превращение?); 135, 175, 230 и 375 (ступенчатая дегидратация); 810 и 975 (десульфатизация пролуктов обезвоживания). Термограмма свяжинита сходна с таковой обертита (Cesbron e. a., 1979), но у обертита нет низкотемпературного фазового перехода (?), а температуры эффектов дегидратации и десульфатизации смещены в сторону более низких температур.

Общее сравнение свойств свяжинита и обертита дано в табл. 4. Близость основных характеристик сравниваемых минералов позволяет гово-

рить о их принадлежности к одной кристаллохимической группе.

Свяжинит — характерный продукт гипергенеза пирит- и флюоритсодержащих щелочных пород Ильменских гор. Особый интерес он представляет как фиксатор (хотя и эфемерный) фтора в зоне выветривания.

Эталонные образцы свяжинита переданы в Минералогический музей им. А. Е. Ферсмана АН СССР (Москва), в Уральский геологический музей при Свердловском горном институте и в музей Ильменского заповедника (r. Muacc).

Литература

Булах А. Г. Графика кристаллов (измерение, вычисление и вычерчивание). М.: Недра, 1971. 112с.

Чесноков Б. В. Измерение кристаллов при помощи столика Е. С. Федорова и бино-

кулярной лупы. — В сб.: Тр. Свердл. горн. ин-та, 1960, вып. 35, с. 165—166.

Cesbron F., Ginderow D., Sichére M.-C., Vachey H. Laubertite, un nouveáu chlorosulfate hydraté de cuivre et d'aluminium. — Bull. Soc. fr. Miner. Cristallogr., 1979, vol. 102, p. 348-350.

Ильменский государственный заповедник УНЦ АН СССР, г. Миасс, Ленинградский университет, Свердловский горный институт.

УДК 549.313

Г. Н. НЕЧЕЛЮСТОВ, Н. И. ЧИСТЯКОВА, Е. Н. ЗАВЬЯЛОВ

НЕВСКИТ Ві(Se, S) — НОВЫЙ СЕЛЕНИД ВИСМУТА 1

При изучении образдов из оловорудного месторождения Невское (Северо-Восток СССР) авторами был обнаружен новый селенид висмута, названный невскитом по месту его нахождения.

Невскит установлен в кварцево-касситеритовых жилах в ассоциации с вольфрамитом, касситеритом, гидростаннатом железа (натанитом) и селенидами висмута (лайтакариитом, селенистым козалитом, вейбуллитом, гуанахуатитом и селенистым висмутином). Невскит большей частью обособлен от этих минералов и наблюдается в трещинках и интерстициях кварца, где он образует небольшие пластинчатые обособления неправильной формы размером до 1-2 мм в диаметре.

Макроскопически невскит похож на лайтакариит. Цвет его свинцовосерый, блеск сильный, металлический, спайность по (0001) весьма совершенная, хорошо полируется, хотя трудно избавиться от легких царапин и видны трещинки спайности.

В отраженном свете минерал белый, со слабым кремовым оттенком, двуотражения на воздухе и в иммерсии не обнаруживается. В скрещенных николях в сечениях, перпендикулярных спайности, невскит отчетливо

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 24 ноября 1982 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 29 июня 1983 г.

анизотропен, в базальных же сечениях—изотропен. Цветовые эффекты анизотропии выражены слабо (от коричневых до желто-серых).

Замеры отражательной способности по спектру невскита и эталонного лайтакариита из месторождения Ориярви (Финляндия) показали, что эти минералы отличаются как по абсолютным значениям R, так и по форме

Таблица 1 Величины отражения невскита и лайтакариита в воздухе

Минерал	R_1 и R_2 (%) при различных λ (нм)													
	440	460	480	500	520	540	560	580	600	620	640	660	680	700
Невскит Лайтакариит	58.0 52.5 51.3 48.1	57.3 52.1 51.5 48.0	56.8 51.7 51.7 48.0	56.3 51.3 51.9 47.9	55.9 50.8 52.1 47.9	55.5 50.5 52.2 47.8	55.0 50.1 52.3 47.7	54.5 49.8 52.4 47.5	54.1 49.6 52.4 47.4	53.7 49.4 52.4 47.3	53.2 49.1 52.3 47.2	52.8 48.9 52.2 47.0	52.5 48.8 52.1 46.9	52.2 48.6 51.9 46.8

II римечание. Невскит исследован Е. Г. Рябевой (ВИМС), а лайтакариит — Т. Н. Чвилевой (ИМГРЭ) на микроспектрометрах МСФ-10 и «Блеск». Эталон — кремний.

Таблица 2 Химический состав невскита и лайтакариита по данным электронно-зондового анализа

		Содеј	ржані	ие элементо		Формульные коэффици						енты			
Анализ	Название минерала	Bi	Pb	Ag	Se	s	Сумма	Bi	Pb	Ag	2 Bi + Pb + Ag	Se	s	Σ Se + S	$\frac{\text{2Bi} + \text{Pb} + \text{Ag}}{\text{2Se} + \text{S}}$
1 2 3 4 5 6 7 8 9 10 11 12	Лайтака- риит	71.2 69.1	2.8 1.9 3.5 4.8 5.1 5.3 5.1 2.7 2.5 0.78	$\begin{array}{c} \textbf{0.6} \\ \textbf{0.71} \end{array}$	24.7 24.5 24.8 24.6 19.4 19.1 19.1 15.8 16.2 15.5	1.6 1.4 1.7 2.1 2.3 2.3 2.4 2.9 2.8 3.28	99.2 99.8 99.5 100.4 98.7 99.1 99.3 99.5 98.55	3.28 3.35 3.22 3.60 3.52 3.53 3.53 3.86 3.81 3.84	0.13 0.09 0.16 0.24 0.25 0.26 0.25 0.13 0.12	0.05 0.04 0.05 0.02 0.01 0.01 0.01 0.06 0.07	3.46 3.48 3.43 3.84 3.79 3.80 3.79 4.00 3.99 3.95	3.05 3.09 3.04 2.50 2.48 2.47 2.46 2.06 2.11 2.00	0.49 0.43 0.53 0.66 0.73 0.75 0.93 0.90 1.05	3.54 3.52 3.57 3.16 3.21 3.20 3.22 2.99 3.01 3.05	0.958 0.977 0.989 0.961 1.215 1.181 1.188 1.177 1.338 1.326 1.295 1.381

II р и м е ч а и и е. Sb, Cu, Te — не обнаружены. В ан. 11 определено Cu 0.26; Zn 0.14, нерастворимый остаток — 0.93; сумма анализа исправлена авторами. Ан. 1—10 — данные авторов; ан. 11 — данные А. Ворма (Vorma, 1960); ан. 12 — данные С. Каруп-Мюллера (Karup-Møller, 1970). Условия анализа: микроанализатор Сашеbах, рабочее напряжение 20 кВ для Ві $_{M_\alpha}$, Pb $_{M_\alpha}$, Ag $_{L_\alpha}$, S $_{K_\alpha}$ и 30 кВ для Se $_{K_\alpha}$, ток зонда 20 нА, диаметр зонда 2—3 мкм; продолжительность счета импульсов 20 с; интенсивность измерялась не менее, чем в 10 точках каж юго зерна; эталоны — искусственные PbS и Ві $_2$ S₃, клаусталлит PbSe и чистое серебро; при пересчете относительных интенсивностей на концентрации вводились поправки на поглощение (Philibert, 1963), атомный номер (Love е. а., 1978) и характеристическую флуоресценцию (Рид, 1979) с использованием массовых коэффициентов поглощения по К. Хейнриху (Heinrich, 1966).

спектральных кривых (табл. 1). У невскита с увеличением длины волны главные показатели отражения постепенно уменьшаются, тогда как у лайтакариита на участке спектра 440—620 нм величины коэффициентов отражения монотонно возрастают, а затем плавно уменьшаются.

Твердость микровдавливания невскита (H), измеренная С. И. Лебедевой в зернах 1—4 (ПМТ-3, n=15, P=10—15 г), составляет 60—114 кгс/мм², $H_{\rm op}$ =90 кгс/мм².

По химическому составу невскит наиболее близок к лайтакарииту. Поэтому одновременно с невскитом в одних и тех же условиях был про-

анализирован лайтакариит из месторождения Невское (табл. 2, ан. 5-8) и лайтакариит из месторождения Ориярви, первого места его находки (табл. 2, ан. 9, 10). Пересчет химических анализов невскита на формулу лайтакариита (из расчета семи атомов в формульной единице) привел к столь значительным отклонениям от стехиометрии, что интерпретировать формулу минерала в виде Bi₄ (Se, S)₃ не представлялось возможным (табл. 2). В то же время, если принять величину стехиометрического коэффициента при (Se, S), равной единице, химический состав невскита удовлетворительно рассчитывается на формулу Ві (Se, S). Установленная зависимость между химическим составом и числом слоев в ячейке селенидов висмута (Стасова, Карпинский, 1967) показывает, что составу Ві (Se, S) должна соответствовать 12-слойная ячейка. Учитывая это, авторами был проведен также пересчет анализов, исходя из расчета на два атома в формульной единице (табл. 3). Наблюдается хорошая сходимость величин стехиометрических коэффициентов при атомах (Bi, Pb) и (Se, S) в формулах невскита, рассчитанных разными способами.

Детальные рентгенографические исследования области гомогенности от 41.3 до 55.5 ат. % селена в системе $\mathrm{Bi-Se}$, проведенные $\mathrm{M.~M.}$ Стасовой (1965, 1967, 1968), позволили установить соединения промежуточного состава $\mathrm{Bi}_2\mathrm{Se}_2$, $\mathrm{Bi}_6\mathrm{Se}_5$, $\mathrm{Bi}_4\mathrm{Se}_3$. В них методом монокристальной съемки было выявлено наличие сверхструктур, существенно различающихся между собой по параметру c. Анализ кфорограмм соединений $\mathrm{Bi}_2\mathrm{Se}_2$ и $\mathrm{Bi}_4\mathrm{Se}_3$ (Стасова, 1967, 1968) показал, что они отличаются также и пространственными групнами. Так, соединению $\mathrm{Bi}_2\mathrm{Se}_2$ соответствует одна из трех пространственных групп: $P\overline{3}m1$, P3m1, P32, тогда как соединению $\mathrm{Bi}_4\mathrm{Se}_3 - R\overline{3}m$, R3m, R32. Все это позволяет сделать вывод об отсутствии непрерывного изоморфизма в ряду $\mathrm{Bi}_2\mathrm{Se}_2$ — $\mathrm{Bi}_4\mathrm{Se}_3$.

Аналогия невскита с искусственным соединением состава BiSe, синтезированного гидротермальным путем, подтвердилась и рентгеновскими данными (табл. 4). Дифракционная картина дебаеграммы невскита ти-

Таблица 3 Рассчитанные формулы невскита

Анализ	S + Se = 1	По содержанию атомов в элементарной ячейке при ${f Z}=6$
1 2 3 4	$\begin{array}{c} (\mathrm{Bi}_{0.90}\mathrm{Pb}_{0.05}\mathrm{Ag}_{0.02})_{0.97}(\mathrm{Se}_{0.85}\mathrm{S}_{0.15})_{1.00} \\ (\mathrm{Bi}_{0.93}\mathrm{Pb}_{0.04}\mathrm{Ag}_{0.01})_{0.98}(\mathrm{Se}_{0.86}\mathrm{Se}_{0.14})_{1.00} \\ (\mathrm{Bi}_{0.95}\mathrm{Pb}_{0.03}\mathrm{Ag}_{0.02})_{1.00}(\mathrm{Se}_{0.88}\mathrm{Se}_{0.12})_{1.00} \\ (\mathrm{Bi}_{0.91}\mathrm{Pb}_{0.05}\mathrm{Ag}_{0.02})_{0.98}(\mathrm{Se}_{0.83}\mathrm{Se}_{0.15})_{1.00} \end{array}$	$(\text{Bi}_{0.92}\text{Pb}_{0.05}\text{Ag}_{0.01})_{0.98}(\text{Se}_{0.87}\text{S}_{0.15})_{1.02}\\ (\text{Bi}_{0.94}\text{Pb}_{0.04}\text{Ag}_{0.01})_{0.99}(\text{Se}_{0.87}\text{S}_{0.14})_{1.01}\\ (\text{Bi}_{0.96}\text{Pb}_{0.03}\text{Ag}_{0.01})_{1.00}(\text{Se}_{0.88}\text{S}_{0.12})_{1.00}\\ (\text{Bi}_{0.92}\text{Pb}_{0.05}\text{Ag}_{0.01})_{0.98}(\text{Se}_{0.87}\text{S}_{0.15})_{1.02}$

пична для слоистых халькогенидов висмута. На рентгенограммах этих минералов обязательно присутствие основных линий, отражающих общую для всех гомотипов подструктуру - трехслойную упаковку, а также характеристических линий, обусловленных сверхструктурными особенностями каждого соединения, - распределением атомов по слоям в пакеты. Рентгеновское изучение искусственных монокристаллов селенидов висмута показало закономерное смещение рефлексов сверхструктуры в зависимости от содержания халькогена в соединении (Стасова, Карпинский, 1967). Судя по относительному распределению на дебаеграмме двух наиболее интенсивных линий подструктуры с индексами $(0.1.\overline{1}.\ l_0)$ и $(0.1.\overline{1}.\ 2l_0)$ и характеристической линии сверхструктуры (000 l_\star), используемых нами для определения характера индицирования дебаеграмм подобных соединений (Завьялов и др., 1976), новый минерал имеет индексы $l_{\rm 0}$ и $l_{\rm s}$, равные 4 и 5 соответственно. По этим индексам рассчитаны параметры элементарной ячейки, уточненные по всем линиям рентгенограммы невскита (табл. 4). Так как параметр c обусловлен числом слоев в ячейке (Стасова, Карпинский, 1967), то у невскита в ячейке содер-

Таблица 4 Сопоставление дебаеграмм и структурных параметров невскита, искусственного BiSe и лайтакариита

<u> </u>		Zeny	BiSe			Лайтакариит						
	(Годовиков и др., 1965)			ме	сторож; Невско	месторожде- ние Ориярви (Vorma, 1960)						
I	d _{M3M} hkil		$d_{\mathtt{BMY}}$	I	$d_{\mathtt{HSM}}$	I	$d_{\mathtt{MSM}}$	hkil	I	$d_{{f H}3M}$		
2	4.53	0005 *	4.56	5	4.60	-	4.45		_	7 (25		
$\frac{-4}{2}$	3.59 3.30	1011 1013,* 0007 *	3.59 3.28,	1 1	3.60 3.30	3 3 3	3.60 3.32	$\begin{bmatrix} 0009 \\ 10\overline{1}2 \\ 0.0.0.12, \\ 40\overline{4}5 \end{bmatrix}$	6 6 5	4.425 3.586 3.319		
10	3.06	1014	3.26	10	3.07	10 <1	$3.07 \\ 2.58$	1015 1017 1.0.1.11	10 3	3.072 2.573		
44	2.24 2.10	$10\overline{1}8$ $11\overline{2}0$	2.24 2.10	10 8	2.25 2.10	4 4 2	2.24 2.11 2.05	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9 9 3	2.246 2.112 2.058		
3	1.903	000.12, 1125 *	1.900, 1.906	9	1.911	3	1.898	0.0.0.21	5	1.900		
<1	1.814	$20\bar{2}0,*\ 20\bar{2}1$	1.817, 1.812	_	-	<1	1.826	$\bar{2}022$, $\bar{1}.0.1.19$	2	1.821		
<1	1.773	2023 *	1.768	_	-	<1	1.779	$1.1.\overline{2}.12, \ \overline{2}025$	2	1.781		
3 <1 3 <1 3	1.734 1.576 1.534 1.472 1.408 - 1.331 1.261 1.237	2024 1.0.1.13 2028 1.1.2.11 * 1.1.2.12 	1.732 1.580 1.532 1.475 1.408 — 1.336 1.262 1.238	3 3 3 8 8 1 2	1.738 1.588 1.538 - 1.414 - 1.335 1.266 1.240	3 1 3 <1 2 1 <1 二	1.737 1.562 1.539 1.474 1.410 1.343 1.324 1.258 1.239	$ \begin{array}{c} 20\overline{2}7 \\ \underline{1}.1.\overline{2}.17 \\ \overline{2}.0.2.14 \\ 0.0.0.27 \\ \underline{1}.1.\overline{2}.21 \\ 12\overline{3}7 \\ 0.0.030, \\ \overline{1}.0.1.28 \\ \overline{2}.0.2.23 \\ \underline{2}.1.\overline{3}.14 \end{array} $	8 1 6 1 6 2 	1.741 1.655 1.538 1.475 1.410 1.341 1.330		
2 m.	1.208	1239,* 3031 *	1.208, 1.211	$-\frac{1}{2}$	1.211	<1 ш. 1 ш.	1.218 1.205	$ \begin{array}{c c} 30\overline{3}0 \\ 1.2.\overline{3}.16 \end{array} $	3	1.220 1.213		
— 1 ш. <1 <1	1.124 1.091 1.081	2.0. 2 .16 30 3 9 2.0.2.17, 1.2. 3 .13	1.121 1.093 1.079, 1.082	ŀ	1.133 1.093	<1 Ⅲ. 1 Ⅲ. - <1	1.121	30 <u>3</u> 9 2.0. <u>2</u> .28 1.0. <u>1</u> .35	1 2 -	1.175 1.125 — —		
<1 ш. 1 ш.	1.049	$22\overline{40}, \\ 2.1.\overline{3}.14 \\ 22\overline{45}, *$	1.049, 1.050 1.022,	2	1.044	<1 ш. 2 ш.		22 4 0 0.0.0.39	3 m. 3	1.055		
т ш.	1.022	3.0.3.12	1.022,	_	1.022	<1	0.996	3147,	3 m.	0.996		
<1 m.	0.990	0.0.0.23,* 1.2.3.16	0.991, 0.989	3	0.992	<1 ш.		1.2. <u>3</u> .28 2.0. <u>2</u> .34	3 ш.	0.957		
a, Å c, Å V, A ⁸ Z ρ _{ημη} , Γ/cM ⁸			34 34	4.20 2.84 8.90 6 8.05	4.218 39.74 622.70 3 8.12			4.225 39.93				

Примечание. Условия съемки: Fe_{K_α} излучение, камера РКД = 57.3; диаметры препаратов, изготовленных по методу С. Химстре (Hiemstra, 1956), 0.2 мм. При расчете вводились поправки, полученные по эталонным веществам NaCl (a=5.636 Å), PbS (a=5.921 Å) и Bi_2Te_4 (a=4.384 Å, c=30.47 Å). Для невскита приведены усредненные d/n, полученные по трем снимам. Линии, отмеченные звездочкой, не отвечают условию ромбоздричности (h-k+l=3h). Величины р вычислены для невскита и лайтакариита, исходя из данных анализов 1 и 5 соответственно (табл. 2).

жится 12 слоев, и структура этого минерала изотипна со структурой цумоита (Shimazaki; Ozawa, 1978). Ряд отражений на дебаеграмме невскита противоречит условиям ромбоэдричности, и, вероятно, пространственная группа минерала одна из трех: $P\bar{3}m1$, P3m1, P321, что аналогично искусственному соединению BiSe (Стасова, 1967). Дебаеграмма невскита наиболее близка к дебаеграмме лайтакариита, но отличается от нее отсутствием некоторых линий, в частности таких характерных, как с $d{=}2.05$ и 1.343 Å (табл. 4), а также положением характеристической линии $d{=}4.53\,\mathrm{\AA}$ вместо 4.41 Å. Индивидуальность рентгенограммы BiSe была подтверждена также экспериментальными работами А. А. Годовикова и соавторов (1965). Эти исследователи также обратили внимание на то, что у соединения Bi₄Se₃ между седьмой и десятой находятся две близко расположенные линии с d=2.12 и 2.07 Å, тогда как в соединении BiSe только одна с d=2.10 Å. Попытка проиндицировать дебаеграмму BiSe с параметрами ближайших соседей не увенчалась успехом, в то же время она полностью индицируется с параметрами $a{=}4.20\,\mathrm{\mathring{A}}$ и $c{=}22.84\,\mathrm{\mathring{A}}$. Последний параметр был определен по рентгенограмме вращения, полученной для монокристалла BiSe (Годовиков и др., 1965).

Таким образом, полученные химические и рентгенографические данные по исследованному минералу свидетельствуют об его индивидуальности, что позволяет рассматривать невскит в качестве самостоятельного

минерального вида.

Невскит из месторождения Невское передан в Минералогический музей им. А. Е. Ферсмана АН СССР.

Литература

Годовиков А. А., Ильяшева Н. А., Кляхин В. А. Новые данные по физико-химическому изучению системы Bi—Se. — В кн.: Материалы по генетической и экспериментальной минералогии, т. III. Новосибирск: Наука, СО АН СССР, 1965, с. 18—50. Завьялов Е. Н., Бегизов В. Д., Нечелюстов Г. Н. Новые данные о хедлиите. — ДАН СССР, 1976, т. 230, № 6, с. 1439—1441.

Рид С. Электронно-зондовый микроанализ. М.: Мир, 1979. 423 с.

Стасова М. М. Рентгенографическое исследование области гомогенности в си-

Стасова М. М. Рентгенографическое исследование области гомогенности в системе висмут—селен. — Журн. неорган. мат., 1965, т. 1, № 12, с. 2134—2137. Стасова М. М. О кристаллической структуре селенидов и теллуридов сурьмы и висмута. — Журн. структурной химии, 1967, т. 8, № 4, с. 665—661. Стасова М. М. Кристаллическая структура селенида висмута Ві₄Se₃. — Изв. АН СССР. Сер. «Неорган. мат., 1968, т. 4, № 1, с. 28—31. Стасова М. М., Карпинский О. Г. О слойности в структурах селенидов и теллурилов висмута и теллурилов сурьмы. — Журн. структурной химии. 1967. т. 8. № 1. ридов висмута и теллуридов сурьмы. — Журн. структурной химии, 1967, т. 8, № 1,

Hiemstra S. A. An easy method to obtain X-ray diffraction patterns of small amounts

Hiemstra S. A. An easy method to obtain X-ray diffraction patterns of small amounts of material. — Amer. Miner., 1956, vol. 41, N 5—6, p. 519—521.

Heinruch K. F. Y. X-ray absorption uncertainty. — The Electron Microprobe. New York, 1966. 296 p.

Karup-Møller S. Weibullite, laitakarite, and bismuthinite from Falun, Sweden. — Geol. fören. Stockholm. förhandl, 1978, vol. 92, N 2, p. 181—187.

Love G., Cox M. C., Scott V. D. Evaluation of a new correction procedure for quantitative electron probe microanalysis. — J. Phys. D: Appl. Phys., 1978, vol. 11, p. 1369—4376.

Philibert I. A. Method for calculationg the absorption correction in electron probe microanalysis. — In: X-ray Optics and X-ray Microanalysis, New York, Acad. press,

Shimazaki H., Ozawa T. Tsumoite, Bite, a new mineral from the Tsumo mine. — Japan. Amer. Miner., 1978, vol. 63, N 11—12, p. 1162—1165.

Vorma A. Laitakarite a new Bi-Se-mineral. — Bull. Commiss. geol. Finlande., 1960, N 188, p. 1—10.

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС), Москва,

Московский геологоразведочный институт (МГРИ).