Д. члены А. А. КИМ, Н. В. ЗАЯКИНА, В. Ф. МАХОТКО

КУКСИТ $Pb_3Zn_3TeO_6(PO_4)_2$ И ЧЕРЕМНЫХИТ $Pb_3Zn_3TeO_6(VO_4)_2$ — НОВЫЕ ТЕЛЛУРАТЫ ИЗ КУРАНАХСКОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ (ЦЕНТРАЛЬНЫЙ АЛДАН, ЮЖНАЯ ЯКУТИЯ) 1

В 1976 г. на Куранахском золоторудном месторождении была обнаружена группа теллуратов, не имеющих аналогов среди природных и синтетических минералов. Один из теллуратов — яфсоанит (Са, Zп)₃TeO₆ — был утвержден КНМ ММА в 1981 г. Еще три минерала — фосфорный, ванадиево-кремниевый и мышьяково-ванадиево-кремниевый теллураты свинца и цинка — находились в стадии изучения. Ранее в этой же залежи в кварцево-лимонито-гематитовых рудах был обнаружен минерал куранахит PbMn_{0.8}TeO₆ (Яблокова и др., 1975). Мышьяково-кремниево-ванадиевый теллурат, близкий по составу и порошкограмме дугганиту (Williams, 1978), рассмотрен нами как ванадиево-кремнистая разновидность дугганита (Ким и др., 1988б). Собственно ванадиево-кремниевый и фосфорный теллураты, являющиеся крайними членами в ряду свинцовоцинковых теллуратов с As, V, P, представляются как новые минералы — куксит (кикsite) и черемныхит (сheremnykhite). Минералы названы в честь алданских геологов — первооткрывателей Куранахского месторождения А. И. Кукса и И. М. Черемных.

И. М. Черемных. Куранахское месторождение представлено зоной вытянутых карстовых Куранахское месторождение представлено зоной вытянутых карстовых полостей, заполненных глинисто-лимонитовым материалом с дезинтегрированными обломками вмещающих их карбонатных и песчаных пород кембрийского и юрского возраста и реликтами частично или полностью окисленных рудных метасоматитов: пирито-кварцевых, пирито-адуляро-кварцевых и карбонатных с золото-теллуридной минерализацией.

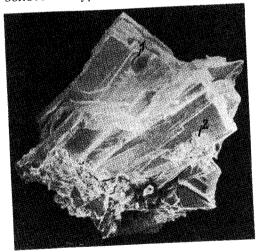


Рис. 1. Друзовидные срастания таблитчатых зерен куксита, черемныхита и V, Si-дугганита с включениями яфсоанита (1) и слоистых силикатов (2). Увел. 150.

Рис. 2. Агрегат таблитчатых кристаллов куксита (1), черемныхита (2) и V, Si-дугганита (3), включенный в кальците (4). Полир. шлиф. Увел. 150.

Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 19 апреля 1988 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 4 июня 1989 г.

Основные свойства куксита и черемныхита

Свойство	Куксит	Черемныхит
Цвет	Серый	Зеленовато-желтый
Прозрачность:	1	Selenoba to Mentain
визуальная	Мутный	Прозрачный
в проходящем свете	Прозрачный	Прозрачный
Цвет порошка	Белый	Белый
Блеск	Алмазный	Алмазный
Флюоресценция	Слабая	Отсутствует
Хрупкость	Хрупкий	Хрупкий
Твердость, кгс/см 2 ($P=10$ г)	325	673
Спайность	Совершенная	Совершенная
Ng	1.981 (5)	1.997 (5)
Np	1.971 (5)	1.986 (5)
-2V, град	12—20	20
Удлинение	Положительное	Положительное
Дисперсия	r>v	r>v
Оптическая ориентировка	Ng//c	Ng//c, $Np//b$, $Nm//a$
Плеохроизм	Отсутствует	Отсутствует
Сингония	Ромбическая	Ромбическая
Пространственная группа	Cmmm, C222, Cm2m, Cmm2	Cmmm, C222, Cm2m, Cmm2
Параметры элементарной	, , , , , , , , , , , , , , , , , , , ,	Gilliam, GZZZ, Gillam, Gilliaz
ячейки, А:		
a	8.50 (3)	8.58 (3)
b	14.72 (5)	14.86 (5)
С	5.19 (3)	5.18 (3)
a:b:c	0.577:1:0.353	0.577 : 1 : 0.348
Z	2	0.077 : 1 : 0.348
V , \mathbb{A}^3	649.37	660.44
$d_{\rm BMS}$, $\Gamma/{\rm cm}^3$	6.21	6.44

 Π р и м е ч а н и е. Показатели преломления определены в сплавах пиперина с иодидами; измерения сопровождались контрольными замерами эталонных минералов: циркона, андрадита и шерломита.

Карбонатные жилы сложены кальцитом двух генераций. Ранняя генерация кальцита слагает участки с среднезернистыми перистыми и микрозернистыми псевдобостонитовыми структурами. Температура образования его, по данным декрепитации и гомогенизации, 200—250 °С. Секущие прожилки кальцита имеют микрозернистую гранобластовую структуру, температура их образования 50—70 °С. Крупные лейсты кальцита часто содержат многочисленные включения рудного вещества, иногда настолько обильные, что цвет их становится черным. Среди включений присутствуют: самородное золото, петцит, тиманнит, колорадоит, клаусталит, алтаит, науманнит, аурипигмент и киноварь. Золото в виде крупных ксеноморфных выделений наблюдается и между лейстами

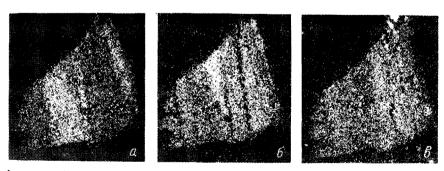


Рис. 3. Агрегат таблитчатых зерен черемныхита и V, Si-дугганита в рентгеновских лучах $V_{\mathcal{K}_\alpha}$ (a), As $_{L_\alpha}$ (б) и Si $_{\mathcal{K}_\alpha}$ (в). Увел. 1000.

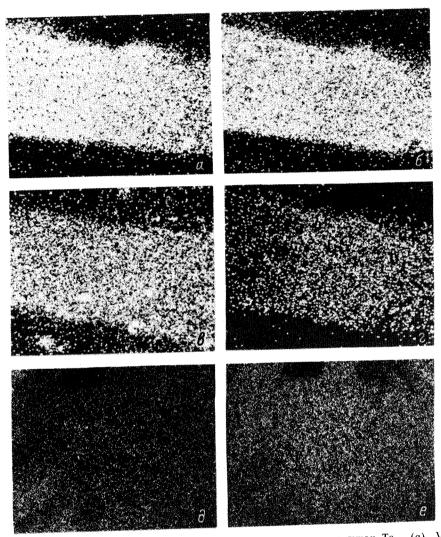


Рис. 4. Зерна черемныхита $(a-\varepsilon)$ и куксита (d,e) в рентгеновских лучах Te_{L_α} (a), V_{K_α} (b), Si_{K_α} (e), As_{L_α} (e), V_{K_α} (e). Увел. 1000.

кальцита. Данная группа минералов рассматриваемая нами как ранняя гипогенная минерализация. Более поздние минералы заполняют интерстиционные промежутки между лейстами кальцита, имеют с ним коррозионные контакты. Среди этих минералов наиболее распространены рыхлые агрегаты розового, реже черного цвета, сложенные слоистыми силикатами типа сапонита—соконита. Иногда в их состав входят Те, Рb и Мп (Ким и др., 1988а). Весьма обильно насыщены кальцитовые жилы так называемым «горчичным» золотом— (Au+Pb+Te+O), находящимся в срастании с теллуратами и слоистыми силикатами. Гнездообразные скопления между лейстами кальцита образует яфсоанит (Ким и др., 1982а). В виде игольчатых розеток наблюдается деклуазит (Ким и др., 1982б). Здесь же встречаются отдельные таблички и друзовидные срастания куксита, черемныхита и V, Si-разновидности дугганита (рис. 1, 2).

Куксит образует плоские тонкотаблитчатые кристаллы размером до $0.1-0.3\,$ мм. Черемныхит имеет вид удлиненных таблитчатых кристаллов размером

Химический состав куксита

	Зерна									
Компонент	11	14	29	36	45	46	52	47	48	Средний состав
PbO	51.46	49.57	52.04	50.10	50.57	49.70	50.74	49.77	51.33	50.59
ZnO	20.77	21.27	20.06	20.46	20.74	21.26	20.73	20.83	20.73	20.76
CaO	1.10	1.27	1.30	2.00	1.26	1.46	1.46	1.90	1.38	1.46
TeO ₃	13.82	13.64	14.00	13.87	14.44	14.78	14.38	14.54	15.21	14.30
P_2O_5	10.70	11.00	9.48	10.11	9.88	10.82	10.35	10.80	10.30	10.38
V_2O_5	1.54	1.55	2.74	2.42	1.98	1.15	1.88	1.48	1.55	1.81
As_2O_5	0.10	0.12		_	0.20	0.15		0.11	l —	0.07
SiO_2	0.40	0.38	0.45	0.54	0.47	0.27	0.46	0.26	0.35	0.40
Сумма	99.89	98.80	100.07	99.79	99.50	99.79	100.00	99.69	100.85	99.77

Кристаллохимические формулы

- Пристамом интестите формулия $11 Pb_{2.74}Zn_{3.03}Ca_{0.23}Te_{0.93}P_{1.79}V_{0.20}Si_{0.08}O_{13.92}$ $14 Pb_{2.63}Zn_{3.10}Ca_{0.27}Te_{0.92}P_{1.84}V_{0.20}Si_{0.07}O_{14.00}$ $29 Pb_{2.78}Zn_{2.94}Ca_{0.28}Te_{0.95}P_{1.59}V_{0.36}Si_{0.09}O_{13.90}$ $36 Pb_{2.63}Zn_{2.95}Ca_{0.42}Te_{0.93}P_{1.67}V_{0.31}Si_{0.10}O_{13.94}$ $45 Pb_{2.70}Zn_{3.03}Ca_{0.27}Te_{0.98}P_{1.66}V_{0.26}Si_{0.09}O_{13.92}$ $46 Pb_{2.62}Zn_{3.07}Ca_{0.31}Te_{0.99}P_{1.79}V_{0.15}Si_{0.05}O_{13.92}$ $52 Pb_{2.68}Zn_{3.01}Ca_{0.31}Te_{0.97}P_{1.72}V_{0.24}Si_{0.09}O_{13.99}$ $47 Pb_{2.61}Zn_{2.99}Ca_{0.40}Te_{0.97}P_{1.78}V_{0.19}Si_{0.05}O_{13.91}$ $48 Pb_{2.71}Zn_{3.00}Ca_{0.29}Te_{1.02}P_{1.71}V_{0.20}Si_{0.07}O_{13.98}$ C ред и и й $Pb_{2.68}Zn_{3.01}Ca_{0.31}Te_{0.96}P_{1.73}V_{0.23}Si_{0.08}O_{13.94}$

Примечание. Здесь и в табл. 2 микрозонд Сатеbах-тісго, эталоны — ZnS (Zn), PbS (Pb), металлические V и Те (V и Те), NiAs (As), SbCuS₂ (Sb и Cu), Cl-апатит (P), ZrSiO₄ (Si), CaSiO₃ (Ca). Аналитические линии: $Pb_{M_{\alpha}}$, $Zn_{K_{\alpha}}$, $Ca_{K_{\alpha}}$, $Te_{L_{\alpha}}$, $P_{K_{\alpha}}$, $V_{K_{\alpha}}$, $As_{L_{\alpha}}$, $Si_{K_{\alpha}}$, $Sb_{L_{\alpha}}$, $Cu_{K_{\alpha}}$. Ускоряющее напряжение 20 кВ, ток 20 нА. Расчет концентраций выполнен с помощью ZAF-метода, реализованного в математическом обеспечении прибора Cl, F, Se не обнаружены. Анализ зерна 29 соответствует данным на рис. 4, θ , e.

Таблица 3

Химический состав черемныхита и дугганита

Компонент	Зерна										Средний	Дугганит (Williams	
	23	32	41	5	17	27	37	39	71	55	состав	1978)	
PbO	52.65	52.93	52.76	54.52	52.76	52.38	52.60	54.12	52.82	52.86	53.04	55.32	
ZnO	19.22	19.26	18.75	18.43	18.60	19.06	18.70	18.66	19.00	19.19	18.89	17.60	
CuO	<u> </u>	\	\					l —		_		1.20	
TeO_3	13.82	13.96	13.87	14.05	14.30	13.52	13.78	13.40	13.26	13.60	13.76	14.00	
V_2O_5	10.67	10.37	9.15	6.23	6.42	10.59	10.04	8.54	11.47	9.07	9.25		
P_2O_5	0.17		0.31			_	_	0.14	l —	_	0.06	_	
As_2O_5	1.87	1.40	2.60	2.24	2.38	1.72	1.68	1.38	1.29	3.62	2.02	10.40	
Sb_2O_5	<u> </u>	0.09	l —		i —	_	0.12		i —	0.35	0.06		
SiO_2	1.28	1.91	1.58	4.02	3.53	1.53	1.80	3.07	1.24	1.66	2.16		
H_2O												1.50	
Сумма	99.68	99.92	99.02	99.49	97.99	98.80	98.72	99.31	99.08	100.35	99.24	100.00	

Кристаллохимические формулы

- $23 = Pb_{3.00}Zn_{3.00}Te_{1.00}V_{1.49}P_{0.03}As_{0.20}Si_{0.27}O_{13.84}$
- $32 = Pb_{3.00}Zn_{3.00}Te_{1.00}V_{1.44}As_{0.15}Sb_{0.01}Si_{0.40}O_{13.80}$
- $41 Pb_{3.04}Zn_{2.96}Te_{1.02}V_{1.29}P_{0.06}As_{0.29}Si_{0.34}O_{13.84}$
- $\begin{array}{l} 5 Pb_{3.11}Zn_{2.89}Te_{1.02}V_{0.87}As_{0.25}Si_{0.85}O_{13.55} \\ 17 Pb_{3.05}Zn_{2.95}Te_{1.05}V_{0.92}As_{0.26}Si_{0.76}O_{13.62} \end{array}$

- $\begin{array}{lll} 17 & Po_{3.05}Zl_{12.95} \ te_{1.05} \, V_{0.92} As_{0.26} Sl_{0.76} \, V_{13.62} \\ 27 & Pb_{3.00}Zn_{3.00} Te_{0.99} V_{1.49} As_{0.19} Si_{0.33} O_{13.83} \\ 37 & Pb_{3.04} Zn_{2.96} Te_{1.01} V_{1.49} As_{0.19} Sb_{0.01} Si_{0.39} O_{13.86} \\ 39 & Pb_{3.08} Zn_{2.92} Te_{0.97} V_{1.20} P_{0.02} As_{0.15} Si_{0.65} O_{13.64} \\ 71 & Pb_{3.02} Zn_{2.98} Te_{0.96} V_{1.61} As_{0.16} Si_{0.26} O_{13.82} \\ 55 & Pb_{3.01} Zn_{2.99} Te_{0.98} V_{1.27} As_{0.40} Sb_{0.01} Si_{0.35} O_{13.84} \\ C \ \text{P e } \text{\mathcal{H} h } \text{$\mathring{\text{h}}$} & Pb_{3.03} Zn_{2.97} Te_{1.00} V_{1.30} As_{0.22} P_{0.01} Si_{0.46} O_{13.77} \end{array}$

Примечание. H_2O не определялась. Анализ зерна 39 соответствует данным на рис. 4, $a-\varepsilon$.

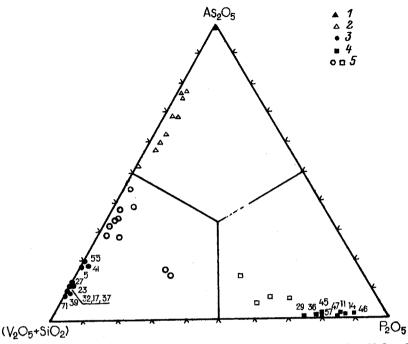


Рис. 5. Составы свинцово-цинковых теллуратов на диаграмме $As_2O_5-V_2O_5+SiO_2-P_2O_5$. I — дугганит, J — V, Si-дугганит, J — V0, Si-дугганит, J1, J2, J3, J3, J4, J5, J7, J8, J9, J9,

до 0.1—0.5 мм. Окраска и отчасти форма кристаллов являлись главными визуальными признаками, по которым отбирались минералы на анализы. Наиболее часто встречающиеся простые формы у куксита — { 100}, у черемныхита — { 100} и {010}. За исключением состава, основные свойства двух новых минералов близки между собой (табл. 1).

Состав теллуратов первоначально определялся на микрозонде JXA-5A с прямым определением кислорода. Затем различные цветовые разновидности теллуратов изучались на микрозонде Сатебах-Місго по «кислородной» программе. Всего было исследовано 80 зерен. Большая часть из них была представлена микросрастаниями, в которых присутствовали полоски теллуратов разного состава (рис. 3). Среди изученных зерен около 80 % принадлежало ванадиево-кремниевой разновидности дугганита и мышьяковой разновидности черемныхита, присутствующих в виде самостоятельных выделений и в срастаниях с черемныхитом, реже с кукситом. Единичные зерна среди них содержали до 3—4 % P_2O_5 . Около 20 % зерен составляли черемныхит и куксит (рис. 4). Анализы химического состава куксита и черемныхита представлены в табл. 2, 3.

Вода в куксите и черемныхите не определялась. Микронавеска 1.9345 мг из зерен смешанного состава с преобладающим количеством V, Si-дугганита подвергалась прокаливанию в течение 5 ч при температуре 500 °С. Потери в весе составили 0.67 % (весы марки ВЛУ-100 мг, цена деления $3.4 \cdot 10^{-4}$ мг). Порошкограммы, полученные с прокаленных образцов, практически не отличались от таковых для непрокаленных образцов V, Si-дугганита, черемныхита и куксита. Прямое определение кислорода в этой группе теллуратов показало некоторый избыток его при пересчете на присутствующие катионы $(O_{\text{опр.}} - O_{\text{расч.}} = 0.10 - 0.35 \%)$. Таким образом, мы располагали косвенными данными, указывающими на возможность наличия незначительного количества воды. Анализ химического состава показал существование корреляционных связей

между ванадием и кремнием. В куксите, как и в V, Si-дугганите, с уменьшением количества V_2O_5 уменьшается количество SiO_2 . В черемныхите понижение содержания V_2O_5 сопровождается повышением количества SiO_2 (зерна 5, 17 и 39, табл. 3). Исходя из вышеизложенного можно предполагать наличие гетеровалентного изоморфизма V^{5+} — Si^{4+} и присутствие некоторого количества воды, необходимого для баланса зарядов при дефиците пятивалентных катионов.

Пересчет кристаллохимических формул куксита и черемныхита выполнен из расчета 6 катионов (Pb+Zn) по аналогии с дугганитом и V, Si-разновидностью дугганита. Аналогичные результаты дает также расчет по Те. Небольшое количество Са в куксите изоморфно замещает Рь. Эмпирические формулы минералов приведены в табл. 2, 3. Теоретические формулы $Pb_3Zn_3TeO_6\left(PO_4\right)_2$ для куксита и $Pb_3Zn_3TeO_6(VO_4)_2$ для черемныхита отличаются от формулы дугганита по количеству кислорода — 14 и 13 атомов соответственно для куксита, черемныхита и дугганита. Различия в кристаллохимических формулах можно объяснить, если принять во внимание, что определение катионного состава дугганита проводилось комплексом методов: Рb, Zn и Cu — атомная адсорбция, Te — видимая спектроскопия, As — $У\Phi$ -спектроскопия, H_2O метод Пенфилда, анализ корректировался на 100 % для компенсации 3.63 %, недостающих в сумме анализа (Williams, 1978). Такая корректировка, как мы считаем, привела к увеличению PbO в анализе. Количество Pb, Zn и Te в нескорректированном анализе дугганита совпадает с количеством этих элементов в наших теллуратах, а содержание As меньше суммы пятивалентных катионов и кремния. Следовательно, можно предположить, что недостаток суммы в дугганите связан с недоопределением в группе пятивалентных катионов. Расчет кристаллохимической формулы дугганита на 14 атомов кислорода в предположении $1.5\,\%$ $\rm H_2O$ приводит к следующей теоретической формуле $Pb_3Zn_3TeAs_{2-x}O_{14-5x}(OH)_{5x}$ при x=0.4.

Анализы куксита, черемныхита, дугганита и теллуратов, промежуточного составов вынесены на тройную диаграмму As—V, Si—P (рис. 5). Как видно

Таблица 4 Результаты расчета дебаеграмм куксита, черемныхита. V. Si-лугганита

т сзультаты расчета дебаеграмм куксита, черемныхита, V, Si-дугганита												
	Кукси			Черемныхит			V, Si-д	угганит	(Williams, 1978)			
	$d_{ m skc}$	$d_{\scriptscriptstyle \mathrm{Bbl^{q}}}$	1	$d_{9 \text{Ken.}}$	$d_{\text{выч.}}$	1	$d_{\scriptscriptstyle PKCII}$	$d_{\text{выч.}}$	hkl	I	d	hkl
2 1	5.18 4.25	5.19 4.25 4.24	2	5.20 4.29	5.18 4.29 4.25	2 2	5.21 4.27	5.21 4.29	001 200, 130	4 4	5.204 4.233	001 110
2ш 10 8 2	3.68 3.29 3.00 2.80	3.68 3.29 3.00 2.78	3 10 9 2	3.66 3.30 3.00 2.82	3.71 3.30 3.02 2.81	1 10 9 3	3.71 3.30 3.01 2.80	4.27 3.71 3.31 3.02 2.81	021, 111 040, 220 131, 201 221, 041 150, 240	3 10 8 5	3.666 3.284 2.997 2.773	200 111 201 120
4 2	2.594 2.462	2.595 2.454	2 2 4	2.708* 2.585 2.470	2.590 2.477	4 4	2.605 2.468	2.605 2.473	310 002 060, 330	4 6	2.603 2.446	002 121, 300,
5	2.355**	2.452			2.469			2.470	151,241, 311		ĺ	102
1	2.237	2.218				1	2.442	2.458	112, 022 061, 331			
			2	2.215	2.217	3ш	2.220	2.226	132, 202	4	2.215	112,
1	2.121	2.125	3	2.120	2.145	3ш	2.129	2.142	260, 400	4	2.121	301 202,
3	2.041**	2.120 2.041	2	2.047	2.125 2.061	2	2.056	2.132 2.058	042, 222 420, 170, 350	4	2.035	220 130

	Куксит			Черемны	хит		V, Si-ду	/гганит		(Williams, 1978)			
1	d _{эксп.}	d _{выч.}	I	d _{эксп.}	d _{выч.}	I	d _{эксп.}	$d_{{\scriptscriptstyle { m BM^4}}.}$	hkl	I	d	hkl	
5	1.903	1.898	5	1.903	1.904	1 8	2.027*		242, 152, 312	1/2 6	1.963 1.896	221 122, 131	
2	1.785	1.783	1 3	1.877* 1.784	1.790	1ш 3	1.867 1.790	1.856 1.794	$080 \\ 332,062$	4 1/2	1.783 1.734	302 003	
1	1.686	1.689				1	1.706	1.703	280, 510, 370	1	1.687		
3	1.606	1.604	6	1.607	1.613	7	1.609	1.614	352, 422, 177	1 6	1.603		
1	1.571	1.602 1.566	1	1.565	1.602 1.566	2	1.569	1.609 1.573	203, 133 043, 223	3 1/2	1.569 1.530		
	1 445**		1	1.469	1.471	1111	1.477	1.477	153, 243, 313	2	1.469		
1	1.445** 1.422	1.415 1.414	2	1.421	1.424 1.416	2ш	1.424	1.425 1.422	282, 512 063, 333	3	1.413		
			2	1.395	1.404	1	1.400	1.403	620, 480, 2.10.0 621, 481,	1	1.387		
			1	1.340	1.345				2.10.1 263, 403	2	1.341		
			1	1.319	1.323	1	1.324	1.328	173, 353, 423	3	1.321		
						m l	1.290	1.290	0.10.2, 552	3	1.279		
1	1.229**	1.227				1 w 2	1.236	1.237	660, 0.12.0 283, 373	1 4	1.242		
1	1.212	1.208				1	1.181	1.181	513 244, 314		1.177		
						1	1.125	1.128	154 0.10.3,				
						1	1.039	1.039	553 821, 0.14.1,				
									771				

Примечание. Отмеченные * — линии примеси, не индицируются, присутствуют не на всех рентгенограммах, двумя ** — соответствуют самородному золоту. Условия съемки: Си-излучение, камера 57.3 мм, диаметр образцов 0.2 мм, поправки на поглощение в образце и на диаметр камеры не вводились; ш — широкая линия

на диаграмме, мы имеем дело с теллуратами, обладающими широким изоморфизмом в ряду V, Si-P.

Рентгенографически исследованы монокристаллы и порошковые препараты минералов. Предварительно минералы отбирали по цвету и часть из них монтировали в шашки для определения состава. Для обоих минералов дебаеграммы были получены как из целых мономинеральных зерен, вынутых из шашки (съемка в камере Гандольфи), так и из порошковых препаратов, приготовленных из нескольких зерен одинакового цвета. Поскольку на дебаеграммах, снятых с мономинеральных образцов, присутствуют только наиболее сильные линии, для дальнейших расчетов использовали дебаеграммы порошковых препаратов. Расчеты показали близость порошкограмм двух новых минералов между собой, а также с V, Si-дугганитом и дугганитом (табл. 4). Параметры элементарных ячеек определены методом наименьших квадратов (Нахмансон, Антошульский, 1984) по полным порошкограммам (табл. 1). Исследование

монокристаллов выполнено методами Лауэ, качания и в рентгенгониометре Вейсенберга. Установлено, что куксит и черемныхит принадлежат к ромбической сингонии с псевдогексагональной метрикой ячейки в отличие от дугганита, для которого была установлена гексагональная сингония, пространственная группа P6/mmm, параметры элементарной ячейки a=8.472, c=5.208 Å (Williams, 1978). Вывод о ромбической сингонии куксита и черемныхита основан на тщательном анализе разверток hkl и hk0 слоевых линий, на которых нет симметрии в интенсивностях отражений, необходимой для установления принадлежности к дифракционному классу 6/ттт. Для куксита и черемныхита по набору присутствующих отражений установлена одна из четырех неразличимых по погасаниям групп Сттт, С222, Ст2т, Стт2 дифракционного класса ттт. Принимая во внимание количество атомов в элементарной ячейке и кратность систем правильных точек в указанных пространственных группах, две из них Сттт и С222 можно предполагать наиболее вероятными. Более высокую сингонию у дугганита можно объяснить тем, что в указанной для него пространственной группе Р6/тт все атомы в элементарной ячейке можно разместить только при статистическом распределении Те и As в одной позиции. В ромбических же куксите и черемныхите As и Te могут занять индивидуальные позиции. Таким образом, при несомненно общем структурном мотиве сопоставляемых теллуратов только расшифровка кристаллических структур может дать объяснение различиям в сингонии.

Обширная группа теллуратов, обнаруженная в зоне окисления Куранахского золоторудного месторождения, является продуктом гипергенных преобразований первичных руд с золото-теллуридной минерализацией.

Образцы куксита и черемныхита переданы на хранение в геологический музей Института геологических наук ЯНЦ СО АН СССР.

Список литературы

Ким А. А., Заякина Н. В., Лаврентьев Ю. Г. Яфсоанит $(Zn_{1.38}Ca_{1.36}Pb_{0.26})_3Te_1O_6$ — новый минерал теллура // ЗВМО. 1982а. Вып. 1. С. 118—121.

Ким А. А., Махотко В. Ф., Бочек Л. И. О находке деклуазита в Куранахском золоторудном месторождении // Бюл. науч. техн. информ. Якутск, 19826. С. 24—26.

Ким А. А., Никишова Л. В., Сивцов А. В., Махотко В. Ф. Цинк-теллур-свинец-марганецсодержащие слоистые силикаты из Куранахского золоторудного месторождения // Минер. журн. 1988a. T. 10. № 5. C. 11—19.

Ким А. А., Заякина Н. В., Лаврентьев Ю. Г., Махотко В. Ф. V. Si-разновидность дугганита — первая находка в СССР // Минер. журн. 19886. Т. 10. № 6. С. 85—89.

находка в СССГ // Риппер. журп. 1966. 1. 16. 12. 6. 6. 6. 6. Нахмансон М. А., Антошульский А. Г. Методика расчета параметров элементарной ячейки по рентгенограммам порошков с помощью ЭВМ // Аппаратура и методы рентгеновского анализа.

Л.: Машиностроение. 1984. Вып. 33. С. 27—35.

Яблокова С. В., Дубакина Л. С., Дмитрак А. Л., Соколова Т. В. Куранахит — новый гипергенный минерал теллура // ЗВМО. 1975. Вып. 3. С. 310—313.

Williams S. A. Khinite, parakhinite, and dugganite three new tellurates from Tombstone, Arizona // Amer. Miner. 1978. Vol. 63. N 9—10. P. 1016—1019.

Институт геологических наук Сибирского отделения (ИГН СО) AH CCCP Якутск

Поступила в редакцию 30 августа 1989 г.