превращение?); 135, 175, 230 и 375 (ступенчатая дегидратация); 810 и 975 (десульфатизация пролуктов обезвоживания). Термограмма свяжинита сходна с таковой обертита (Cesbron e. a., 1979), но у обертита нет низкотемпературного фазового перехода (?), а температуры эффектов дегидратации и десульфатизации смещены в сторону более низких температур.

Общее сравнение свойств свяжинита и обертита дано в табл. 4. Близость основных характеристик сравниваемых минералов позволяет говорить о их принадлежности к одной кристаллохимической группе.

Свяжинит — характерный продукт гипергенеза пирит- и флюоритсодержащих щелочных пород Ильменских гор. Особый интерес он представляет как фиксатор (хотя и эфемерный) фтора в зоне выветривания.

Эталонные образцы свяжинита переданы в Минералогический музей им. А. Е. Ферсмана АН СССР (Москва), в Уральский геологический музей при Свердловском горном институте и в музей Ильменского заповедника (г. Миасс).

Литература

Булах А. Г. Графика кристаллов (измерение, вычисление и вычерчивание). М.: Недра, 1971. 112с.

Чесноков Б. В. Измерение кристаллов при помощи столика Е. С. Федорова и бино-

кулярной лупы. — В сб.: Тр. Свердл. горн. ин-та, 1960, вып. 35, с. 165—166. Cesbron F., Ginderow D., Sichére M.-C., Vachey H. Laubertite, un nouveáu chloro-sulfate hydraté de cuivre et d'aluminium. — Bull. Soc. fr. Miner. Cristallogr., 1979, vol. 102, p. 348-350.

Ильменский государственный заповедник УНЦ АН СССР, г. Миасс, Ленинградский университет, Свердловский горный институт.

УДК 549.313

Г. Н. НЕЧЕЛЮСТОВ, Н. И. ЧИСТЯКОВА, Е. Н. ЗАВЬЯЛОВ

НЕВСКИТ Ві(Se, S) — НОВЫЙ СЕЛЕНИД ВИСМУТА¹

При изучении образцов из оловорудного месторождения Невское (Северо-Восток СССР) авторами был обнаружен новый селенид висмута, названный невскитом по месту его нахождения.

Невскит установлен в кварцево-касситеритовых жилах в ассоциации с вольфрамитом, касситеритом, гидростаннатом железа (натанитом) и селенидами висмута (лайтакариитом, селенистым козалитом, вейбуллитом, гуанахуатитом и селенистым висмутином). Невскит большей частью обособлен от этих минералов и наблюдается в трещинках и интерстициях кварца, где он образует небольшие пластинчатые обособления неправильной формы размером до 1-2 мм в диаметре.

Макроскопически невскит похож на лайтакариит. Цвет его свинцовосерый, блеск сильный, металлический, спайность по (0001) весьма совершенная, хорошо полируется, хотя трудно избавиться от легких царапин и видны трещинки спайности.

В отраженном свете минерал белый, со слабым кремовым оттенком, двуотражения на воздухе и в иммерсии не обнаруживается. В скрещенных николях в сечениях, перпендикулярных спайности, невскит отчетливо

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 24 ноября 1982 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 29 июня 1983 г.

анизотропен, в базальных же сечениях—изотропен. Цветовые эффекты анизотропии выражены слабо (от коричневых до желто-серых).

Замеры отражательной способности по спектру невскита и эталонного лайтакариита из месторождения Ориярви (Финляндия) показали, что эти минералы отличаются как по абсолютным значениям R, так и по форме

Таблица 1

	R ₁ и R ₂ (%) при различных λ (нм)													
Минерал	440	460	480	500	520	540	560	580	600	620	640	660	680	700
Невскит Лайтакариит	$58.0 \\ 52.5 \\ 51.3 \\ 48.1$	57.3 52.1 51.5 48.0	$56.8 \\ 51.7 \\ 51.7 \\ 48.0$	$56.3 \\ 51.3 \\ 51.9 \\ 47.9$	55.9 50.8 52.1 47.9	55.5 50.5 52.2 47.8	$55.0 \\ 50.1 \\ 52.3 \\ 47.7$	54.5 49.8 52.4 47.5	54.1 49.6 52.4 47.4	53.7 49.4 52.4 47.3	53.2 49.1 52.3 47.2	52.8 48.9 52.2 47.0	$52.5 \\ 48.8 \\ 52.1 \\ 46.9$	52.2 48.6 51.9 46.8
	10.1			1		1				1.10				

Величины отражения невскита и лайтакариита в воздухе

II римечание. Невскит исследован Е. Г. Рябевой (ВИМС), а лайтакариит — Т. Н. Чвиле вой (ИМГРЭ) на микроспектрометрах МСФ-10 и «Блеск». Эталон — кремний.

Таблица 2

Химический состав невскита и лайтакариита по данным электронно-зондового анализа

		Содержание элементов (мас.º/о)						Формульные коэффициенты							
Анализ	Название минерала	Bi	₽b	Ag	Se	S	Сумма	Bi	Рb	Ag	Σ Bi + Pb + Ag	Se	S	2 Se + S	$\frac{2 \operatorname{Bi} + \operatorname{Pb} + \operatorname{Ag}}{2 \operatorname{Se} + \operatorname{S}}$
1 2 3 4 5 6 7 8 9 10 11	Невскит Лайтака- риит	$\begin{array}{c} 69.1 \\ 69.7 \\ 71.2 \\ 69.1 \\ 74.1 \\ 72.4 \\ 72.6 \\ 78.4 \\ 77.4 \\ 77.4 \\ 77.2 \\ 87.2 \\ 87.6 \end{array}$	3.6 2.8 1.9 3.5 4.8 5.1 5.3 5.1 2.7 2.5 0.78	0.6 0.6 0.5 0.6 Не обн. 0.2 0.1 0.1 0.1 0.1 0.71	$\begin{array}{r} 24.7\\ 24.5\\ 24.8\\ 24.6\\ 19.4\\ 19.2\\ 19.1\\ 15.8\\ 16.2\\ 15.5\\ 45.4\end{array}$	$1.8 \\ 1.6 \\ 1.4 \\ 1.7 \\ 2.3 \\ 2.3 \\ 2.4 \\ 2.9 \\ 2.8 \\ 3.28 \\ 3.28 \\ 3.20 $	99.8 99.2 99.5 100.4 98.7 99.1 99.3 99.9 99.5 98.55 400.7	3.20 3.28 3.35 3.22 3.60 3.52 3.53 3.53 3.86 3.81 3.81 3.84 3.84	0.17 0.13 0.09 0.16 0.24 0.25 0.26 0.25 0.13 0.12 0.04 0.04	0.05 0.05 0.04 0.05 0.02 0.01 0.01 0.01 0.01 0.06 0.07	3.42 3.46 3.48 3.43 3.84 3.79 3.80 3.79 4.00 3.99 3.95 4.06	3.03 3.05 3.09 3.04 2.50 2.48 2.47 2.46 2.06 2.11 2.00 2.00	0.54 0.49 0.43 0.53 0.66 0.73 0.73 0.75 0.93 0.90 1.05 0.93	3.57 3.54 3.52 3.57 3.16 3.21 3.20 3.22 2.99 3.01 3.05 2.94	0.958 0.977 0.989 0.961 1.215 1.181 1.188 1.177 1.338 1.326 1.295 1.295

II р имечание. Sb, Cu, Te — не обнаружены. В ан. 11 определено Cu 0.26; Zn 0.14, нерастворимый остаток — 0.93; сумма анализа исправлена авторами. Ан. 1—10 — данные авторов; ан. 11 — данные А. Ворма (Vorma, 1960); ан. 12 — данные С. Каруп-Мюллера (Karup-Møller, 1970). Условия анализа: микроанализатор Camebax, рабочее напряжение 20 кВ для Bi_{M_a} , Pb_{M_a} , Ag_{L_a} , SK_a и 30 кВ для Se_K_a , ток зонда 20 нА, диаметр зонда 2—3 мкм; продолжительность счета импульсов 20 с; интенсивность измерилась не менее, чем в 10 точках каж юго зерна; эталоны — искусственные PbS и Bi₂S₃, клаусталлит PbSe и чистое серебро; при пересчете относительных интенсивностей на концентрации вводились поправки на поглощение (Philibert, 1963), атомный номер (Love e. a., 1978) и характеристическую флуоресценцию (Рид, 1979) с использованием массовых коэффициентов поглощения по K. Хейнриху (Heinrich, 1966).

спектральных кривых (табл. 1). У невскита с увеличением длины волны главные показатели отражения постепенно уменьшаются, тогда как у лайтакариита на участке спектра 440—620 нм величины коэффициентов отражения монотонно возрастают, а затем плавно уменьшаются.

Твердость микровдавливания невскита (*H*), измеренная С. И. Лебедевой в зернах 1—4 (ПМТ-3, n=15, P=10-15 г), составляет 60—114 кгс/мм², $H_{\rm op}=90$ кгс/мм².

По химическому составу невскит наиболее близок к лайтакарииту. Поэтому одновременно с невскитом в одних и тех же условиях был про-

анализирован лайтакариит из месторождения Невское (табл. 2, ан. 5-8) и лайтакариит из месторождения Ориярви, первого места его находки (табл. 2, ан. 9, 10). Пересчет химических анализов невскита на формулу лайтакариита (из расчета семи атомов в формульной единице) привел к столь значительным отклонениям от стехиометрии, что интерпретировать формулу минерала в виде Bi4 (Se, S)3 не представлялось возможным (табл. 2). В то же время, если принять величину стехиометрического коэффициента при (Se, S), равной единице, химический состав невскита удовлетворительно рассчитывается на формулу Bi (Se, S). Установленная зависимость между химическим составом и числом слоев в ячейке селенидов висмута (Стасова, Карпинский, 1967) показывает, что составу Bi (Se, S) должна соответствовать 12-слойная ячейка. Учитывая это, авторами был проведен также пересчет анализов, исходя из расчета на два атома в формульной единице (табл. 3). Наблюдается хорошая сходимость величин стехиометрических коэффициентов при атомах (Bi, Pb) и (Se, S) в формулах невскита, рассчитанных разными способами.

Детальные рентгенографические исследования области гомогенности от 41.3 до 55.5 ат. % селена в системе Bi—Se, проведенные М. М. Стасовой (1965, 1967, 1968), позволили установить соединения промежуточного состава Bi₂Se₂, Bi₆Se₅, Bi₄Se₃. В них методом монокристальной съемки было выявлено наличие сверхструктур, существенно различающихся между собой по параметру c. Анализ кфорограмм соединений Bi₂Se₂ и Bi₄Se₃ (Стасова, 1967, 1968) показал, что они отличаются также и пространственными группами. Так, соединению Bi₂Se₂ соответствует одна из трех пространственных групп: $P\bar{3}m1$, $P\bar{3}m1$, $P\bar{3}2$, тогда как соединению Bi₄Se₃ — $R\bar{3}m$, $R\bar{3}m$, $R\bar{3}2$. Все это позволяет сделать вывод об отсутствии непрерывного изоморфизма в ряду Bi₂Se₂—Bi₄Se₃.

Аналогия невскита с искусственным соединением состава BiSe, синтезированного гидротермальным путем, подтвердилась и рентгеновскими данными (табл. 4). Дифракционная картина дебаеграммы невскита ти-

Рассчитанные формулы невскита

Таблица З

Анализ	S + Se = 1	По содержанию атомов в элементарной ячейке при Z = 6
1 2 3 4	$\begin{array}{l} (\mathrm{Bi}_{0.90}\mathrm{Pb}_{0.05}\mathrm{Ag}_{0.02})_{0.97}(\mathrm{Se}_{0.85}\mathrm{S}_{0.15})_{1.00} \\ (\mathrm{Bi}_{0.93}\mathrm{Pb}_{0.04}\mathrm{Ag}_{0.01})_{0.98}(\mathrm{Se}_{0.86}\mathrm{S}_{0.14})_{1.00} \\ (\mathrm{Bi}_{0.95}\mathrm{Pb}_{0.03}\mathrm{Ag}_{0.02})_{1.00}(\mathrm{Se}_{0.88}\mathrm{S}_{0.12})_{1.00} \\ (\mathrm{Bi}_{0.91}\mathrm{Pb}_{0.05}\mathrm{Ag}_{0.02})_{0.98}(\mathrm{Se}_{0.85}\mathrm{S}_{0.15})_{1.00} \end{array}$	$\begin{array}{ $

пична для слоистых халькогенидов висмута. На рентгенограммах этих минералов обязательно присутствие основных линий, отражающих общую для всех гомотипов подструктуру – трехслойную упаковку, а также характеристических линий, обусловленных сверхструктурными особенностями каждого соединения, — распределением атомов по слоям в пакеты. Рентгеновское изучение искусственных монокристаллов селенидов висмута показало закономерное смещение рефлексов сверхструктуры в зависимости от содержания халькогена в соединении (Стасова, Карпинский, 1967). Судя по относительному распределению на дебаеграмме двух наиболее интенсивных линий подструктуры с индексами (0.1.1. l₀) и (0.1.1. 2l₀) и характеристической линии сверхструктуры (000 l.), используемых нами для определения характера индицирования дебаеграмм подобных соединений (Завьялов и др., 1976), новый минерал имеет индексы lo и ls, равные 4 и 5 соответственно. По этим индексам рассчитаны параметры элементарной ячейки, уточненные по всем линиям рентгенограммы невскита (табл. 4). Так как параметр с обусловлен числом слоев в ячейке (Стасова, Карпинский, 1967), то у невскита в ячейке содер-

¹/₂ 7. Записки ВМО, вып. 3, 1984 г.

Таблица 4

BiSe Лайтакариит Невскит месторожце-(Годовиков и др., 1965) месторождение Невское ние Ориярви (Vorma, 1960) d_{ESM} I hkil d_{BMY} I duam ĩ $d_{\tt M3M}$ hkil T d_{E3M} 0005 * 2 4.534.565 4.603 4.45 0009 6 4,425 4 3.59 1011 3.59 3.60 3 3.586 3.60 $10\bar{1}2$ -1 6 $\overline{2}$ 3 0.0.0.123.301013.* 3.28. 1 3.30 3.325 3.319 0007* 3.26 $10\bar{1}5$ 10 3.06 10 1014 3.0610 3.073.071017 10 3.072 $< \frac{1}{4} \\ 4 \\ 4$ 2.58 2.573 1.0.1.11 3 2.241018 4 2.242.252.24 $1.0.\bar{1}.14$ 9 2.246 10 $11\overline{2}0$ $\overline{1.0.1.16}$ 1120 4 2.10 2.10 8 2.40 2.11q 2.112 2 2.053 2.0583 1.903 000.12, 1.900 9 1.911 3 1.898 0.0.0.21 5 1.900 1125 * 1.906 <1 1.814 2020,* 2021 1.817 <1 1.826 $\bar{2}022.$ 2 1.821 1.0.1.19 1.1.2.12, 1.812 2023 * 2 1.773 1.779 1.781 <1 1.768<1 $\bar{2}025$ $\begin{array}{r} 2020\\ 20\overline{2}7\\ \underline{1.1.2.17}\\ 2.0.2.14\end{array}$ $20\overline{2}4$ 3 1.734 1.738 3 1.737 8 1.741 1.732 3 1.0.1.13 $<^{1}_{3}$ 1.5761.580 3 1.5881 1.5621.655 1 $\overline{2028}$ 1.1. $\overline{2}.11$ ***** 1.1. $\overline{2}.12$ ŝ 1.534 1.532 3 1.5381.539 6 1.538 $< \frac{1}{3} \\ 2$ 0.0.0.27 $1.1.\overline{2}.21$ <1 1.4721.475 1.474 1 1.4758 3 1.408 1.414 1.410 6 1.410 1.408 1.343 1237 6 1.341 1234 3 ш. 1.331 1.336 8 1.335 1 0.0.0.30 $\tilde{2}$ 1.3241.330 $\overline{\underline{1}}.0.1.28$ $\overline{\underline{2}}.0.2.23$ $2.1.\overline{\underline{3}}.14$ 2.0.2.13 <1 Ⅲ 1 1.258 1.261 1.262 1 2 1.266 <1 ш. 4 2 ш. 1.237 $21\overline{3}8$ 1.238 1.240 1.239 1.247 <і́ш. <1ш. 1.218 3030 4 1.220 1239.* 2 ш. 1.208 1.208 2 1.211 1.2.3.16 1.213 3 1.205 3031 * 1.211 3039 <1 m. 1.173 $\frac{1}{2}$ 1.175 2.0.2.16 1 ш. 1.124 1.121 1.133 1 ш. 1.121 $2.0.\bar{2}.28$ $\mathbf{2}$ 1.125 1.091 $30\overline{3}9$ 1.093 $\overline{2}$ 1.093 <1____ ____ $\overline{2.0.2.17},$ $1.2.\overline{3.13}$ 1.0.1.35 <1 1.082 <1 1.081 1.079 _ ____ 1.082 $22\overline{4}0$ <1 ш. 1.049 2240, 1.049 2 1.044 <1 ш. 1.051 3 ш. 1.055 $2.1.\overline{3.14}$ 1.050 2245,* 1.022 1.022 1.0222 m. 1.023 0.0.0.39 3 1.027 1ш. 2 $3.0.\overline{3.12}$ 1.0220.996 3147. 0.996 <1 3ш. _ $1.2.\overline{3}.28$ $2.0.\overline{2}.34$ <1 ш.] 0.990 <1 m. 0.990 0.0.0.23.* 0.991 3 0.992 3ш. 0.957 $1.2.\overline{3}.16$ 0.989 a, Å c, Å V, A³ 4.225 4.218 4.197 4.2022.80 22.84 39.74 39.93 347.80 622.70 348.90 Ζ 6 6 3 7.85 8.05 8.12 Рвыч, г/сма

Сопоставление дебаеграмм и структурных параметров невскита, искусственного BiSe и лайтакариита

Примечание. Условия съемки: Fe_K излучение, камера РКД = 57.3; диаметры препаратов, изготовленных по методу С. Химстре (Hiemstra, 1956), 0.2 мм. При расчете вводились поправки, полученные по эталонным веществам NaCl (a = 5.636 Å), PbS (a = 5.921 Å) и Bi₂Te₅ аспривил, номученные по эталонным веществам NaCl (a = 5.650 A), PDS (a = 5.921 A) и Bi₂Te₃ (a = 4.384 Å, c = 30.47 Å). Для невскита приведены усредненные dn, полученные по трем сним-кам. Линии, отмеченные звездочкой, не отвечают условию ромбоздричности (h - k + l = 3h). Величины р вычелены для невскита и лайтакариита, исходя из данных анализов 1 и 5 соответ-ственно (табл. 2).

жится 12 слоев, и структура этого минерала изотипна со структурой цумоита (Shimazaki; Ozawa, 1978). Ряд отражений на дебаеграмме невскита противоречит условиям ромбоэдричности, и, вероятно, пространственная группа минерала одна из трех: P3m1, P3m1, P321, что аналогично искусственному соединению BiSe (Стасова, 1967). Дебаеграмма невскита наиболее близка к дебаеграмме лайтакариита, но отличается от нее отсутствием некоторых линий, в частности таких характерных, как с $d{=}2.05$ и 1.343 Å (табл. 4), а также положением характеристической линии $d{=}4.53\,{
m \AA}$ вместо 4.41 Å. Индивидуальность рентгенограммы BiSe была подтверждена также экспериментальными работами А. А. Годовикова и соавторов (1965). Эти исследователи также обратили внимание на то, что у соединения Bi₄Se₃ между седьмой и десятой находятся две близко расположенные линии с d=2.12 и 2.07 Å, тогда как в соединении BiSe только одна с d=2.10 Å. Попытка проиндицировать дебаеграмму BiSe с параметрами ближайших соседей не увенчалась успехом, в то же время она полностью индицируется с параметрами a=4.20 Å и c=22.84 Å. Последний параметр был определен по рентгенограмме вращения, полученной для монокристалла BiSe (Годовиков и др., 1965).

Таким образом, полученные химические и рентгенографические данные по исследованному минералу свидетельствуют об его индивидуальности, что позволяет рассматривать невскит в качестве самостоятельного минерального вида.

Невскит из месторождения Невское передан в Минералогический музей им. А. Е. Ферсмана АН СССР.

Литература

Годовиков А. А., Ильяшева Н. А., Кляхин В. А. Новые данные по физико-химическому изучению системы Bi-Se. — В кн.: Материалы по генетической и эксперимен-

тальной минералогии, т. III. Новосибирск: Наука, СО АН СССР, 1965, с. 18—50. Завьялов Е. Н., Бегизов В. Д., Нечелюстов Г. Н. Новые данные о хедлиите. — ДАН СССР, 1976, т. 230, № 6, с. 1439—1441.

Рид С. Электронно-зондовый микроанализ. М.: Мир, 1979. 423 с.

Стасова М. М. Рентгенографическое исследование области гомогенности в си-Стасова М. М. Рентгенографическое исследование области гомотенности в си-стеме висмут—селен. — Журн. неорган. мат., 1965, т. 1, № 12, с. 2134—2137. Стасова М. М. О кристаллической структуре селенидов и теллуридов сурьмы и висмута. — Журн. структурной химии, 1967, т. 8, № 4, с. 665—661. Стасова М. М. Кристаллическая структура селенида висмута Bi₄Se₃. — Изв. АН СССР. Сер. «Неорган. мат., 1968, т. 4, № 1, с. 28—31. Стасова М. М., Карпинский О. Г. О слойности в структурах селенидов и теллуридов висмута и теллуриюв сурьмы. — Журн. структурной химии. 1967. т. 8. № 1.

ридов висмута и теллуридов сурьмы. — Журн. структурной химии, 1967, т. 8, № 1, c. 85-88.

Hiemstra S. A. An easy method to obtain X-ray diffraction patterns of small amounts

Hiemstra S. A. An easy method to obtain X-ray diffraction patterns of small amounts of material. — Amer. Miner., 1956, vol. 41, N 5—6, p. 519—521.
Heinruch K. F. Y. X-ray absorption uncertainty. — The Electron Microprobe.
New York, 1966. 296 p.
Karup-Møller S. Weibullite, laitakarite, and bismuthinite from Falun, Sweden. —
Geol. fören. Stockholm. förhandl, 1978, vol. 92, N 2, p. 181—187.
Love G., Cox M. C., Scott V. D. Evaluation of a new correction procedure for quantitative electron probe microanalysis. — J. Phys. D: Appl. Phys., 1978, vol. 11, p. 1369—4276 1376.

Philibert I. A. Method for calculationg the absorption correction in electron probe microanalysis. - In: X-ray Optics and X-ray Microanalysis, New York, Acad. press,

Shimazaki H., Ozawa T. Tsumoite, Bite, a new mineral from the Tsumo mine. — Japan. Amer. Miner., 1978, vol. 63, N 11-12, p. 1162-1165.
Vorma A. Laitakarite a new Bi-Se-mineral. — Bull. Commiss. geol. Finlande., 1960, N 188, p. 1-10.

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС), Москва,

Московский геологоразведочный институт (МГРИ).

355