
НОВЫЕ МИНЕРАЛЫ

УДК 549,331

Д. чл. Γ . В. HECTEPEHKO А. И. KY3HELOBA, H. А. HAЛЬЧИК, O Γ $\Lambda ABPEHTLEB$

ПЕТРОВСКАИТ AuAg(S,Se) — НОВЫЙ СЕЛЕНОСОДЕРЖАЩИЙ СУЛЬФИД**∦**ЗОЛОТА И СЕРЕБРА¹

В нижней части зоны окисления золотосодержащего сульфидного месторождения Майкаин «С» (Центральный Казахстан) на глубине около 60—65 м в барито-кварцевой сыпучке с самородной серой и вторичными сульфидами меди и серебра обнаружен новый сульфид золота и серебра с при-

месью 1—2% селена. В честь известного советского исследователя минералогии золота, доктора геологоминералогических наук, лауреата Государственной премии СССР Нины Васильевны Петровской минерал назван петровскаитом (реtrovskaite). В ассоциации с кераргиритом петровскаит образует «рубашки» на выделениях неоднородного (с пробой 850—1000) самородного золота. Размер частиц золота чаще равен долям миллиметра, хотя в технологических пробах (Крейтер и др., 1958) встречались и более крупные, размером

Рис. 1. «Рубашка» петровскаита (1) на аолотинах неоднородного строения (2).

Черный фон — эпоксидная смола. Монтированный аншлиф, увел. 300. Изображение в обратнорассеянных электронах (снимки на рис. 1, 2 выполнены С. В. Летовым на сканирующем микроскопе ISM-35).

до 3—4 мм, золотины. Толщина «рубашки» редко превышает 10—20 мм (рис. 1).

Тонкозернистый (с величиной зерен до первых микрометров) микропористый агрегат петровскаита (рис. 2) располагается тонкими слоями параллельно поверхности золотины, образуя микрополосчатую текстуру; наблюдаются также участки петельчатого и пятнистого строения. Минерал непрозрачный, немагнитный. Цвет его темно-серый до черного, цвет порошка темно-серый, иногда с чуть заметным красно-бурым оттенком, блеск

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 28 апреля 1983 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 28 января 1984 г.

матовый, металлический. Новый минерал хрупкий, мягкий, вследствие чего «рубашка» легко раздавливается, расчленяясь на чешуйки, и снимается с золотин, обнажая их чистые поверхности. Из-за малых размеров выделений минерала и невозможности получить его в чистом виде определить удельный вес петровскаита прямыми измерениями не удалось.

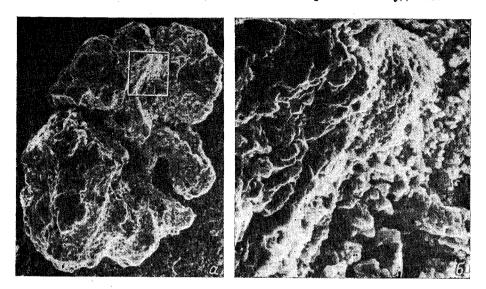


Рис. 2. Тонкозернистые, микропористые выделения петровскаита на волотине. а — общий вид зерен, увел. 300 (мелюзернистый серый фон — серебряный клей); б — деталь естественной поверхности, увел. 2000. Изображение во вторичных электронах.

В отраженном свете петровскаит серый, слабо анизотропный с темнокрасными внутренними рефлексами. Эффект «анизотропии» заметно усиливается в несвежих неподполированных аншлифах. Отражение невысокое (табл. 1). Кривая дисперсии отражения характеризуется небольшим ма-

 ${
m T}$ аблица 1 Дисперсия отражения (R,~%) петровскаита

λ, нм	R, °/o			_	R, °/0		
	1	2	3	λ, нм	1	2	3
440 460 480 500 520 540 560 580	27.7 28.1 28.3 28.6 28.8 28.7 28.9 28.6	28.0 28.4 28.4 28.6 28.7 28.8 28.9 28.6	28.0 28.2 28.4 28.6 28.8 28.8 28.9 28.7	600 620 640 660 680 700 720 740	28.3 27.8 27.3 26.9 26.7 27.0 27.1 27.3	28.2 27.6 27.3 26.7 26.6 26.8 27.0 27.2	28.3 27.2 26.9 26.3 26.3 26.8 27.0

Примечание. Спектры (в трех образцах) сняты С. Д. Абулгазиновой и Е. А. Курманбаевым в ГИН АН КазССР на установке КСВУ-1 с применением ЭВМ «Электроника ДЗ-28» на микроскопе Reichert. Увел. 320. Каждое значение R является средним по 20 замерам.

ксимумом в интервале длин волн 540-580 нм и минимумом при 660-700 нм (рис. 3). Двуотражение минерала, определенное на установке ПООС-1, оценивается следущими значениями $R_{\rm мако}$ и $R_{\rm мян}$: 27.0-22.1, 29.0-20.5, 29.5-21.5, 29.2-21.8, 29.5-24.8, 29.3-23.8 для длин волн соответственно 656, 620, 546, 500, 460 и 434 нм. Твердость микровдавлива-

ния (Н), измеренная по четырем зернам в полированных шлифах (ПМТ-3, P=10 г, выдержка 5 с), в среднем равна 45.5 кг/мм² ($H_{\rm masc}=47.8$ кг/мм² и $H_{\rm мин}=39.9$ кг/мм²), что примерно соответствует твердости по шкале Мооса около 2-2.5 ($H_{\rm cp}$ ассоциирующего с петровскаитом золота равна 60.8 кг/мм²). Минерал в аншлифах из зоны окисления может быть принят за окислы и гидроокислы железа, а также аргентит (от первых отличается низкой твердостью, от последнего — красными внутренними рефлексами). Стандартными реактивами FeCl₃, KOH и HCl не травится, от HNO₃

(1:1) покрывается легко счищаемым буроватым налетом.

Состав минерала определен методом рентгеноспектрального микроанализа на электронном микрозонде «Камебакс-микро» с четырьмя кристалл-

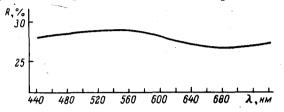


Рис. 3. Кривая дисперсии отражения (R, %) петровскаита.

дифракционными спектрометрами. При ускоряющем напряжении 15 кВ и токе поглощенных электронов 5-6 нА одновременно регистрировались аналитические линии ${\rm Au}_{M_\alpha},\ {\rm Ag}_{L_\alpha}$, ${\rm S}_{K_\alpha},\ {\rm Se}_{L_\alpha}.$ Время регистрации в одной точке 10 с. Воспроизводимость собственно рентгеноспектральных измерений (s.,) на хорошо отполированном однородном золото-серебряном эталоне 1.6% для Au и 2.0% для Ag. В качестве эталонов использовались золото-серебряный сплав, содержащий 75% Au и 25% Ag (на Au и Ag), PbS (на S) и ZnSe (на Se). Дополнительно уточнялось присутствие Te, Čl, Si, Cu, Zn; их содержание оказалось ниже предела обнаружения (около 0.15%). Расчет концентраций по измеренным интенсивностям производился с помощью программы «Карат».

Определение химического состава петровскаита проведено в одиннаддати образцах (каймах). Результаты по семи наиболее надежным анализам (с суммой элементов, близкой к 100%), усредненным не менее чем по трем точкам каждый, приведены в табл. 2. Все они близки друг к другу,

Химический состав петровсканта (мас. %)

Таблица 2

Элемент -		Анадизы								Стехио-
	1	2	3	4	5	6	7	8 _r	Средний	метри- ческий
Au Ag S Se	58.8 30.5 9.69 1.77	58.3 30.7 9.08 1.84	60.0 29.8 9.71 1.13	55.9 33.3 9.40 1.54	58.0 31.7 9.73 1.10	58.7 31.3 9.52 1.07	60.5 29.9 9.66 1.00	2.6 3.9 2.4	58.6 31.0 9.54 1.35	58.5 32.0 9.52
Сумма	100.8	99.9	100.6	100.2	100.5	100.6	101.1		100.5	

что подтверждает правильность определения состава петровскаита. Подмечено, что более удовлетворительные результаты чаще удавалось получить на каймах толщиной 10-20 мкм. У анализов, полученных по более широким и, казалось бы, однородным выделениям, сумма концентраций была, как правило, на 3-8% занижена, а соотношение между элементами (особенно между Аи и Ад изменялись в более широких пределах. Это явление, по нашему мнению, связано с микропористостью петровскаита (рис. 4), а также, возможно, с появлением дополнительных минеральных фаз и, в частности, продуктов его последующих преобразований в зоне окисления, например микроэмульсионной вкрапленности золота, видимой в оптический микроскоп при больших увеличениях (> 1500) с иммерсией (рис. 4). Какого-либо разрушения минерала под действием электронной

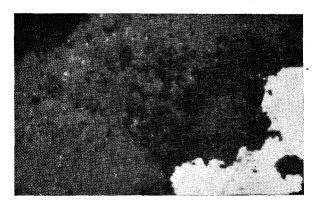


Рис. 4. Микроэмульсионные выделения самородного золота (светлые точки в петровскаите (*серое*).

Белое — золото, черные точки — поры, черный фон — эпоксидная смола. Монтированный аншлиф, увел. 2500, без анализатора, масло.

бомбардировки не наблюдалось, хотя при предварительном исследовании на микрозонде JXA-5 A в более жестком режиме (i=30 нA) были заметны плавление образца и рост интенсивности Ag_{L_α} -линии, что характерно в подобных условиях для многих серебросодержащих минералов. Состав

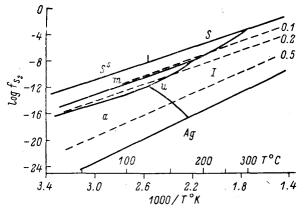


Рис. 5. Диаграмма в координатах «логарифм летучести серы» ($\log f_{\rm S_2}$) — «температура» (Т °С и 1000/ТК) по М. Д. Бартону (Barton e. a., 1978), показывающая устойчивость насыщенных металлами фаз в системе Ag—Au—S.

m — низкотемпературный AuS, u — ютенбогаардит (Ag3AuS2), I — твердый раствор (AgAu2S), a — акантит, S^S — сера (твердая фаза), Ag — сера (жидкая фаза), Ag — серебро. Пунктирные линии — изолинии молярной доли в сосуществующем электруме.

нового минерала и его эмпирическая формула $Au_{0.99}$ $Ag_{0.96}(S_{0.99}$ $Se_{0.06})_{1.05}$ довольно близки к стехиометрическому составу и идеализированной формуле AuAgS. Устанавливаются и некоторые отклонения, состоящие главным образом в постоянном присутствии селена в количестве 1-2 мас%. Таким образом, в данном случае изучена селенистая разновидность золотосеребряного сульфида AuAg(S, Se), где $S \gg Se$.

Ввиду отсутствия монокристаллов определение структурных характеристик проводилось расчетным путем по данным дебаеграммы, полученным на приборе УРС-20 в камере РКД ($Cu_{K_{\alpha}}$ излучение), без внутреннего

Таблица 3 Результаты расчета рентгенограмм петровскаита и синтетического AgAuS

	Петровска	Синтетический AgAuS (Tavernier, 1966)			
hkl	d _{изм}	$d_{\scriptscriptstyle m EM9}$	I	$d_{{f u}^{3M}}$	I
001 110, 101	7.25 3.87	7.19 3.96, 3.88	3 3	7.16 3.96	1.5
012	3.16	3.16	1	3.16	1.0
$021, 10\overline{2}$	3.02	3.026, 3.05	1	3.04	1.0
102, 112, 120	2.77	2.773, 2.760	10	2.77	10.0
121	2.63	2.626	$\tilde{5}$	2.63	4.5
022, 112	2.55	2.561	1	2.54	1.0
200	2.46	2.444, 2.459	$\dot{2}$	2.45	2.0
003, 201	2.39	2.395, 2.401	4	2.39	3.5
210	2.30	2.307	Сл. ′	2.30	1.0
$013, 12\overline{2}, 21\overline{1}$	2.254	2.254, 2.250, 2.258	4	2.25	1.0
$1\overline{1}\underline{3}, 031$	2.122	2.126, 2.124	2	2.12	1.5
$21\overline{2}$	2.036	2.029	1		
131	1.965	1.971	1	`	l
221	1.873	1.871	. 1	1.87	1.0
$004, 13\overline{2}, 22\overline{2}$	1.797	1.796, 1.795	$egin{array}{c} 3 \ 2 \ 2 \end{array}$	1.79	1.5
$\frac{21\bar{3}}{44\bar{7}}$, $\frac{104}{2000}$	1.746	1.745, 1.744	2	1.740	1.0
$11\overline{4}, 222$	1.681	1.687, 1.678	Z		
203, 104, 301, 300	1.637	1.637, 1.636, 1.634, 1.640			
31 <u>1</u> , 231, 114, 22 3	1.587	1.587, 1.585, 1.589	1		
124	1.542	1.545	$\frac{1}{2}$		
133, 042	1.514	1.516, 1.513	1		
320, 223, 124	1.471	1.471, 1.470, 1.469	$\overset{1}{4}$		
302	1.445	1.439	$\frac{1}{2}$		
$31\overline{3}, 204, 11\overline{5}, 22\overline{4}$	1.389	1.389, 1.387	2 2 3 2		
400	1.229	1.229	$\bar{3}$		
411	1.175	1.174			
$42\mathbf{\bar{2}}$	1.128	1.129	1		

стандарта с симметричной зарядкой пленки. Как видно в табл. 3, дебаеграмма нового минерала очень близка дебаеграмме синтетического золотосеребряного сульфида AgAuS (Tavernier, 1966). Расчетами по программе Powder-1, основанной на методе варьирования угла (Кирик и др., 1979), установлено, что минерал кристаллизуется в моноклинной сингонии, ячейка примитивная, возможные пространственные группы P = 2/m, P = 2/mили Рт. Расчет теоретических межплоскостных расстояний, индицирование и уточнение параметров (табл. 3) проведены по программе Powder-2 (Кирик и др., 1979). Параметры элементарной ячейки имеют следующие значения: a=4.943 (9) Å, b=6.670 (9) Å, c=7.221 (9) Å, $\beta=95.68$ (7)°. $V_0 = 236.9 \text{ Å}^3$; рентгеновское соотношение осей a:b:c=0.741:1:1.082. Расчетная рентгеновская плотность минерала равна 9.5 г/см³ при Z=4. В статье Т. М. Смита и соавторов (Smit e. a., 1970) для синтетического AgAuS предлагаются в качестве возможных пространственные группы 12, Im и I 2/m и соответственно нараметры a и b вдвое большие, чем приведено нами.

В заключение отметим, что петровскаит уверенно отличается составом, структурой и физическими свойствами от природного сульфида серебра и золота ютенбогаардита (Ag₃AuS₂) (Barton e. a., 1978).

Приуроченность нового минерала к горизонту с гипергенной самородной серой и вторичными сульфидами меди и серебра и тесная ассоциация его с галогенидами серебра (рис. 1) свидетельствуют о гипергенном генезисе петровскаита. С этим выводом хорошо согласуются и имеющиеся экспериментальные данные. На рис. 5 приведена диаграмма М. Д. Бартона (Barton e. a., 1978), показывающая устойчивость насыщенных металлами фаз в системе Ag—Au—S, в координатах логарифм летучести серы —

температура. Область устойчивости низкотемпературного AgAuS (аналога петровскаита) непосредственно примыкает к таковой самородной серы, отделяя от последней поля устойчивости Ag₃AuS₂ и (AgAu)₂S. Б. X. Тавернер (Tavernier, 1966) синтезировал AgAuS из тиосульфатных растворов по реакции: $Ag_3AuS_2 + Au(S_2O_3)_2^{3-} \rightarrow 2AgAuS + (AgS_2O_3)_2^{3-}$. Учитывая положение вмещающего минерал горизонта между «сульфидной» и «сульфатной» зонами, также можно предполагать участие в формировании обнаруженного минерала тиосульфатных комплексов золота и серебра.

Образцы, содержащие петровскаит переданы в Центральный Сибирский геологический музей при Институте геологии и геофизики СО

АН СССР в г. Новосибирске (регистрационный № Ш-70).

Авторы пользуются приятной возможностью поблагодарить старейшего геолога Майканского рудника С. М. Мурзалева за помощь в отборе образцов, а также С. Д. Абулгазинову, В. Й. Васильева, В. Н. Королюка, К. В. Кочеткову, Е. А. Курманбаева, С. В. Летова, В. И. Синякова и А. Н. Фомина за ценные советы, содействие и помощь в проведении изучения нового минерала.

Литература

Кирик С. Д., Борисов С. В., Федоров В. Е. Алгоритм индицирования порошковых рентгенограмм произвольной сингонии методом варьирования угла. — Структурная химия, 1979, т. 20, № 2, с. 359—362.

Крейтер В. М., Аристов В. В., Волынский И. С. и др. Поведение золота в зоне

креимер В. М., Аристов В. В., Вольнскии И. С. и ор. Поведение золота в зоне окисления золото-сульфидных месторождений. М.: Госгеолтехиздат, 1958. 267 с. Barton M. D., Kieft C., Burke E. A. J., Oen J. S. Uytenbogaardtite, new silver-gold sulfide. — Canad. Miner, 1978, vol. 16, N 4, p. 651—657.

Smit T. J. M., Venema E., Wiersma J., Wiegers G. A. Phase Transitions in Silver Gold Chalcogenides. — J. Solid. State Chemistry, 1970, vol. 2, p. 309—312.

Tavernier B. H. Über Silber-Gold(1)-Chalkogenide. — Z. Anorg. Allgem. Chem.,

1966, s. 323-328.

 $Y\Pi K 549.67$

Д. чл. Ю. П. МЕНЬШИКОВ

ПЕРЛИАЛИТ K_9 Na(Ca, Sr)[Al₁₂Si₂₄O₇₂] · 15H₂O — НОВЫЙ КАЛИЕВЫЙ ЦЕОЛИТ ИЗ ХИБИНСКОГО МАССИВА1

В нефелино-микроклиновых с пектолитом жилах, нефелино-полевошпатовом пегматите, содалито-микроклиновом пегматите и в содалитоастрофиллитовых жилках из гнейсовидных рисчорритов горы Эвеслогчорр и Юкспор Хибинского массива установлен калиевый цеолит, не имеющий природных аналогов. В честь Перекрест Лилии Алексеевны, преподавателя минералогии Кировского горного техникума, минерал назван перлиалит (perlialite).

Наибольшие концентрации нового минерала сосредоточены в нефелиномикроклиновой с пектолитом жиле на горе Юкспор в гнейсовидных рисчорритах. Мощность жилы до 1 м, падение C3 330° под углом 50°. По простиранию жила прослежена на 15 м. Жильное пространство от кровли по полошвы выполнено сталактито- и сталагмитополобными образованиями до 20 см в диаметре. Пространство между ними заполнено тонкопризматическим эгирином и пектолитом. В разрезах эти образования имеют

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 2 апреля 1982 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 28 февраля 1984 г.