Y. CX V

1986

Вып. 1

НОВЫЕ МИНЕРАЛЫ

УДК 549.612

Д. чл. П. Б. СОКОЛОВ, М. Г. ГОРСКАЯ, д. чл. В. В. ГОРДИЕНКО, М. Г. ПЕТРОВА, Ю. Л. КРЕЦЕР, д. чл. В. А. ФРАНК-КАМЕНЕЦКИЙ

ОЛЕНИТ $Na_{1-x}Al_3Al_6B_3Si_6O_{27}(O,OH)_4$ — НОВЫЙ ВЫСОКОГЛИНОЗЕМИСТЫЙ МИНЕРАЛ ИЗ ГРУППЫ ТУРМАЛИНОВ¹

Пересмотр данных по химизму турмалинов показал (Foit, Rosenberg, 1977), что эльбаит представляет собой член изоморфной группы Al-Li турмалинов, в котором Al: Li в позиции $Y{\approx}1:1$. Данные наших исследований и литературные данные приводят к выводу, что существует серия изоморфных переходов от такого эльбаита до составов, где практически все позиции Y заняты Al. Выделение этого крайнего члена ряда в группе турмалинов очень важно, так как Al встречается в октаэдрах Y практически во всех природных турмалинах. Данная номенклатура уже вошла в литературу, но в связи с отсутствием материала существование конечного Al-члена этого ряда только предполагалось (Foit, Rosenberg, 1975). Именно такому турмалину, открытому нами в редкометальных пегматитовых жилах одного из докембрийских полей СССР, предматитовых жилах одного из докомориноких полон СССГ, прод лагается новое название оленит $Na_{1-x}Al_3Al_6B_3Si_6O_{27}(O,OH)_4$. Пегматитовые жилы мощностью от 5 до 30 см залегают в метадиабазах, занимая секущее положение по отношению к сланцеватости вмещающих пород, и обладают четко выраженным зональным строением. Призальбандовая их часть сложена среднезернистой турмалино-кварцевой зоной. Центральная часть жил сложена агрегатом мелкопластинчатого альбита и игольчатых бледно-розовых хорошо ограненных кристаллов турмалина размером 0.5×3.0 мм. Этот агрегат обладает флюидальной текстурой, обусловленной преимущественной ориентировкой пластинок альбита и кристаллов турмалина субпараллельно контактам жил. Конусные кристаллы турмалина в приконтактовых частях жил раздроблены, что свидетельствует о тектонической природе этого агрегата.

Химический состав кристаллов турмалина изучен методом микрозондового анализа, а также классическими методами мокрой химии (табл. 1). Пересчет результатов микрозондовых анализов химического состава турмалинов на кристаллохимическую формулу проведен из расчета шести атомов кремния, при этом делалось допущение, что дефицит катионов в позиции У вызван литием, что подтверждается данными рентгеноструктурного анализа (Горская и др., 1982). В литературе известны аналогичные приемы расчета кристаллохимических формул турмалинов (Walenta, Dunn, 1979). Пересчет результатов химического анализа турмалина проведен на 15 катионов (сумма катионов в позициях Y, Z и Si).

Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 14 июня 1985 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 28 апреля 1985 г.

Химический состав и кристаллохимические формулы исследованных турмалинов

Анализ	SiO ₂	TiO2	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO
1	36.86	0.03	46.43	0.14	0.00	0.49	0.00	0.26
2	37.89	0.00	39.44	1.14	0.00	2.29	0.01	0.09
3	37.95	0.03	43.25	0.13	0.00	1.67	0.02	0.45
4	37.92	0.02	43.39	0.14	0.00	1.54	0.00	0.41

Таблица 1 (продолжение)

Анализ	Na ₂ O	K ₂ O	ZnO	F	Ĺi₂O	B ₂ O ₃	H ₂ O	Сумма
1 2 3 4	1.60 1.67 1.48 1.55	0.03 0.01 0.07 0.01	0.03 0.98 0.00 0.02	0.06 0.00 0.17 0.04	1.69 * 0.82 1.07 *	10.90 * 10.98 * 10.64 11.00 *	1.36 * 3.78 * 2.80 2.78 *	98.29 99.97 99.48 99.89

Кристаллохимическая формула

 $\begin{array}{l} \textbf{Ah. 1} & - (Na_{0.51}K_{0.01}Ca_{0.05})_{0.57}(Al_{2.91}Mn_{0.07}Fe_{3}^{+}c_{0}^{-}Ti_{0.01})_{3.01}Al_{6.00}B_{3.00}Si_{6.00}O_{27}(O_{2.53}OH_{1.44}F_{0.03})_{4.00} \\ \textbf{Ah. 2} & - (Na_{0.51}Ca_{0.02})_{0.53}(Al_{1.36}Li_{1.08}Fe_{3}^{+}c_{1}^{+}Mn_{0.31}Zn_{0.11})_{3.00}Al_{6.00}B_{3.00}Si_{6.00}O_{27}(OH)_{4.00} \\ \textbf{Ah. 3} & - (Na_{0.48}K_{0.01}Ca_{0.08})_{0.55}(Al_{2.18}Li_{0.53}Mn_{0.22}Fe_{0}^{3}c_{1}^{+}Ti_{0.01})_{2.96}Al_{6.00}B_{2.98}Si_{6.04}O_{27} \\ & - (O_{1.47}OH_{2.44}F_{0.09})_{4.00} \\ \textbf{Ah. 4} & - (Na_{0.48}Ca_{0.07})_{0.55}(Al_{2.09}Li_{0.68}Mn_{0.21}Fe_{0}^{3}c_{0}^{+}o_{00})_{3.00}Al_{6.00}B_{3.00}Si_{6.00}O_{27}(O_{1.05}OH_{2.93}F_{0.02})_{4.00} \end{array}$

Примечание. Ан. 1 и 2 — данные микрозондового анализа для турмалинов с максимальным и минимальным содержанием Al₂O₃; ан. 3 — данные химического анализа из навески 1 г (содержание шелочей определено методом пламенной фотметрии); ан. 4 — микрозондовый анализ кристалла, выбранного для структурного исследования; содержания, отмеченные звездочкой (*), рассчитаны, исходя из кристаллохимических соотношений элементо 3, ха актерных для турмалина. Условия микрозондового анализа: микроанализатор «Камебакс», ускоряющее напряжение 15 кВ, ток образца 20 нА, диаметр зонда 10 мкм; эталоны — кварц, корунд, альбит, нефелии, периклаз, волластонит и чистые металлы (Fe, Mn, Zn и Ti); пересчет относительных интенсивностей на концентрации по программе «Соггех» матобеспечения анализатора.

Исследование степени неоднородности кристаллов турмалина методом микрозондового анализа показало, что многие из них обладают зональностью. Содержание ${
m Al_2O_3}$ в кристаллах изменяется от 39.4 до 46.5 мас. %, так что центр кристалла имеет состав почти чистого эльбаита $Na(Al_{1.5}Li_{1.5})_{3.0}Al_{6.0}B_3Si_6O_{27}(O, OH)_4$, а в краевой зоне содержание Al в позиции Y возрастает до 2.91 форм. ед. (табл. 1, ан. 1). Изученные образцы, таким образом, представляют собой непрерывный ряд твердых растворов от эльбаита до оленита, у которого позиция У в структуре минерала содержит практически только Al.

Образование таких высокоглиноземистых турмалинов отвечает следующей схеме изоморфных замещений в эльбаите:

$$x \text{Li}^+ + y \text{Na}^+ + (2x - y) \text{ OH}^- = x \text{Al}^{3+} + (2x - y) \text{ O}^{2-} \text{ при } 2x \geqslant y$$

т. е. компенсация зарядов при изоморфизме ${\rm Li}^+ o {\rm Al}^{3+}$ в позиции происходит в результате замещения $OH^- \to O^{2-}$ в анионной части структуры и образованием вакансии в позиции X. В общем случае формула турмалинов этого ряда имеет вид $Na_{1-y}(Al_{3-x}Li_x)_3Al_6B_3Si_6O_{27}(O_{3-2x-y}OH_{1+2x+y})_4$. Значения y=0-1 и x=1.5-0.75 отвечают составам эльбаитов, а y=0-1и x=0.75-0 — составам оленитов. Собственно оленит является безлитиевым аналогом эльбаита с идеальной формулой $Na_{1-r}Al_3Al_6B_3Si_6O_{27}(O,OH)_4$ при x=1-0.

Цвет оленита бледно-розовый, блеск стеклянный. Изменение значения твердости (нагрузка 100 гс) в ряду эльбаит - оленит (рис. 1) описывается уравнением H=1044-3.681x, где x — молярный процент оленитового

I	d _{изм}	Д ^{ви} й	hkl	I	$d_{\mathtt{HSM}}$	$d_{\mathtt{BM}\mathtt{q}}$	hkl
5 30 20 8 40 70 80 70 8 10 30 3 5 100 18 20 15 5	7.80 6.33 4.91 4.56 4.18 3.95 3.43 3.394 3.081 2.986 2.924 2.869 2.585 2.551 2.361 2.352 2.322 2.280 2.166 2.145 2.097	7.85 6.31 4.92 4.56 4.19 3.95 3.44 3.382 3.084 2.986 2.923 2.870 2.590 2.553 2.363 2.362 2.323 2.281 2.165 2.143 2.098	110 011 201 * 030 121 * 220 * 102 * 102 * 104 * 140 212 * 231 132 501 * 003 * 322 * 151 * 060 052 * 341 303	1 20 10 7 4 14 5 5 10 6 8 6 3 10	2.000 1.899 1.853 1.834 1.813 1.758 { 1.673 1.641 1.628 1.584 1.574 1.569 1.542 1.488 1.460 { 1.437	2.002 1.899 1.853 1.834 1.813 1.758 1.757 1.673 1.641 1.527 1.581 1.573 1.571 1.541 1.488 1.462 1.460 1.438 1.437	611 432 * 143 261 170 333 014 622 603 721 * 550 044 542 082 504 * 424 812 173 154
15 4 30	2.085	2.089 2.020 2.027	242 512 223	7 10 10	1.406 1.392 { 1.2587	1.435 1.406 1.392 1.391 1.2585	462 911, 561 363 344 055 *

Примечание, Звездочкой (*) отмечены отражения, использованные для определения параметтов элементарной ячейки.

компонента. Минерал одноосный отрицательный. No=1.654 (2), Ne=-1.635 (2) для состава, соответствующего ан. 4 в табл. 1. В кристаллах

толщиной 0.5 мм наблюдается слабый плеохроизм: по No — ярко-розовый, по Ne — розово-желтый. Плотность оленита, измеренная методом термоградиентной трубки, 3.010 (2) г/см³.

Типичная дебаеграмма оленита (для минерала состава, отвечающего ан. 4 в табл. 1) приведена в табл. 2. Параметры элементарной ячейки нового минерала, рассчитанные по дебаеграмме методом МНК на ЭВМ следующие (Å): a=15.803 (3), c=7.086 (1), V=1532.3 (4) ų, рентгеновская плотность $\rho_{\text{рент}}=3.12$.

Для того же кристалла проведено уточнение структуры оленита (Гор-

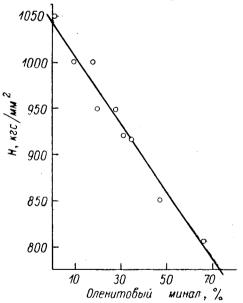


Рис. 1. Изменение твердости для минералов ряда эльбаит—оленит.

ская и др., 1982). Уточнение факторов заселенности кристаллографических позиций и анализ величин средних длин связей в полиэдрах по-казали, что Al занимает полностью октаэдр Z и на 3/4 октаэдр Y, тетра-

эдрические позиции заняты только Si, заселенность позиции щелочного катиона (Na) — 1/2.

К сожалению, малый размер кристаллов и присутствие оленитовых составов в них только в виде краевых зон роста не позволили дать более обширное описание физических характеристик оленита. Однако особенности химического состава, структурных характеристик и ряд физических свойств подтверждают правомочность выделения в изоморфном ряду Li-Al турмалинов высокоглиноземистого члена с содержанием Al в позиции Y > 75 % в качестве самостоятельного минерального вида — оленита.

Проведенный статистический анализ химического состава более 300 природных турмалинов показал (рис. 2), что в подавляющем большинстве

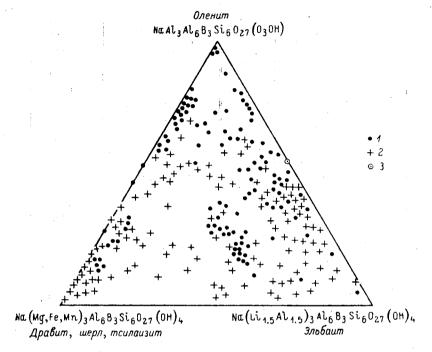


Рис. 2. Диаграмма составов природных турмалинов.

1 — данные авторов, 2 — литературные данные, 3 — состав структурно изученного кристалла.

случаев наблюдается некоторый и часто довольно значительный «избыток» А1 в позиции Y, который не представляется возможным связать ни с одним из известных конечных членов этой группы. Кроме того, многие авторы, изучавшие химизм природных турмалинов, отмечают вхождение в позицию Y шерлов, дравитов, эльбаитов «избыточного» А1 (см., например: Корнетова, 1975; Афонина и др., 1980; Горская и др., 1980; Оzaki, 1982), что позволило ряду авторов (Foit, Rosenberg, 1975; Слюдоносные пегматиты..., 1976; Schmetzer e. a., 1979; Povondra, 1981) высказать предположение о возможности существования турмалина с формулой, аналогичной изученному нами минералу. Ф. Фойт и Ф. Розенберг (Foit, Rosenberg, 1975) дали этому гипотетическому минералу условное название алюмобюргерит. Однако в данном случае такое название неудачно, так как впервые обнаруженный нами в природе оленит изоморфно связан не с бюргеритом (как это следовало бы из названия «алюмобюргерит»), а с эльбаитом.

Название оленит (olenite) дано по месту находки.

Эталонные образцы оленита переданы на хранение в Минералогический музей Ленинградского горного института и Минералогический музей им. А. Е. Ферсмана АН СССР (Москва).

Литература

Афонина Г. Г., Макагон В. М., Бегданова Л. А., Владыкин Н. В. Параметры элементарных ячеек турмалинов разного состава. — ЗВМО, 1980, вып. 1, с. 105—117. Горская М. Г., Соколов П. Б., Франк-Каменецкая О. В., Рождественская И. В., Франк-Каменецкий В. А. О пределах изоморфной смесимости Al-Li турмалинов. — В кн.: Тез. докл. V Всесоюз. симпоз. по проблемам изоморфизма. Черноголовка,

Горская М. Г., Франк-Каменецкая О. В., Рождественская И. В., Франк-Каменецкий В. А. Уточнение кристаллической структуры богатого А1 эльбаита. — Кристал-

лография, 1982, т. 27, вып. 1, с. 108—112.

Корнетова В. А. О классификации минералов группы турмалина. — ЗВМО, 1975, вып. 3, с. 332—336.

Слюдоносные пегматиты Северной Карелии / Под ред. В. В. Гордиенко, В. А. Лео-

новой. Л.: Недра, 1976. 368 с.

Foit F. F., Rosenberg P. E. Aluminobuergerite a new end member of the tourmaline group. — Trans. Amer. Geophys. Union, 1975, N 56, p. 461.

Foit F. F., Rosenberg P. E. Coupled substitutions in the tourmaline group. — Contribs.

Foit F. F., Rosenberg P. E. Coupled substitutions in the tourmaline group. — Contribs. Miner., Petrol., 1977, vol. 62, N 2, p. 109—127.

Ozaki M. Mineralogical properties of natural and synthetic tourmalines enriched by Al. — J. Jap. Assoc. Miner. Petrol. Econ. Geol., 1982, vol. 77, N 11, p. 375—386.

Povondra P. The crystal chemistry of tourmalines of the schorl-dravite series. — Acta Univ. Carol. Geol., 1981, N 3, p. 223—264.

Schmetzer K., Nuber B., Abraham K. Zur Kristallchemie Magnesium-reicher Tourmaline. — N. Jb. Miner. Abh., 1979, Bd 136, № 1, S. 93—112.

Walenta K., Dunn P. J. Ferridravite a new mineral of the tourmaline group from Bolivia. — Amer. Miner. 1079, vol. 64, p. 945—948.

Bolivia. - Amer. Miner., 1979, vol. 64, p. 945-948.

Ленинградский университет, ВНИИ «Механобр».