. Geologi, v. 11, N 2. Abstract in Amor. Minor. v. 44, N 7.8

N 2. Abstract in Amer. Miner., v. 44, N 7-8.

Vorma A. (1960). Laitakarite, a new Bi-Se mineral. Bull. Comm. geol. Finlande, N 188.

Московский геологоразведочный институт.