Хомяков А. П., Воронков А. А., Полежаева Л. И., Смольянинова Н. Н. (1983). Костылевит К₄Zr₂[Si₆Q₁₆] 2H₂O — новый минерал. ЗВМО, вып. 4.

Институт минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ), Москва,

Производственное объединение «Северкварцсамоцветы», Ленинград,

> Геологический институт Кольского филиала АН СССР, Ацатиты,

> > УДК 549.0

Д. члены А. П. ХОМЯКОВ, <u>А. А. ВОРОНКОВ</u>, Л. И. ПОЛЕЖАЕВА, Н. Н. СМОЛЬЯНИНОВА

КОСТЫЛЕВИТ К₄Zr₂[Si₆O₁₈] ·2H₂O — НОВЫЙ МИНЕРАЛ ¹

При изучении керна буровой скважины, пробуренной в восточной части Хибинского щелочного массива в долине р. Вуоннемиок, одним из авторов (А. П. Хомяковым) были встречены шестоватые кристаллы бесцветного прозрачного минерала, не отождествлявшегося по оптическим свойствам и рентгенограмме порошка ни с одним из известных природных или искусственных соединений. Детальное исследование этих кристаллов привело к открытию нового цирконосиликата калия, который назван костылевитом (kostylevite) в память о Екатерине Евтихиевне Костылевой-Лабунцовой (1894—1974 гг.), внесщей значительный вклад в минералогию рассматриваемого массива и, в частности, в изучение цирконосиликатов (Чухров и др., 1975).

Минерал найден в протолочке пегматовдной породы, сложенной крупными кристаллами калиевого полевого шпата и интерстиционным агрегатом зерен эгирина, натролита, пектолита, ломоносовита, щербаковита, расвумита, арктита Na₂(Ca, Ba)₄(PO₄)₃F (Хомяков и др., 1981), тригонального молибденита, виллиомита, галита и тенардита, а также нескольких щелочных цирконосиликатов — костылевита, умбита (Хомяков и др., 1983), вадеита и эвдиалита. Цирконосиликаты находятся в тесных взаимных срастаниях. Наиболее ранним среди них является эвдиалит, представленный реликтовыми зернами неправильной формы, наиболее поздним костылевит, кристаллы которого нарастают на пластинчатые выделения умбита. Вадеит отмечен в виде нескольких тонких пластинок, образующих параллельные сростки с умбитом.

Кристаллы костылевита имеют призматический облик, вытянуты по оси с, образованы формами (001), (010), (100), (110) и (011). Грани (010) и (011) присутствуют не на всех кристаллах. Встречаются простые двойники, срастающиеся по (100). На рисунке изображен идеализированный кристалл с полным набором граней. Индексы граней установлены на основании результатов исследований, проведенных монокристальными рентгенографическими методами (А. А. Воронков), с помощью двукружного гониометра Гольдшмидта (Н. Н. Смольянинова) и универсального столика Фе-

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 9 марта 1982 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 7 сентября 1982 г.

дорова (А. П. Хомяков). Приводимые ниже сферические координаты граней кристалла костылевита вычислены из рентгеновских данных (a : b : c=1.1231 : 1 : 0.5598):

Символы граней	c (001)	b (010)	a (100)	n(110)	p (011)
φ	90°00′	0°00′	90°00′	42°44′	26°15'
ę	15°26′	90°00'	90°00′	90°00′	31°58′

Минерал бесцветный, водяно-прозрачный, со стеклянным блеском, совершенной спайностью по (110). Твердость, определенная на двух зернах методом микровдавливания при нагрузке 30 г, находится в пределах 428—535 кгс/мм² (~5 по шкале Мооса). Плотность, определенная микрометодом, 2.74 г/см³, вычисленная для идеализированной формулы — 2.79 г/см³. Минерал быстро разлагается на холоде 10%-ной HCl. Опти-

чески двуосный, положительный. Угол 2V, измеренный на федоровском столике, равен 48°. Наблюдается слабая дисперсия r < v. Кристаллографическая ось *b* совпадает с осью Np оптической индикатрисы, ось *c* кристалла наклонена к осям Nm и Ng оптической индикатрисы под углом около 45°. Показатели преломления определены иммерсионным методом: Np=1.595, Nm=1.598, Ng=1.610 (± 0.002).

Рентгеновское исследование минерала проведено А. А. Воронковым. Методами Лауэ и качания установлена его принадлежность к моноклинной сингонии и определены параметры элементарной ячейки, которые уточнены с помощью монокристального автодифрактометра «Энраф-Нониус». a=13.171 (4), b==11.727 (4), c=6.565 (2) Å, $\beta=105.26^{\circ}$, $V_0=978.2$ Å³, Z=2. Пространственная группа $P2_1/a=C_{2h}^5$. Рентгенограмма порошка минерала индивидуальна (табл. 1). Ретгенограмма термически обработанного костылевита (600 °C) визуально подобна рентгенограмме вадеита.

Для определения химического состава минерала использованы три независимых метода: полуколичественный лазерный спектральный анализ (Г. Л. Васильева, ИГЕМ АН СССР), расшифровка кристаллической структуры (Илюшин и др., 1981б), количественный микрозондовый анализ (Л. И. Полежаева).

Первоначально методом лазерной спектроскопии было установлено присутствие в минерале более 10 мас. % Zr и Si, 0.0n-0.n% Ti, Nb, Mn, Fe, зафиксировано отсутствие в нем Na и Ca, после чего, исходя из геохимических особенностей минерального парагенезиса, сделано предположение о вероятном наличии в составе минерала существенного количества К, не определяемого данным методом. Структурной расшифровкой определены координаты атомов и порядковые номера элементов, входящих в состав рассматриваемого цирконосиликата. Установлено, что независимая часть его элементарной ячейки содержит один атом Zr, 3Si, 2K и 10 атомов кислорода, один из которых в соответствии с длинами связей и требованиями локального баланса валентностей принадлежит молекулам воды.² Отсюда простейшая формульная единица имеет вид ${
m K_2ZrSi_3O_9} imes$ ×H₂O (Z=4), т. е. отвечает «гидратированному вадеиту». Найденная формула подтверждена результатами микрозондового анализа (табл. 2), которые после округления коэффициентов могут быть представлены эмпирической формулой K₂(Zr_{0.87}Ti_{0.12}Hf_{0.01})Si₃O₉·H₂O.

Содержание H₂O (4.39%) в приведенной таблице вычислено, исходя из формулы минерала, установленной структурным анализом. Разность

² Присутствие в минерале молекул воды подтверждается также наличием сильных полос поглощения 1680 и 3340 см⁻¹ в его ИК спектре.

Таблица 1

 $\begin{array}{c} 344\\ 951\\ 951\\ 592\\ 883\\ 7681\\ 7683\\ 883\\ 7683\\ 683\\ 683\\ 76.10.1\\ 75.3\\ 76.10.1\\ 75.3\\ 76.5\\ 71.0.3\\ 76.5\\ 71.0.3\\ 76.5\\ 71.0.3\\ 76.5\\ 7$ $963 \\ 1.12.2$ $\begin{array}{c} 346\\ \overline{12}.3.5\\ \overline{14}.0.0\\ \overline{14}.4.2\\ \overline{\overline{13}}.6.1\\ \overline{\overline{2}}.13.1\end{array}$ hkl $\begin{array}{c} 1.2409\\ 1.2408\\ 1.2408\\ 1.12408\\ 1.1742\\ 1.1742\\ 1.1742\\ 1.1742\\ 1.1216\\ 1.0316\\ 1.0316\\ 1.0316\\ 1.0316\\ 1.0325\\ 0.9325\\ 0.9325\\ 0.9325\end{array}$ $\begin{array}{c} 0.9178 \\ 0.9174 \\ 0.9076 \\ 0.8956 \\ 0.8956 \\ 0.8889 \\ 0.8889 \end{array}$ 0.92670.9260 $d_{\rm BHI}$ $0.8952 \\ 0.8891$ $\begin{array}{c} 1.0127 \\ 0.9949 \\ 0.9831 \end{array}$ 0.9262 $0.9174 \\ 0.9076$ $\begin{array}{c} 1.2178 \\ 1.1904 \\ 1.1746 \\ 1.1468 \\ 1.1468 \\ 1.1327 \\ 1.1327 \\ 1.1219 \end{array}$ 1.0318 0.93271.2411 $d_{3 \text{ kcn}}$ Ë. H 3 6 20 501-450 4 1004 0 ന າວ $\begin{array}{c} 850 \\ 823 \\ 672 \\ 363 \\ 363 \end{array}$ $\frac{181}{571}$ 5/4 314 234 603 760 543
 654
 543
 512
 <math>
 372811 363 214 181 741 hkl $\begin{array}{c} 1.3151 \\ 1.3147 \\ 1.3019 \\ 1.2905 \\ 1.2902 \end{array}$ 1.3303 1.3301 $1.362 \\ 1.360 \\ 1.359$ 1.4431.4391.4391.4291.428 $\begin{array}{r}
 1.410 \\
 1.410 \\
 1.407 \\
 \end{array}$ $\begin{array}{c} 1.498 \\ 1.460 \\ 1.456 \\ 1.455 \\ 1.455 \end{array}$ $d_{\rm BMY}$ 1.2906. 1.31501.30251.33011.4091.429 d_{agen} 1.4951.4581.3611.441œ so 4 1 ß 16ŝ ŝ H $\begin{array}{c} 133\\ 432\\ \overline{6}41\\ \overline{4}52\\ 550\\ 313\\ \overline{7}31\\ \overline{7}31\\ \overline{7}31\\ \overline{8}01\\ \overline{8}01\end{array}$ $\begin{array}{c} 004\\ 602\\ \overline{3}71\\ 271\\ \overline{5}74\\ \overline{5}14\\ 622\\ 622\\ 622\\ 423\end{array}$ $\frac{352}{161}$ hkl1.5831.5791.5481.545 $\begin{array}{c} 1.529 \\ 1.525 \\ 1.525 \\ 1.523 \\ 1.523 \end{array}$ $\begin{array}{c} 1.754 \\ 1.745 \\ 1.745 \\ 1.700 \\ 1.695 \\ 1.646 \\ 1.646 \\ 1.646 \end{array}$ 1.8321.8281.823 $1.780 \\ 1.777$ $d_{\rm BMT}$ 1.5271.5481.8291.7261.6971.6711.6441.5821.7801.750 $d_{a \text{KCR}}$ Ξ ഹ 17 7 13 13 ŝ 1211 Ţ 5 8 $\begin{array}{c} \overline{2} \\ \overline{2} \\ 510 \\ \overline{2} \\ \overline{2$ $\frac{003}{313}$ $521 \\ 351 \\ 441 \\ 242 \\ 242$ $\overline{4}23$ $\overline{6}31$ $\frac{333}{601}$ $600 \\ 322$ hkl $1.910 \\ 1.910$ $\begin{array}{c} 1.868 \\ 1.868 \\ 1.866 \\ 1.866 \end{array}$ $\begin{array}{c} 2.035\\ 2.029\\ 1.996\\ 1.937\\ 1.935\end{array}$ 2.557 2.484 2.484 2.471 2.387 2.346 2.346 2.154 2.152 $111 \\ 092 \\ 084 \\ 084$ $118 \\ 114$ $d_{\rm BHI}$ ດ່ດ່ સંસંસં ~ 1.9122.118 2.031 1.9991.8651.936 $\begin{array}{c} 2.557\\ 2.476\\ 2.390\\ 2.350\\ 2.207\\ 2.154\\ \end{array}$ 2.091 d_{aken} - 1 01 13 20 ιΩ · 1711 7 4410 212 212 212 140 040 141 141 041 041 $\overline{4}02$ 122 hkl3.0843.0773.0773.0662.9322.8572.8572.8642.6642.6132.599 $\begin{array}{c} 6.35\\ 5.59\\ 5.57\\ 5.57\\ 5.57\\ 2.53\\ 3.577\\ 2.33\\ 3.323\\ 3.323\\ 3.3227\\ 3.3229\\ 3.3229\\ 3.3227\\ 3.3227\\ 3.3229\\ 3.327\\ 3.3227\\ 3.3227\\ 3.3227\\ 3.3229\\ 3.3227\\ 3.327\\ 3.3$ $3.197 \\ 3.189$ $d_{\rm BHq}$ $\begin{array}{c} 2.940 \\ 2.862 \\ 2.802 \end{array}$ 2.6064.320 3.087 .666 4.008 3.745 3.440 3.195336 $d_{\mathfrak{BKCH}}$ 5.60 $5.24 \\ 4.74$ $6.42 \\ 5.86$ 3 പ 00 1253 23 ы

Результаты расчета рентгенограммы порошка костылевита

визуально по шкале - широкая линия. стандарт NaCl, интенсивности оценлвались массива отражений, полученного от монокристалла на автодифрактометре. Ш. внутренний Ni-фильтр, излучение, CuKa MM, марок почернения. Индексы прокорректированы с помощью Kamepa PHV-114.6 Условия съемки: римечание. Η **M**3

Компо- ненты	Mac. %	Пересчет на 100 мас. %	Атомные количества	Пересчет на $\Sigma_{\text{кат}} = 6$
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{ZrO}_2\\ \mathrm{HfO}_2\\ \mathrm{TiO}_2\\ \mathrm{Fe}_2\mathrm{O}_3\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{H}_2\mathrm{O} \end{array}$	42.01 23.90 0.61 2.06 0.02 22.14 	44.27 25.18 0.64 2.17 0.02 23.33 (4.39)	0.7356 0.2044 0.0030 0.0272 0.0002 0.4953 (0.4873)	$3.01 \approx 3$ 0.84 0.01 0.11 $2.03 \approx 2$ (2.00)
Сумма	90.74	100.00		 € 1 € 1 € 1 1 € 1 € 1 1 € 1 € 1 1 € 1 € 1

Результаты микрозондового анализа костылевита

Таблица 2

1.5

Примечание. Среднее из анализов двух зерен. Na и Ca не обнаружены. Анализ проведен на электронном микроанализаторе MS 46 фирмы «Камека» с использованием следующих эталонов: валеит (Si, K), ZrO₂ (Zr), металлический гафияй (H1, Fe₂O₃ (Fe), TiO₂ (Ti); ускоряющее напряжение 15 кВ (Si, K, Fe) и 30 кВ (Zr, H1, Ti); ток 20 нА (Si, K, Fe, Ti) и 40 нА (Zr, H1).

между 100% и суммой микрозондовых определений (9.26%) не может быть целиком принята за содержание воды в минерале, так как при удвоенном числе молекул воды в формуле вычисленные значения плотности (2.91 г/см³) и среднего показателя преломления (1.633) оказываются намного выше экспериментальных значений (соответственно 2.74 г/см³ и 1.601). В то же время при одной молекуле воды в формуле вычисленные значения указанных величин (2.79 г/см³ и 1.591) весьма близки к экспериментально установленным, что свидетельствует о корректности выполненного пересчета данных табл. 2.

Сравнительная характеристика костылевита и умбита					
Свойства минералов	Костылевит К ₄ Zr ₂ [Si ₆ O ₁₈]-2H ₂ O	Умбит K2ZrSi3O9•H2O			
Сингония, пр. группа a_0 , Å b_0 ; Å c_0 , Å β , град V_0 , Å ³ Z Наиболее интенсивные ли- нии рентгенограммы по- рошка, $d(I)$ D , r/cm^3 Np Nm Ng 2V Габитус кристалдов	Моноклинная, P2 ₁ /a 13.171 11.727 6.565 105.26 978.2 2 6.42 (5) 5.86 (3) 5.60 (6) 3.336 (5) 3.087 (10) 2.802 (5) 2.74 1.595 1.598 1.610 48° (+)	Ромбическая, P2 ₁ 2 ₁ 2 ₁ 10.208 13.241 7.174 90 969.7 4 6.56 (6) 5.91 (9) 3.31 (7) 3.02 (10) 2.87 (8) 1.797 (8) 2.79 1.596 1.610 1.619 80° ()			
Спайность	Совершенная по (110)	Совершенная по (010), яс- ная по (100)			
катрисы	$Np=b$, $cNm\approx cNg\approx 45^{\circ}$	Np=c, Nm=b, Ng=a			

÷

Таблина З

1 По соотношению главных компонентов в химической формуле костылевит соответствует умбиту (Хомяков и др., 1983), отличающемуся от описываемого минерала сингонией, параметрами элементарной янейки, рентгенограммой порошка, физическими и оптическими свойствами. ориентировкой оптической индикатрисы (табл. 3). Индивидуальность сравниваемых К. Zr-силикатов, находящихся в тесных срастаниях друг с другом, обусловлена особенностями их кристаллической структуры (Илюнийн и др., 1981а, 1981б). Прежде всего это касается формы кремнекиспородного радикала: вместо характерных для умбита бесконечных цепей [Si₃O₉] в костылевите реализуется, островная циклическая групнировка — кольцо [Si₆Q₁₈]. Именно в силу этого обстоятельства структурная формула костылевита приобретает вид K₄Zr₂[Si₆O₁₈]·2H₂O. Основу в котором каждое кольцо из Si-тетраздров (цо два кольца на ячейку) опирается на шесть Zr-октаэдров, а каждый октаэдр в свою очередь связан с тремя кольцами. Вполь оси с каркас пронизан широкими каналами, придающими структуре цеолитоподобный характер. В этих каналах размещается половина атомов К и молекулы Н₂O. Остальные атомы К заселяют крупные полости между трансляционно-идентичными вдоль оси с кремнекислородными кольцами. Наличие в кристаллах костылевита совершенной спайности по (110)³ объясняется тем, что нараллельно этой плоскости проходят слои, заключающие в себе все Si-кольца и часть Zr-октаэдров, т. е. систему наиболее прочных связей Si-O и Zr-O, в то время как между этими слоями действуют лишь слабые силы К-О и разреженная сетка связей Zr-O. Основу строения второго цирконосиликата — умбита также составляет каркас смешанного типа { $\hat{Zr}[Si_3O_9]$ }²⁻, но в отличие от предыдущего минерала кремнекислородный радикал в нем представлен волластонитовыми цепочками [Si₂₊₁O₉] . (по четыре цепочки на ячейку), идущими вдоль оси с и связанными между собой одиночными Zr-октаэдрами. Между соседними цепями параллельно тому же направлению проходят сквозные жаналы, в которых размещаются атомы К и молекулы Н.О.

Таким образом, костылевит и умбит, представляют собой совершенно разные структурные модификации соединения K₂ZrSi₃O₉·H₂O. Нахождение этих двух минералов в тесных взаимных срастаниях указывает на близкие физико-химические условия их образования. Нарастание на кристаллы умбита косвенно указывает на сравнительную низкотемпературность костылевита.

ность костылевита. Костылевит и умбит — типоморфные минералы калиевой ветви ультраагпантовых пегматитов и гидротермалитов, кристаллизовавшихся из пересыщенных щелочными, летучими и редкими элементами остаточных силикатно-солевых растворов на заключительных стадиях формирования Хибинского массива (Костылева-Лабунцова и др., 1978; Хомяков, 1978).

Оригиналы исследования костылевита переданы на хранение в Минералогический музей им. А. Е. Ферсмана АН СССР (Москва) и Геологический музей Кольского филиала АН СССР (Апатиты).

Литература

Илюшин Г. Д., Пудовкина Э. В., Воронков А. А., Хомяков А. П., Илюхин В. В., Пятенко Ю. А. (1981a). Кристаллическая структура новой природной модификации K₂ZrSi₃O₉ · H₂O. ДАН СССР, т. 257, № 3.

³ В работе Г. Д. Илющина и соавторов (19816) в обозначении индексов граней, илоскостей спайности и срастания допущены ошибки.

Илюшин Г. Д., Хомяков А. П., Шумяцкая Н. Г., Ворон-ков А. А., Невский Н. Н., Илюхин В. В., Белов Н. В. (19816). Кристаллическая структура нового природного цирконосиликата К₄Zr₂Si₆O₁₈·2H₂O. ДАН СССР, т. 256, № 4.

Костылева-Лабунцова Е. Е., Боруцкий Б. Е., Соко-лова М. Н., Шлюкова З. В., Дорфман М. Д., Дудкин О. Б., Ко-зырева Л. В., Икорский С. В. (1978). Минералогия Хибинского масслва. Соко T. 1, 2. «Наука».

Т. 1, 2. «Наука». Хомяков А. П. (1978). Типоморфизм минералов ультраагнаитовых негма-титов. В кн.: XI съезд Междунар. минералог. ас. Тез. докл., т. 1. Новосибирск. Хомяков А. П., Быкова А. В., Курова Т. А. (1981). Арктит Na₂Ca₄(PO₄₎₃F — новый минерал. ЗВМО, вын. 4. Хомяков А. П., Воронков А. А., Кобяшев Ю. С., Поле-жаева Л. И. (1983). Умбит и параумбит — новые цирконосиликаты калия из Хи-бинского щелочного массива. ЗВМО, вып. 4. Чухров Ф. В., Борнеман И. Д., Петровская Н. В., Шад-лун Т. Н., Гинзбург А. И., Боруцкий Б. Е. и др. (1975). Памяти Ека-терины Евтихиевны Костылевой-Лабунцовой. ЗВМО, вып. 4

Институт минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ), Москва.

> Геологический институт Кольского филиала АН СССР, Апатиты,

Институт геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР (ИГЕМ), Москва.

УДК 549.0

Д. чл. А. П. ХОМЯКОВ, Т. А. КУРОВА, д. чл. Г. Н. НЕЧЕЛЮСТОВ, Г. О. ПИЛОЯН

БАРЕНЦИТ Na₇AlH₂(CO₃)₄F₄ — НОВЫЙ МИНЕРАЛ ¹

Новый минерал, являющийся единственным из установленных к настоящему времени представителей природных Na-Al карбонатов с добавочными анионами фтора, встречен А. П. Хомяковым в 1979 г. на Кольском п-ове, в высокощелочных гидротермалитах Хибинского массива. Название баренцит (barentsite) дано по имени Виллема Баренца (1550---1597) — известного голландского мореплавателя, в честь которого названо также одно из северных морей, омывающих Кольский п-ов.

Описываемый минерал обнаружен на глубине свыше 600 м от дневной поверхности в керне буровой скважины, пробуренной на горе Рестиньюн (северо-восточная часть Хибинского массива). На площади развития пород комплекса фойяитов скважиной вскрыты пестрые по составу, существенно калишпатовые, содалитовые, альбитовые, канкринитовые, анальцимовые, натролитовые и другие пегматоидные породы, насыщенные прожилками и вкрапленностью карбонатов натрия и других необычных минералов, включая баренцит. Последний встречен в штокверке подобных гидротермальных прожилков, сложенном пластинчатыми кристаллами (до 10 мм и более) шортита, альбита и натролита, промежутки между которыми заполнены ксеноморфными зернами троны, безводного карбоната натрия — натрита, виллиомита, скрытокристаллическими массами щелочного гидросиликата, напоминающего гизингерит. В подчиненных количествах агрегат перечисленных минералов содержит включения иголок эгирина, дипирамидальные кристаллы циркона размером

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 22 ноября 1982 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 14 февраля 1983 г.