© ЗВМО, вып. 5, 1990 г.

УДК 549:553.411

Д. члены А. А. КИМ, Н. В. ЗАЯКИНА, В. Ф. МАХОТКО

КУКСИТ РЬ₃Zn₃TeO₆(PO₄)₂ И ЧЕРЕМНЫХИТ РЬ₃Zn₃TeO₆(VO₄)₂ — НОВЫЕ ТЕЛЛУРАТЫ ИЗ КУРАНАХСКОГО ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ (ЦЕНТРАЛЬНЫЙ АЛДАН, ЮЖНАЯ ЯКУТИЯ)

В 1976 г. на Куранахском золоторудном месторождении была обнаружена группа теллуратов, не имеющих аналогов среди природных и синтетических минералов. Один из теллуратов — яфсоанит (Са, Zn)₃TeO₆ — был утвержден КНМ ММА в 1981 г. Еще три минерала — фосфорный, ванадиево-кремниевый и мышьяково-ванадиево-кремниевый теллураты свинца и цинка — находились в стадии изучения. Ранее в этой же залежи в кварцево-лимонито-гематитовых рудах был обнаружен минерал куранахит PbMn_{0.8}TeO₆ (Яблокова и др., 1975). Мышьяково-кремниево-ванадиевый теллурат, близкий по составу и порошкограмме дугганиту (Williams, 1978), рассмотрен нами как ванадиево-кремнистая разновидность дугганита (Ким и др., 1988б). Собственно ванадиево-кремние вый и фосфорный теллураты, являющиеся крайними членами в ряду свинцовоцинковых теллуратов с As, V, P, представляются как новые минералы — куксит (kuksite) и черемныхит (cheremnykhite). Минералы названы в честь алданских геологов — первооткрывателей Куранахского месторождения А. И. Кукса и

И. М. Черемных. Куранахское месторождение представлено зоной вытянутых карстовых полостей, заполненных глинисто-лимонитовым материалом с дезинтегрированными обломками вмещающих их карбонатных и песчаных пород кембрийского и юрского возраста и реликтами частично или полностью окисленных рудных метасоматитов: пирито-кварцевых, пирито-адуляро-кварцевых и карбонатных с золото-теллуридной минерализацией.

Рис. 1. Друзовидные срастания таблитчатых зерен куксита, черемныхита и V, Si-дугганита с включениями яфсоанита (1) и слоистых силикатов (2). Увел. 150.

Рис. 2. Агрегат таблитчатых кристаллов куксита (1), черемныхита (2) и V, Si-дугганита (3), включенный в кальците (4). Полир. шлиф. Увел. 150.

Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всесоюзного минералогического общества 19 апреля 1988 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 4 июня 1989 г.

Таблица 1

Свойство	Куксит	Черемныхит
Цвет	Серый	Зеленовато-желтый
Прозрачность:		
визуальная	Мутный	Прозрачный
в проходящем свете	Прозрачный	Прозрачный
Цвет порошка	Белый	Белый
Блеск	Алмазный	Алмазный
Флюоресценция	Слабая	Отсутствует
Хрупкость	Хрупкий	Хрупкий
Твердость, кгс/см ² (Р=10 г)	325	673
Спайность	Совершенная	Совершенная
Ng	1.981 (5)	1.997 (5)
Np	1.971 (5)	1.986 (5)
—2 <i>V</i> , град	12-20	20
Удлинение	Положительное	Положительное
Дисперсия	r > v	t > v
Оптическая ориентировка	Ng//c	Ng//c. Np//b. Nm//a
Плеохроизм	Отсутствует	Отсутствует
Сингония	Ромбическая	Ромбическая
Пространственная группа	Cmmm, C222, Cm2m, Cmm2	Cmmm, C222, Cm2m, Cmm2
Параметры элементарной		,
ячейки, А:		
a	8.50 (3)	8.58 (3)
b	14.72 (5)	14.86 (5)
С	5.19 (3)	5.18 (3)
a : b : c	0.577 : 1 : 0.353	0.577 : 1 : 0.348
ζ.	2	2
V, A°	649.37	660.44
$d_{\rm BMY}$, $\Gamma/\rm CM^{\circ}$	6.21	6.44

Основные свойства куксита и черемныхита

Примечание. Показатели преломления определены в сплавах пиперина с иодидами; измерения сопровождались контрольными замерами эталонных минералов: циркона, андрадита и шерломита.

Карбонатные жилы сложены кальцитом двух генераций. Ранняя генерация кальцита слагает участки с среднезернистыми перистыми и микрозернистыми псевдобостонитовыми структурами. Температура образования его, по данным декрепитации и гомогенизации, 200—250 °С. Секущие прожилки кальцита имеют микрозернистую гранобластовую структуру, температура их образования 50—70 °С. Крупные лейсты кальцита часто содержат многочисленные включения рудного вещества, иногда настолько обильные, что цвет их становится черным. Среди включений присутствуют: самородное золото, петцит, тиманнит, колорадоит, клаусталит, алтаит, науманнит, аурипигмент и киноварь. Золото в виде крупных ксеноморфных выделений наблюдается и между лейстами

Рис. 3. Агрегат таблитчатых зерен черемныхита и V, Si-дугганита в рентгеновских лучах $V_{\kappa_a}(a)$, As_{La}(δ) и Si_{Ka}(a). Увел. 1000.

4*

Рис. 4. Зерна черемныхита (a-e) и куксита (∂, e) в рентгеновских лучах $\operatorname{Te}_{L_{\alpha}}(a)$, $\operatorname{V}_{K_{\alpha}}(b)$, $\operatorname{Si}_{K_{\alpha}}(e)$, $\operatorname{As}_{L_{\alpha}}(e)$, $\operatorname{V}_{K_{\alpha}}(\partial)$, $\operatorname{P}_{K_{\alpha}}(e)$. Увел. 1000.

кальцита. Данная группа минералов рассматриваемая нами как ранняя гипогенная минерализация. Более поздние минералы заполняют интерстиционные промежутки между лейстами кальцита, имеют с ним коррозионные контакты. Среди этих минералов наиболее распространены рыхлые агрегаты розового, реже черного цвета, сложенные слоистыми силикатами типа сапонита—соконита. Иногда в их состав входят Те, Pb и Mn (Ким и др., 1988а). Весьма обильно насыщены кальцитовые жилы так называемым «горчичным» золотом— (Au+Pb+Te+O), находящимся в срастании с теллуратами и слоистыми силикатами. Гнездообразные скопления между лейстами кальцита образует яфсоанит (Ким и др., 1982а). В виде игольчатых розеток наблюдается деклуазит (Ким и др., 19826). Здесь же встречаются отдельные таблички и друзовидные срастания куксита, черемныхита и V, Si-разновидности дугганита

(рис. 1, 2). Куксит образует плоские тонкотаблитчатые кристаллы размером до 0.1— 0.3 мм. Черемныхит имеет вид удлиненных таблитчатых кристаллов размером

Таблица 2

Химический состав куксита

Компонент	Зерна										
	11	14	29	36	45	46	52	47	48	состав	
РЬО	51.46	49.57	52.04	50.10	50.57	49.70	50.74	49.77	51.33	50.59	
ZnO	20.77	21.27	20.06	20.46	20.74	21.26	20.73	20.83	20.73	20.76	
CaO	1.10	1.27	1.30	2.00	1.26	1.46	1.46	1.90	1.38	1.46	
TeO ₃	13.82	13.64	14.00	13.87	14.44	14.78	14.38	14.54	15.21	14.30	
P_2O_5	10.70	11.00	9.48	10.11	9.88	10.82	10.35	10.80	10.30	10.38	
V_2O_5	1.54	1.55	2.74	2.42	1.98	1.15	1.88	1.48	1.55	1.81	
As_2O_5	0.10	0.12		_	0.20	0.15		0.11	_	0.07	
SiO ₂	0.40	0.38	0.45	0.54	0.47	0.27	0.46	0.26	0.35	0.40	
Сумма	99.89	98.80	100.07	99.79	99.50	99.79	100.00	99.69	100.85	99.77	

Кристаллохимические формулы

 $\begin{array}{rl} 11 & = Pb_{2.74}Zn_{3.03}Ca_{0.23}Te_{0.93}P_{1.79}V_{0.20}Si_{0.08}O_{13.92}\\ 14 & = Pb_{2.63}Zn_{3.10}Ca_{0.27}Te_{0.92}P_{1.84}V_{0.20}Si_{0.07}O_{14.00}\\ 29 & = Pb_{2.78}Zn_{2.94}Ca_{0.28}Te_{0.95}P_{1.59}V_{0.36}Si_{0.09}O_{13.90}\\ 36 & = Pb_{2.70}Zn_{3.03}Ca_{0.27}Te_{0.98}P_{1.67}V_{0.26}Si_{0.07}O_{13.92}\\ 45 & = Pb_{2.70}Zn_{3.03}Ca_{0.27}Te_{0.99}P_{1.67}V_{0.26}Si_{0.05}O_{13.92}\\ 46 & = Pb_{2.62}Zn_{3.07}Ca_{0.31}Te_{0.99}P_{1.79}V_{0.15}Si_{0.05}O_{13.92}\\ 52 & = Pb_{2.68}Zn_{3.01}Ca_{0.23}Te_{0.97}P_{1.78}V_{0.19}Si_{0.05}O_{13.99}\\ 47 & = Pb_{2.61}Zn_{2.99}Ca_{0.40}Te_{0.97}P_{1.78}V_{0.19}Si_{0.07}O_{13.98}\\ C \ p \ e \ д \ H \ H \ H & = Pb_{2.68}Zn_{3.01}Ca_{0.31}Te_{0.96}P_{1.73}V_{0.23}Si_{0.08}O_{13.94}\\ \end{array}$

Примечание. Здесь и в таб. 2 микрозонд Сатеба, 1,73*0,23*0,023*0,08*0,13,94плические V и Te (V и Te), NiAs (As), SbCuS₂ (Sb и Cu), Cl-апатит (P), ZrSiO4 (Si), CaSiO₃ (Ca). Аналитиче-ские линии: Pb_{Ma}, Zn_{Ka}, Ca_{Ka}, Te_{La}, P_{Ka}, V_{Ka}, As_{La}, Si_{Ka}, Sb_{La}, Cu_{Ka}. Ускоряющее напряжение 20 кВ, ток 20 нА. Расчет концентраций выполнен с помощью ZAF-метода, реализованного в математическом обеспечении прибора Cl, F, Se не обнаружены. Анализ зерна 29 соответствует данным на рис. 4, *д*, *е*.

Таблица З

Химический состав черемныхита и дугганита

Компонент	Зерна											Дугганит (Williams	
	23	32	41	5	17	27	37	39	71	55	состав	1978)	
$\begin{array}{c} PbO\\ ZnO\\ CuO\\ TeO_{3}\\ V_{2}O_{5}\\ P_{2}O_{5}\\ As_{2}O_{5}\\ Sb_{2}O_{5}\\ Sb_{2}O_{5}\\ SiO_{2}\\ H_{2}O\\ \end{array}$	52.65 19.22 	52.93 19.26 	52.76 18.75 	$54.52 \\ 18.43 \\ \\ 14.05 \\ 6.23 \\ \\ 2.24 \\ \\ 4.02$	$52.76 \\ 18.60 \\ \\ 14.30 \\ 6.42 \\ \\ 2.38 \\ \\ 3.53$	52.38 19.06 	52.60 18.70 13.78 10.04 1.68 0.12 1.80	54.12 18.66 	$52.82 \\ 19.00 \\ \\ 13.26 \\ 11.47 \\ \\ 1.29 \\ \\ 1.24$	52.8619.19	53.04 18.89 	55.32 17.60 1.20 14.00 	
Сумма	99.68	99.92	99.02	99.49	97.99	98.80	98.72	99.31	99.08	100.35	99.24	100.00	

Кристаллохимические формулы

 $23 = Pb_{3.00}Zn_{3.00}Te_{1.00}V_{1.49}P_{0.03}As_{0.20}Si_{0.27}O_{13.84}$

- $32 Pb_{3.00}Zn_{3.00}Te_{1.00}V_{1.44}As_{0.15}Sb_{0.01}Si_{0.40}O_{13.80}$
- $41 Pb_{3.04}Zn_{2.96}Te_{1.02}V_{1.29}P_{0.06}As_{0.29}Si_{0.34}O_{13.84}$
- $\begin{array}{c} 5 & -Pb_{3.11}Zn_{2.89}Te_{1.02}V_{0.87}As_{0.25}Si_{0.85}O_{13.55}\\ 17 & -Pb_{3.05}Zn_{2.95}Te_{1.05}V_{0.92}As_{0.26}Si_{0.76}O_{13.62} \end{array}$

- $\begin{array}{rl} 17 & Pb_{3.05} Li_{2.95} 14_{2.05} V_{0.92} As_{0.26} Si_{0.76} V_{1.362} \\ 27 & Pb_{3.00} Zn_{3.00} Te_{0.99} V_{1.49} As_{0.19} Si_{0.33} O_{13.83} \\ 37 & Pb_{3.04} Zn_{2.96} Te_{1.01} V_{1.49} As_{0.19} Sb_{0.01} Si_{0.39} O_{13.86} \\ 39 & Pb_{3.08} Zn_{2.92} Te_{0.97} V_{1.20} P_{0.02} As_{0.15} Si_{0.65} O_{13.64} \\ 71 & Pb_{3.02} Zn_{2.98} Te_{0.96} V_{1.61} As_{0.16} Si_{0.26} O_{13.82} \\ 55 & Pb_{3.01} Zn_{2.99} Te_{0.98} V_{1.27} As_{0.40} Sb_{0.01} Si_{0.35} O_{13.84} \\ C \ p \ e \ A \ H \ H \ H \ Pb_{3.03} Zn_{2.97} Te_{1.00} V_{1.30} As_{0.22} P_{0.01} Si_{0.46} O_{13.77} \end{array}$

Примечание. Н₂О не определялась. Анализ зерна 39 соответствует данным на рис. 4, *a*-*г*.

Рис. 5. Составы свинцово-цинковых теллуратов на диаграмме As₂O₅—V₂O₅+SiO₂—P₂O₅. 1 — дугганит, 2 — V, Si-дугганит, 3 — черемныхит, 4 — куксит, 5 — неизученные теллураты. Цифры у фигуративных точек — номера зерен в табл. 2 и 3.

до 0.1—0.5 мм. Окраска и отчасти форма кристаллов являлись главными визуальными признаками, по которым отбирались минералы на анализы. Наиболее часто встречающиеся простые формы у куксита — { 100}, у черемныхита — { 100} и {010}. За исключением состава, основные свойства двух новых минералов близки между собой (табл. 1).

Состав теллуратов первоначально определялся на микрозонде JXA-5A с прямым определением кислорода. Затем различные цветовые разновидности теллуратов изучались на микрозонде Camebax-Micro по «кислородной» программе. Всего было исследовано 80 зерен. Большая часть из них была представлена микросрастаниями, в которых присутствовали полоски теллуратов разного состава (рис. 3). Среди изученных зерен около 80 % принадлежало ванадиево-кремниевой разновидности дугганита и мышьяковой разновидности черемныхита, присутствующих в виде самостоятельных выделений и в срастаниях с черемныхитом, реже с кукситом. Единичные зерна среди них содержали до 3—4 % Р₂О₅. Около 20 % зерен составляли черемныхита и куксит (рис. 4). Анализы химического состава куксита и черемныхита представлены в табл. 2, 3.

Вода в куксите и черемныхите не определялась. Микронавеска 1.9345 мг из зерен смешанного состава с преобладающим количеством V, Si-дугганита подвергалась прокаливанию в течение 5 ч при температуре 500 °C. Потери в весе составили 0.67 % (весы марки ВЛУ-100 мг, цена деления 3.4 · 10⁻⁴ мг). Порошкограммы, полученные с прокаленных образцов, практически не отличались от таковых для непрокаленных образцов V, Si-дугганита, черемныхита и куксита. Прямое определение кислорода в этой группе теллуратов показало некоторый избыток его при пересчете на присутствующие катионы (O_{опр.}— О_{расч.} = 0.10—0.35 %). Таким образом, мы располагали косвенными данными, указывающими на возможность наличия незначительного количества воды. Анализ химического состава показал существование корреляционных связей между ванадием и кремнием. В куксите, как и в V, Si-дугганите, с уменьшением количества V_2O_5 уменьшается количество SiO₂. В черемныхите понижение содержания V_2O_5 сопровождается повышением количества SiO₂ (зерна 5, 17 и 39, табл. 3). Исходя из вышеизложенного можно предполагать наличие гетеровалентного изоморфизма V^{5+} — Si⁴⁺ и присутствие некоторого количества воды, необходимого для баланса зарядов при дефиците пятивалентных катионов.

Пересчет кристаллохимических формул куксита и черемныхита выполнен из расчета 6 катионов (Pb+Zn) по аналогии с дугганитом и V, Si-разновидностью дугганита. Аналогичные результаты дает также расчет по Те. Небольшое количество Са в куксите изоморфно замещает Рb. Эмпирические формулы минералов приведены в табл. 2, 3. Теоретические формулы Pb₃Zn₃TeO₆ (PO₄₎₂ для куксита и Pb₃Zn₃TeO₆ (VO₄)₂ для черемныхита отличаются от формулы дугганита по количеству кислорода — 14 и 13 атомов соответственно для куксита, черемныхита и дугганита. Различия в кристаллохимических формулах можно объяснить, если принять во внимание, что определение катионного состава дугганита проводилось комплексом методов: Pb, Zn и Cu — атомная адсорбция, Те — видимая спектроскопия, As — УФ-спектроскопия, H₂O метод Пенфилда, анализ корректировался на 100 % для компенсации 3.63 %, недостающих в сумме анализа (Williams, 1978). Такая корректировка, как мы считаем, привела к увеличению PbO в анализе. Количество Pb, Zn и Te в нескорректированном анализе дугганита совпадает с количеством этих элементов в наших теллуратах, а содержание As меньше суммы пятивалентных катионов и кремния. Следовательно, можно предположить, что недостаток суммы в дугганите связан с недоопределением в группе пятивалентных катионов. Расчет кристаллохимической формулы дугганита на 14 атомов кислорода в предположении 1.5 % H₂O приводит к следующей теоретической формуле $Pb_3Zn_3TeAs_{2-x}O_{14-5x}(OH)_{5x}$ при x=0.4.

Анализы куксита, черемныхита, дугганита и теллуратов, промежуточного составов вынесены на тройную диаграмму As—V, Si—P (рис. 5). Как видно

Куксит		Черемныхит				VSin						
1	d	d	÷.			<u> </u>				(Wil	liams, 19	78)
	аэкси.	ивыч.		а _{эксп.}	<i>d</i> _{выч.}	1	d _{эксп.}	d _{выч.}	hkl	Ι	d	hkl
2 1	5.18 4.25	5.19 4.25 4.24	2 1	5.20 4.29	5.18 4.29 4.25	2 2	5.21 4.27	5.21 4.29 4.27	001 200, 130 021 111	4 4	5.204 4.233	001
2ш 10 8 2	3.68 3.29 3.00 2.80	$3.68 \\ 3.29 \\ 3.00 \\ 2.78$	$ \begin{array}{c} 3 \\ 10 \\ 9 \\ 2 \end{array} $	$3.66 \\ 3.30 \\ 3.00 \\ 2.82$	3.71 3.30 3.02 2.81	1 10 9 3	3.71 3.30 3.01 2.80	3.71 3.31 3.02 2.81	040, 220 131, 201 221, 041 150, 240	$3 \\ 10 \\ 8 \\ 5$	$3.666 \\ 3.284 \\ 2.997 \\ 2.773$	200 111 201 120
4 2	2.594 2.462	$2.595 \\ 2.454$	$2 \\ 2 \\ 4$	2.708* 2.585 2.470	$2.590 \\ 2.477$	4 4	$2.605 \\ 2.468$	$2.605 \\ 2.473$	310 002 060, 330	$\frac{4}{6}$	$2.603 \\ 2.446$	$ \begin{array}{c} 002 \\ 121, \\ 300 \end{array} $
5	2.355**	2.452			2.469			2.470	151,241, 311			102
1	2.237	2.218				1	2.442	2.458	112,022			
			2	2.215	2.217	3ш	2.220	2.226	132, 202	4	2.215	112,
1	2.121	2.125	3	2.120	2.145	3ш	2.129	2.142	260, 400	4	2.121	202,
3	2.041**	2.120 2.041	2	2.047	2.125 2.061	2	2.056	$\begin{array}{c} 2.132\\ 2.058\end{array}$	$042, 222 \\ 420, 170, 350$	4	2.035	220 130

Результаты расчета дебаеграмм куксита, черемныхита, V, Si-дугганита

Таблица 4

	Куксит			Черемны	хит		V, Si-ду	/гганит		(Williams, 1978)		
Ι	d _{эксп.}	d _{выч.}	Ι	d _{эксп.}	d _{выч.}	1	d _{эксп.}	d _{выч.}	hkl	1	d	hkl
5	1.903	1.898	5	1.903	1.904	1 8	2.027* 1.904	1.909	242, 152, 312	$\frac{1/2}{6}$	1.963 1.896	221 122, 131
2	1.785	1.783	1 3	1.877* 1.784	1.790	1ш 3	1.867 1.790	1.856 1.794	080 332, 062	$\frac{4}{1/2}$	1.783 1.734	302 003
1	1.686	1.689				1	1.706	1.703	280, 510, 370	1	1.687	
3	1.606	1.604	6	1.607	1.613	7	1.609	1.614	352, 422, 177	1 6	1.644	
1	1.571	$1.602 \\ 1.566$	1	1.565	$1.602 \\ 1.566$	2	1.569	1.609 1.573	203, 133 043, 223	$\frac{3}{1/2}$	1.569	
			1	1.469	1.471	1ш	1.477	1.477	153, 243 313	2	1.469	
1 1	1.445** 1.422	1.415	2	1.421	1.424	2ш	1.424	1.425 1.422	282, 512 063, 333	3	1.413	
			2	1.395	1.404	1	1.400	1.403	620,480 2.10.0	. 1	1.387	
						1	1.356	1.354	621,481		1.364	
				1.340	1.345	1	1.324	1.328	173, 353	, 3	1.321	
						Ιш	1.290	1.290	0.10.2,	1 3	1.303 1.279	
1	1.229**	1.227				1.00	1.236	1.237	660, 0.12.0	1	1.242	
1	1.212	1.208				2	1.214	1.216	283,373 513	4	1.225	
						1	1.181	1.181	244, 314 154	, 5	1.177	
						1	1.125	1.128	0.10.3,			
							1.039	1.039	821, 0.14.1, 771			
	1	I	1	L	1	I	1	1	l I	1	1	1

Примечание. Отмеченные * — линии примеси, не индицируются, присутствуют не на всех рентгенограммах, двумя ** — соответствуют самородному золоту. Условия съемки: Си-излучение, камера 57.3 мм, диаметр образцов 0.2 мм, поправки на поглощение в образце и на диаметр камеры не вводились; ш — широкая линия.

на диаграмме, мы имеем дело с теллуратами, обладающими широким изоморфизмом в ряду V, Si—As и более ограниченным в ряду V, Si—P.

Рентгенографически исследованы монокристаллы и порошковые препараты минералов. Предварительно минералы отбирали по цвету и часть из них монтировали в шашки для определения состава. Для обоих минералов дебаеграммы были получены как из целых мономинеральных зерен, вынутых из шашки (съемка в камере Гандольфи), так и из порошковых препаратов, приготовленных из нескольких зерен одинакового цвета. Поскольку на дебаеграммах, снятых с мономинеральных образцов, присутствуют только наиболее сильные линии, для дальнейших расчетов использовали дебаеграммы порошковых препаратов. Расчеты показали близость порошкограмм двух новых минералов между собой, а также с V, Si-дугганитом и дугганитом (табл. 4). Параметры элементарных ячеек определены методом наименьших квадратов (Нахмансон, Антошульский, 1984) по полным порошкограммам (табл. 1). Исследование

монокристаллов выполнено методами Лауэ, качания и в рентгенгониометре Вейсенберга. Установлено, что куксит и черемныхит принадлежат к ромбической сингонии с псевдогексагональной метрикой ячейки в отличие от дугганита, для которого была установлена гексагональная сингония, пространственная группа P6/mmm, параметры элементарной ячейки a=8.472, c=5.208 Å (Williams, 1978). Вывод о ромбической сингонии куксита и черемныхита основан на тщательном анализе разверток hkl и hk0 слоевых линий, на которых нет симметрии в интенсивностях отражений, необходимой для установления принадлежности к дифракционному классу 6/ттт. Для куксита и черемныхита по набору присутствующих отражений установлена одна из четырех неразличимых по погасаниям групп Сттт, С222, Ст2т, Стт2 дифракционного класса mmm. Принимая во внимание количество атомов в элементарной ячейке и кратность систем правильных точек в указанных пространственных группах, две из них Сттт и С222 можно предполагать наиболее вероятными. Более высокую сингонию у дугганита можно объяснить тем, что в указанной для него пространственной группе Р6/ттт все атомы в элементарной ячейке можно разместить только при статистическом распределении Те и As в одной позиции. В ромбических же куксите и черемныхите As и Te могут занять индивидуальные позиции. Таким образом, при несомненно общем структурном мотиве сопоставляемых теллуратов только расшифровка кристаллических структур может дать объяснение различиям в сингонии.

Обширная группа теллуратов, обнаруженная в зоне окисления Куранахского золоторудного месторождения, является продуктом гипергенных преобразований первичных руд с золото-теллуридной минерализацией.

Образцы куксита и черемныхита переданы на хранение в геологический музей Института геологических наук ЯНЦ СО АН СССР.

Список литературы

Ким А. А., Заякина Н. В., Лаврентьев Ю. Г. Яфсоанит (Zn_{1.38}Ca_{1.36}Pb_{0.26})₃Te₁O₆ — новый минерал теллура // ЗВМО. 1982а. Вып. 1. С. 118-121.

Ким А. А., Махотко В. Ф., Бочек Л. И. О находке деклуазита в Куранахском золоторудном месторождении // Бюл. науч. техн. информ. Якутск, 19826. С. 24-26.

Ким А. А., Никишова Л. В., Сивцов А. В., Махотко В. Ф. Цинк-теллур-свинец-марганецсодержащие слоистые силикаты из Куранахского золоторудного месторождения // Минер. журн. 1988a. T. 10. № 5. C. 11-19.

Ким А. А., Заякина Н. В., Лаврентьев Ю. Г., Махотко В. Ф. V. Si-разновидность дугганита — первая находка в СССР // Минер. журн. 19886. Т. 10. № 6. С. 85—89.

Нахмансон М. А., Антошульский А. Г. Методика расчета параметров элементарной ячейки по рентгенограммам порошков с помощью ЭВМ // Аппаратура и методы рентгеновского анализа. Л.: Машиностроение. 1984. Вып. 33. С. 27—35. Яблокова С. В., Дубакина Л. С., Дмитрак А. Л., Соколова Т. В. Куранахит — новый гипер-

генный минерал теллура // ЗВМО. 1975. Вып. 3. С. 310-313.

Williams S. A. Khinite, parakhinite, and dugganite three new tellurates from Tombstone, Arizona // Amer. Miner. 1978. Vol. 63. N 9–10. P. 1016–1019.

Институт геологических наук Сибирского отделения (ИГН СО) AH CCCP

Якутск

Поступила в редакцию 30 августа 1989 г.

57