1986

Вып. 3

новые минералы

УДК 549.25

М. И. НОВГОРОДОВА, А. И. ГОРШКОВ, Н. В. ТРУБКИН, А. И. ЦЕПИН, М. Т. ДМИТРИЕВА

НОВЫЕ ПРИРОДНЫЕ ИНТЕРМЕТАЛЛИЧЕСКИЕ СОЕДИНЕНИЯ ЖЕЛЕЗА И ХРОМА — ХРОМФЕРИД И ФЕРХРОМИД¹

Новые природные интерметаллические соединения железа и хрома — хромферид (Fe_{1.5}Cr_{0.5-x}) и ферхромид (Cr_{1.5}Fe_{0.5-x}) — в срастании с самородным железом (с примесями хрома и кремния) и железистым хромом обнаружены в золото-кварцевых жилах, секущих амфиболиты D₂ (Ку-

макский район, Южный Урал). В участках микробрекчий окварцованных амфиболитов (рис. 1) гетерогенные выделения самородных металлов и интерметаллических соединений срастаются с амфиболами и слюдами, располагаясь внутри них по спайности, иногда полностью замещая их. Были обнаружены включения таких гетерогенных агрегатов и в самородном золоте.

Рис. 1. Гетерогенные выделения сростков ферхромида (1), хромферида (2), хромисто-кремнистого железа с минералами из серии псевдобрукита (3) и кварцем (4) в участке микробрекчии окварцованного и амфиболизированного габбро. Полир. шлиф. увел. 400 (Кумакский район, Южный Урал).

Близкие по составу минеральные фазы известны в прожилково-вкрапленных золото-сульфидных рудах, локализованных в терригенных толщах. Впервые они были диагностированы в образцах, полученных от Р. Г. Юсупова (Новгородова и др., 1981), и найдены впоследствии еще в двух близких по типу месторождениях Средней Азии. Гетерогенные выделения кремнисто-хромистого железа овальной и шаровидной формы в изученных нами образцах обнаружены среди углеродистого вещества, заполняющего тектонические трещины в зонах разломов, секущих минерализованные кварцево-альбито-серицито-хлоритовые сланцы (Пакрут-

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного Минералогического общества 30 мая 1983 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 6 июня 1984 г.

ское месторождение, Таджикистан). С поверхности шарики такого железа покрыты примазками графита, а во включениях содержат мельчайшие зерна рутила (по данным аналитической электронной микроскопии).

Самородное железо с примесями кремния и хрома распространено в золото-скарновых месторождениях. Мелкие пластинчатые выделения этого минерала располагаются в разрыхленных участках микробрекчий окварцованных гранодиоритов в их эндоконтактовых зонах и в апомагнезиальных скарнах, превращенных в участках золоторудной минерализации в хлорито-серицито-кварцевые метасоматиты. Во включениях внутри пластинчатых выделений самородного железа заметны мелкие кристаллики кварца, реже зерна самородной меди и самородного висмута, являющегося одним из типоморфных минералов золото-скарновых руд (рис. 2). В одном из зерен диагностированы включения мелких зерен

Рис. 2. Хромисто-кремнистое железо (1) из золото-вольфрамового месторождения (Средняя Азия).

а — с включениями кварца (2) и самородного висмута (3), б — деталь того же зерна с когенитом (4) по трещинам. Полир. шлиф., увел. 750 (а) и 1600 (б) с иммерсией.

скаполита, близкого к мариалиту. В зернистых агрегатах самородного железа в интерстициях зерен обнаружены тонкие прожилковидные выделения когенита.

Таким образом, для самородного железа, его кремнисто-хромистых разновидностей и интерметаллических соединений железа и хрома характерна ассоциация с другими самородными металлами (золотом, висмутом, медью) и карбидами металлов (когенитом). Показательно присутствие хлорсодержащего минерала — сканолита; электронно-микроскопическим методом в виде мельчайших включений внутри зерен металлов постоянно обнаруживаются хлориды щелочей — галит и сильвин, часто в сростках друг с другом.

Новые минералы — хромферид и ферхромид — образуют тонкие пластинчатые выделения внутри уплощенных или шаровидных гетерогенных по составу и строению агрегатов хромисто-кремнистого железа. Ранее рассматривались типы неоднородности таких природных образований (Новгородова, 1983).

Первый «грубый» уровень обусловлен закономерным срастанием пластинчатых выделений, обогащенных хромом, с матрицей, содержащей повышенные количества железа, кремния, никеля и ряда других металлов. Пластинки ориентированы под углом 90 и 60°. Толщина их составляет 0.01—0.002 мм. Окончания пластинок клиновидные; в образцах из золото-кварцевых руд наблюдались признаки сфероидизации пластинок со всеми переходами от вытянутых пластинчатых выделений к линзовидным, овальным (иногда гантельного вида) и сферическим выделениям. Второй более тонкий уровень неоднородности, обнаруженный методами электронной микроскопии, связан с гетерогенностью как пластинчатых выделений, так и включающей их матрицы. Гетерогенность обусловлена параллельным (по плоскости 111) срастанием пластинчатых индивидов упорядоченных фаз новых минералов (ферхромида и хромферида) с неупорядоченными твердыми растворами железа, хрома, никеля и кремния.

Размеры гетерогенных сростков самородных металлов и интерметаллических соединений в их пластинчатых и шаровидных выделениях в среднем 0.2—0.3 мм, наиболее крупных частиц 5—7 мм. Толщина поликристаллических пластинок хромферида и ферхромида, заключенных в матрице кремнистого железа или железистого хрома, ≤ 0.01 мм, а монокристальных частиц новых минералов 0.25 мкм и менее.

Хромферид и ферхромид — непрозрачные минералы, светло-серого цвета, с металлическим блеском; без спайности. Ферромагнитны. Твердость микровдавливания ПМТ-3, тарированный по NaCl (при нагрузке 100 г) составляет для хромферида 260 ±10 кгс/мм², ферхромида — 900 ± ±20 кгс/мм². Отпечатки алмазного индентора на полированной поверхности минералов — правильной квадратной формы со слабо вогнутыми сторонами, без трещин или сколов, что свидетельствует о пластичности этих минералов.

В отраженном свете оба минерала белого цвета, изотропны, без двуотражения, плеохроизма и внутренних рефлексов. Отражение (измерено на воздухе с Si стандартом) для хромферида (R, %, для различных λ , нм): 50.4 (440), 51.4 (460), 50.9 (480), 52.6 (500), 53.0 (520), 55.3 (540), 56.5 (560), 56.9 (580), 57.9 (600), 58.3 (620), 59.0 (640), 60.0 (660), 60.7 (680), 60.8 (700), 61.7 (720), 61.9 (740). Отражение ферхромида заметно выше (R, %, для λ , нм): 55.2 (440), 55.4 (460), 56.2 (480), 56.9 (500), 58.0 (520), 58.8 (540), 59.5 (560), 60.4 (580), 61.0 (600), 61.0 (620), 61.8 (640), 62.8 (680), 63.2 (700), 63.8 (720), 63.8 (740).

Вычисленная плотность минералов (г/см³): ферхромида 6.18, хромферида 6.69.

Химический состав новых минералов определен локальным рентгеноспектральным методом на микрозонде «КАМЕКА», MS-46 (стандарты металлические Fe, Cr и Si). Хромферид содержит (мас. γ_0) Fe 88.91 (88.71— 89.12), Cr 11.30 (11.06—11.55), Si не обн.; сумма 100.21 (100.18—100.26). Эмпирическая формула, основанная на сумме формульных единиц, равной 2, — Fe_{1.5}Cr_{0.2} $\square_{0.3}$ или Fe_{1.5}Cr_{0.5-x}. Ферхромид содержит (мас. γ_0): Fe 12.60 (12.55—12.65), Cr 87.58 (87.53—87.63), Si 0.0; сумма 100.18. Эмпирическая формула Cr_{1.5}×Fe_{0.2} $\square_{0.3}$ или Cr_{1.5}Fe_{0.5-x}. Величина отношения Fe : Cr в хромфериде и Cr : Fe в ферхромиде, приблизительно равная 7, подтверждена результатами энергодисперсионного анализа монокристальных частиц минералов при электронно-микроскопическом их исследовании. По данным рентгеноструктурных и микродифракционных исследований, хромферид и ферхромид относятся к кубической сингонии, пространственной группе *Pm3m*. Размеры элементарной ячейки хромферида $a_0=2.859\pm0.005$ Å, V=23.37 Å³, Z=1; характерные линии на дебаеграмме (камера РКД=57.3 мм, Fe_{Kx}: 2.87 (2) (100), 2.02 (10) (110), 1.656 (1) (111), 1.43 (8) (200), 1.28 (5) (120), 1.16 (10), (211), 1.01 (7) (220). Для ферхромида рассчитаны $a_0=2.882\pm0.005$ Å, V=23.94 Å³, Z=1; характерные линии на дебаеграмме: 2.88 (1) (100), 2.04 (10) (110), 1.66 (5) (111), 1.44 (6) (200), 1.29 (5) (120), 1.17 (9) (211), 1.02 (7) (220), 0.77 (8) (321).

Сверхструктурные отражения типа 100, 120 и др. присутствовали не только на дебаеграммах хромферида и ферхромида, но и на картинах микродифракции, полученных от монокристальных частиц этих минералов (рис. 3). Наличие таких отражений свидетельствует о примитивизации решетки, которая, как можно было бы предполагать, является следствием упорядоченного расположения атомов железа в центрах

357

ячеек, вершины которых заняты атомами хрома (или наоборот). Однаков этом случае отношение Fe : Cr должно быть равно 1, а в хромфериде и ферхромиде оно равно 7. Кроме того, сверхструктурные рефлексы

Рис. 3. Электронно-микроскопическое изображение, картина микродифракции и энергодисперсионный спектр ферхромида.

имеют гораздо большую интенсивность, чем можно было бы ожидать для подобного распределения атомов железа и хрома с очень близкими амплитудами атомного рассеивания. Полученные экспериментальные данные можно согласовать, если сделать предположение о том, что не все

	$a_0 = 2.88$ Å		$a_0 = 5.76$ Å					
Pm3m, Z=1			$Im\Im m, Z = 7$		$I\frac{1}{4}3m, \ Z=2$	Fm3m, $Z = 4$		
Cr _{1.5} Fe _{0.2} □ _{0.3}			Cr ₇ Fe		Cr _{0.5} Fe _{0.7} □2.3	Cr ₃ Fe _{0.4} □ _{0.6}		
hkl	1 эксп	F^2d	hkl	$F^2 d$	F^2d	F^2d		
	$\begin{array}{c} - \\ 20 \\ 100 \\ 7 \\ 25 \\ 17 \\ 20 \\ 15 \\ 3 \\ 8 \end{array}$	$ \begin{array}{c} - \\ 17 \\ 100 \\ 4 \\ 33 \\ 2 \\ 16 \\ 10 \\ 1 \\ 5 \end{array} $	$\begin{array}{c} 011\\ 111\\ 002\\ 022\\ 222\\ 004\\ 024\\ 224\\ 044\\ 244\\ 444\\ \end{array}$	$ \begin{array}{r} 1 \\ 1 \\ 100 \\ 1 \\ 33 \\ 0 \\ 16.5 \\ 9.6 \\ 1 \\ 6 \\ \end{bmatrix} $	$ \begin{array}{c} 10 \\ -43.2 \\ 100 \\ 8.8 \\ 32.8 \\ 3.8 \\ 16.5 \\ 9.7 \\ 1.3 \\ 6 \end{array} $	$\begin{array}{c}$		

Спавне	ние экспери	ментальных	с и расче	тных велич	ин
интонсивностей	отражений	лля разных	моделей	структуры	ферхромида
MILLOHOUPHOULOH	orpanico-	I			

ячейки заселены Fe, часть из них заполнена Cr, а некоторые являются пустыми (вакантными). Структурный фактор для такой модели можно написать в виде:

 $F_{hkl} = f_{Cr} + [m_{Fe}f_{Fe} + (m_{Cr} - 1)f_{Cr}] \cos \pi (b + k + l),$

358

где атомные доли компонент $m_{\rm Fe}$ и $m_{\rm Cr}$ должны удовлетворять соотношениям $m_{\rm Cr}/m_{\rm Fe} \sim 7$ и $1 < m_{\rm Fe} + m_{\rm Cr} < 2$. Путем подбора величины $m_{\rm Fe}$ получали конкретные значения F_{kkl} . Интенсиности ряда рефлексов hklрассчитывали по формуле $J_{\tau \ (hkl)} = F_{kkl}^2 d_{hkl}$. Теоретические значения интенсивностей сравнивались с экспериментально полученными (по электронограммам) интенсивностями соответствующих рефлексов hkl. Относительные интенсивности отражений определены по отношениям диаметров пятен-рефлексов по методике А. Ф. Федотова (1976). Расчеты проводились для четырех возможных структурных моделей хромферида и ферхромида. Наилучшее согласие между величинами J_{τ} и J_{z} получено для модели

а -- по М. Хансену и К. Андерко (1962), б — в интерпретации авторов: пунктиром ограничены предполагаемые поля устойчивости хромферида и ферхромида с точками составов.

Структурную формулу хромферида тогда можно записать в виде Fe[Fe_{0.5}Cr_{0.2} $\square_{0.3}$], а ферхромида — Cr[Cr_{0.5}Fe_{0.2} $\square_{0.3}$], где знак \square обозначает дефект. Следует отметить, что наибольший вклад в интенсивность сверхструктурных рефлексов вносит закономерное расположение дефектов. Хромферид и ферхромид поэтому относятся к типу интерметаллических соединений, образованных за счет упорядочения дефектов, и являются скорее дефектно-упорядоченными нестехиометрическими твердыми растворами.

Искусственные аналоги новых минералов неизвестны. По экспериментальным данным, промежуточные фазы в бинарной системе Fe—Cr образуются в результате твердофазных реакций упорядочения; достоверно известно соединение FeCr, устойчивое при высоких температурах (рис. 4, a — Хансен, Андерко, 1962). Судя по полученным нами данным, концентрационная область природных промежуточных фаз для предполагаемых температур минералообразования (≤ 400 °C) очень узка. Экстраполяция в область высоких температур приводит к предположению о том, что в более высокотемпературных парагенезисах в составе хромферида будут повышаться содержания хрома, а в ферхромиде железа (рис. 4, δ).

359

Названия новых минералов даны по их составу — хромферид (chromferide) и ферхромид (ferchromide). Эталонные образцы переданы в Минералогический музей им. А. Е. Ферсмана АН СССР (Москва).

Литература

Новгородова М. И. Самородные металлы в гидротермальных рудах. М.: Наука, 1983. 287 с.

Новгородова М. И., Юсупов Р. Г., Лапутина И. П., Цепин А. И., Дмитриева Т. М. Самородный хром и природные соединения системы Fe—Cr—Si. — ДАН СССР, 1981, т. 256, № 4, с. 958—961.

Федотов А. Ф. Определение относительной интенсивности рефлексов на картинах микродифракции. — В кн.: Тез. докл. Х Всесоюзн. конференции по электрон. микроскопии. Т. 1. М., 1976, с. 315—317.

Хансен М., Андерко К. Структура двойных сплавов. Т. 1. М.: Металлургиздат, 1962, с. 556-564.

Институт геологии рудных месторождений, петрографии, минералогии и геохимии (ИГЕМ) АН СССР,

Москва.

Поступила в редакцию 19 марта 1985 г.

УДК 549,3

Д. чл. В. И. ПОПОВА, д. чл. В. А. ПОПОВ, А. КЛАРК, д. чл. В. О. ПОЛЯКОВ, С. Е. БОРИСОВСКИЙ

АЛАКРАНИТ А_{S₈}S₉ — НОВЫЙ МИНЕРАЛ ¹

Из сульфидов мышьяка в природе наиболее распространены реальгар As_4S_4 и аурипигмент As_2S_3 . Другие минералы — диморфит As_4S_3 , дюрасунит As_4S_5 , узонит As_4S_5 , парареальгар AsS и «альфа-сульфид мышьяка» α -AsS или α -As $_4S_4$ — пока редки.

«Альфа-сульфид мышьяка» как природная высокотемпературная модификация AsS впервые был найден A. Кларком (Clark, 1970) в баритокварцево-кальцитовых жилах серебряного месторождения Алакран в Чили в образцах из призальбандовых частей жил, в то время как реальгар (β -AsS) — в образцах из центральных частей жил. Взаимоотношения между модификациями AsS в этом месторождении не выявлены. Для природного α -AsS были получены дифрактограмма, химический состав (методом микрозондового анализа), оптические свойства в отраженном свете и твердость по Викерсу (Clark, 1970). Данные рентгенограммы порошка, полученные A. Кларком, хорошо согласуются с данными для синтетических α -AsS (Shu-Cheng, Tibor, 1972) и As₂S₂ (JCPDS, 1971). Однако относительная неполнота данных о природной модификации α -AsS, вероятно, явилась причиной того, что Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации минерал не был утвержден, не получил самостоятельного названия и считается недоисследованным (Бонштедт-Куплетская, 1974).

В СССР «альфа-сульфид мышьяка», по рентгеновским данным, был установлен в желтых порошковатых налетах на Центральном термальном поле и на стенках грифонов Фумарольного озера в кальдере Узон на Камчатке (Зотов и др., 1977). Авторы отмечают, что эти налеты обычно располагаются в более холодных участках по сравнению с участками

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 24 декабря 1984 года. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 2 сентября 1985 года.