Ч. CXXI

1992

№ 5

НОВЫЕ МИНЕРАЛЫ

УДК 549.331 ©1992 г.

> Д. ЧЛ. С. М. САНДОМИРСКАЯ, Ч. Х. АРИФУЛОВ, М. М. БОТОВА, д. ЧЛ. Н. Н. МОЗГОВА, д. ЧЛ. С. Н. НЕНАШЕВА, А. И. ЦЕПИН, А. В. СИВЦОВ

ЦНИГРИИТ Ад9SbTe3(S, Se)3 — НОВЫЙ МИНЕРАЛ ¹

S. M. SANDOMIRSKAYA, CH. KH. ARIFULOV, M. M. BOTOVA, N. N. MOZGOVA, S. N. NENASHEVA, A. I. TSEPIN, A. V. SIVTSOV. TSNIGRIITE Ag9SbTe3(S, Se)3 — A NEW MINERAL¹

Селенистый сульфотеллурид серебра и сурьмы — цнигриит (tsnigriite) Ag₉SbTe₃(S, Se)₃ первоначально был открыт в рудах малоглубинного золото-серебряного месторождения Высоковольтное (западная часть Южно-Тяньшаньской складчатой области, Узбекистан), затем в полиметаллическом рудопроявлении Бетхуми (штат Раджастхан, Индия). Название дано в связи с 50-летним юбилеем ЦНИГРИ, внесшего значительный вклад в изучение золоторудных районов Средней Азии.

В месторождении Высоковольтное рудная минерализация приурочена к крутопадающим зонам разломов, обогащенным углеродистым веществом и секущим интенсивно дислоцированные терригенные породы нижнего палеозоя. Руды представлены серицитизированными, карбонатизированными породами с вкрапленной и жильно-прожилковой кварцево-сульфосольной минерализацией. Рудные минералы составляют около 3-5%, а жильные 10-20% от общего объема породы. Среди рудных минералов преобладают пирит, арсенопирит, марказит, блеклые руды (тетраэдрит, фрейбергит) и миаргирит. Второстепенную роль играют сфалерит, пираргирит, андорит и селенистый галенит. Менее распространены образующие микровключения самородное золото, амальгама серебра, ртутистое золото, клаусталит, гессит, теллуристый канфильдит и алларгентум. Для руд характерны повышенные содержания селена и теллура (первые десятки г/т). Селен входит в виде изоморфной примеси в сульфосоли, блеклые руды, галенит и канфильдит. Теллур преимущественно образует собственные минералы — гессит, реже колорадоит. Высокие содержания Те (до 18 мас.%) обнаружены в составе канфильдита.

Цнигриит в этом месторождении является второстепенным минералом позднерудной золото-гесситовой ассоциации. Наиболее крупные его обособления установлены в срастании с гесситом и ртутистым золотом (рис. 1). Нередко отмечаются срастания цнигриита с теллуристым канфильдитом, а также неправильные по форме, изометричные, интерстиционные или микропрожилковые его концентрации в кварце и блеклорудно-миаргиритовых агрегатах. Размеры зерен обычно первые десятки микрометров, в единичных случаях до 0.1 мм.

В рудопроявлении Бетхуми цнигриит ассоциирует с галенитом, сфалеритом, пирротином и фалькманитом. Образует неправильной формы почти изометричные

¹ Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 9 февраля 1992 г.

Рис. 1. Se-содержащий цнигриит (1) в срастании с гесситом (2) и ртутистым золотом (3). Fig. 1. Se-bearing tsnigriite (major grey field) with hessite (dark grey) and mercury-bearing gold (dark). Electron absorption image, ×100.

Поглощенные электроны. Увел. 100. Масштаб 1:2.

зерна размерами до 50—70 мкм (рис. 2); наблюдаются сечения кристаллов, близкие к ромбическим (рис. 3).

Химический состав нового минерала (табл. 1) изучен методом рентгеноспектрального микроанализа. Условия анализа: для минерала из Высоковольтного месторождения — Сатеbax, 20 кВ, 7 нА, образцы сравнения (аналитические линии) — Sb₂S₃ (Sb_{L₂}, S_{K₂}), PbTe (Te_{L₂}), CdSe (Se_{K₂}), Ag (Ag_{L₂}); для образца из Бехтуми — MS-46 Cameka, 20 кВ, 15 нА, образцы сравнения (аналитические линии) — AgSbS₂ (Ag_{L₂}, Sb_{L₂}, S_{K₂}), PbS(Pb_{M₂}), CuFeS₂ (Cu_{K₂}), FeAsS (As_{L₂}) PbTe (Te_{L₂}) Bi₂S₃ — Bi_{M₂}). Cтатистическая обработка результатов измерения подтвердила равномерное распределение обнаруженных элементов в составе зерен цнигриита. Обращает на себя внимание отсутствие селена в индийском цнигриите и заметная примесь в нем свинца (до 1.86 мас.%). Пересчеты анализов на 16 атомов дают эмпирические формулы для минерала из месторождения Высоковольтное Ag_{8.97} Sb_{1.01}Te_{3.05}(S_{2.57} · Se_{0.38})_{2.99}, для индийского — (Ag_{8.78}Cu_{0.01}Pb_{0.14})_{8.93}(Sb_{0.94}As_{0.01})_{0.95} Te_{3.13} S_{2.96}. Идеализированная формула – Ag₅SbTe₃ (S,Se)₃, которая для Se-содержащего цнигриита (при соотношении S : Se = 2.61 : 0.39) отвечает составу Ag 61.06, Sb 7.66, Te 24.08, Se 1.94,

S 5.26, для бесселенистого — Ag 61.77, Sb 7.75, Te 24.36, S 6.12.

По химизму цнигриит наиболее близок к бенлеонардтиту $Ag_8(Sb, As)$ Te_2S_3 (Stanley e. a., 1986) и к «минералу С», описанному Каруп-Мёллером и Паули (Karup-Møller, Pauly, 1979).

Рис. 2. Зерна Рb-содержащего цнигриита (1) в галените (2) в ассоциации со сфалеритом (3), содержащим эмульсионную вкрапленность пирротина; 4 — фалькманит.

Fig. 2. Grains of Pb-bearing tsnigriite (white) in galena (light grey matrix) with sphalerite (dark grains) containing emulsion inclusions of pyrrhotite. The biggest tsnigriite grain grows together with falkmanite (blight white), ×180. Bethumy.

Рудопроявление Бетхуми. Полированный шлиф, николи скрещены. Увел. 180.

Рис. 3. Кристалл Pb-содержащего цнигриита из Бетхуми в срастании с фалькманитом. Fig. 3. Pb-bearing tsnigriite crystal with falkmanite from Bethumy.

a — в обратно-рассемнных электронах; δ — e — в рентгеновских лучах: Pb_{M_a} (δ), S_{K_a} (δ), Ag_{L_a} (ϵ), Sb_{L_a} (∂), Tc_{L_a} (e).

От первого существенно отличается по рентгеновским данным и оптическим свойствам; сопоставление со вторым минералом затруднено из-за недостаточного качества его микрозондовых анализов (суммы трех микрозондовых анализов 96.5, 97.5 и 94.6) и отсутствия остальных характеристик.

В отраженном свете под микроскопом каких-либо различий в поведении Se-содержащего и Pb-содержащего цнигриита не замечено. Цвет нового минерала серый со слабым зеленовато-голубым оттенком. Двуотражение слабое. Эффекты анизотропии в коричневых и серых тонах. Внутренние рефлексы отсутствуют. Кривые дисперсии отражения нормального типа с широким максимумом в синей области² (табл. 2, рис. 4). Твердость микровдавливания цнигриита в образце из

² В связи с малой величиной зерен для индийского образца удалось измерить дисперсию липь максимального коэффициента отражения.

⁷ Записки ВМО, № 5, 1992 г.

Химический состав (мас.%) цнигриита из южного Тянь-Шаня (ан. 1—6) и Бетхуми (ан. 7, 8) Microprobe data on tsnigriite from the southern Thian-Shan (1—6 ап.) and from Bethumy, India (7, 8 ап.)

		- no trion									
Ne ahajigaa	Ag	రే	ቘ	ß	As	Bi	Tc	s	Se	Cynora	Формула, рассчитанная на 16 агомов
1	60.8	He oup.	He onp.	7.6	He oup.	He onp.	24.4	5.2	1.8	99.80	Ag9.00Sb1.00Te3.05(S2.59Se0.36)2.95
7	60.6	*	*	7.6	*	*	24.6	5.0	2.3	100.1	Aga95Sb1.00Tc3.08(S2.51Sc0.46)2.97
ć	60.6	*	*	7.6	*	*	24.2	5.3	1.8	5. 99	Aga97Sb1.00Tc3.03(S2.64Sc0.36)3.00
4	60.8	*	*	T.T	*	*	24.5	4.9	1.6	99.5	Ag9.09Sb1.02Te3.10(S2.46Se0.33)2.79
s	60.4	*	*	7.6	*	*	24.7	5.3	1.6	9.66	Aga95Sb1.00Te3.09(S2.64Sc0.32)2.96
9	60.9	*	*	7.9	*	*	24.0	5.2	2.2	100.2	Aga.96Sb1.03Te2.99(S2.58Sc0.44)3.02
Среднее	60.7			T.T			24.4	5.2	1.9	6.66	Aga99Sb1.01Tc3.05(S2.57Sc0.38)2.99
7 80	60.32 59.58	0.0 3	1.86 1.81	7.43 7.12	0.06 0.04	0.03	25.16 25.34	6.11 6.04		101.00 100.06	(Aga.77Cu0.01Pb0.14)8.94(Sb0.96A80.01)0.97Te3.10S3.00 (Aga.77Cu0.01Pb0.14)8.92(Sb0.92A80.01)0.93Te3.16S2.99
Среднее	59.95	0.04	1.84	7.28	0.05	0.06	25.25	6.08		100.53	(Ags.78Cu0.01Pb0.14)8.93(Sb0.94As0.01)0.95Te3.13S3.00
При	u c u a H B	IC. AH.	1—6 выпо	инсны	C. M. Ca	ндомирск	той, ан.	7, 8 -	- A. J	И. Цепдн	tizik.

5

Таблица 1

Таблица 2

		ĸ	ellectance da	ata of tsnigri	ite			
) = -		I	п	3		I		
	R 1	R2	<i>R</i> 1	^, 8M	R 1	R ₂	<i>R</i> 1	
420	36.9	32.9	35.4	589	35.7	 31.8	35.5	
440	38.0	33.8	35.9	600	35.3	31.5	35.3	
460	38.0	34.3	36.5	620	34.8	31.4	35.0	
470	38.0	34.2	36.8	640	34.2	30.4	34.8	
480	38.0	34.2	36.9	650	34.0	30.2	34.7	
500	37.6	33.8	37.0	660	33.8	30.0	34.6	
520	37.4	33.3	36.8	680	33.5	29.6	34.5	
540	36.8	32.6	36.5	700	33.1	29.3	34.4	
546	36.6	32.2	36.4	720			34.3	
560	36.3	32.2	36.1	740			34.2	
580	36.0	32.0	357				54.2	

Спектры отражения цнигринта Reflectance data of tanigriite

Примечание. Эталон — WTiC. I — из месторождения Высоковольтное (Тинь-Шань), II — из Бетхуми (Раджастхан, Индия.)

Высоковольтного месторождения (ПМТ-3, 11 замеров при P = 20 гс) составляет 125 кгс/мм² (дисперсия 9, доверительный интервал ± 6 для p = 0.95).

Из предварительно проанализированных на микрозонде зерен под микроскопом был отобран материал для диффракционных исследований: Se-содержащего цнигриита из месторождения Высоковольтное методами микродифракции электронов и порошковой рентгенографии (камера РКД-57.3 мм, Fe_K-излучение), Pb-содержащего цнигриита из Бетхуми — методом порошка (РКД-57.3 мм, Fe_K-излучение). Электронно-микродифракционное изучение проведено на микроскопе JEM-100с при контроле состава с помощью энергодисперсионной приставки Kevex-5100. Под микроскопом наблюдались пластинчатые и неправильной формы частицы (рис. 5), в которых установлены два типа сечений обратной решетки a^*b^* и a^*c^* (рис. 6). Определенные по ним параметры моноклинной элементарной

Таблица З

Результаты расчета порошкограмм цнигринта из южного Тянь-Шаня (1), из Бетхуми (2) и бенлеонардита (3) X-ray powder patterns of tsnigrite from southern Thian-Shan (1), from Bethumi (2) and benleonardite (3)

		1				2		3 (St	anley c. s	., 1986)
I	dana	hkl	dpace	I	dem	hki	dpace.	I	d	hkl
									i l	
	•	•						70	12.7	001
								15	6.62	010
								15	6.34	002
				1	6.09	110	6.049			
				5	4.26	113	4.238			
6	3.82	022	3.811	7	3.78	022, 212	3.814, 3.760			
0.5	3.46	203, 122	3.450, 3.439	1	3.44	122	3.442			
2	3.14	115	3.142	3	3.13	<u>1</u> 15	3.142	30	3.188	021
2	3.02	220, 301	3.021, 2.962	2	2.97	301	2.965			
4	2.89	124, 214	2.883, 2.886	4	2.89	124, 214	2.895, 2.887	100	2.936	022
4	2.83	025	2.829	4	2.84	025	2.830	25	2.863	014
1	2.735	031, 107	2.736, 2.736	2	2.74	<u>0</u> 31	2.739			
1	2.66	224, 313	2.665, 2.660	2	2.68	224	2.667	35	2.608	023
0.5	2.56	303, 107	2.561, 2.551	1	2.55	<u>1</u> 07	2.550	10	2.542	005
0.5	2.32	018	2.322	1	2.35	134	2.354	15	2.376	015
								15	2.453	N. i.
1	2.28	225, 134	2.290, 2.281	4	2.29	225	2.292	20	2.328	220
10	2.22	4 01, 400	2.222, 2.206	10	2.20	400	2.208	10	2.206	030
3	2.14	315	2.140	2	2.14	_ 315	2.141	35	2.158	124
4	2.13	227	2.130	4	2.10	413, 036	2.101, 2.100	20	2.120	006
1	2.06	041, 306	2.061, 2.052	2	2.05	306	2.053	10	2.084	130, 032
2	1.99	141, 316	2.001, 1.992	4	2.00	141	2.004	15	2.020	016
		-						10	1.965	N . i.
				2	1.941	332	1.942			
								15	1.914	N. i.
				1	1.873	41 <u>4</u> , 422	1.873, 1.873			
				2	1.836	407	1.838	15	1.818	007
				4	1.781	415,501	1.782, 1.780	10	1.786	026
				4	1.708	<u>433, 2</u> .0.11	1.709, 1.707			
				4	1.674	434, 2.1.11	1.677, 1.672			
				2	1.646	336, 409	1.649, 1.644			
				2	1.561	1.2.11	1.562	15	1.531	N. i.
				1	1.481	601	1.482			
				2	1.466	534, 4.0.11	1.466, 1.466			
				1	1.408	536	1.408			
				1	1.362	161	1.362			
				2	1.326	450, 623	1.327, 1.325			
				2	1.302	_452, 262	1.302, 1.302			
				1	1.260	456, 0.5.10	1.260, 1.260			
				2	1.240	1.1.15	1.240			
				2	1.210	365	1.210			

Параметры элементарной ячейки

a = 8.89(1), b = 8.292(8),	a = 8.900(2), b = 8.302(3),	a = 6.603(5),
$c = 19.50(1), \beta = 97.02(3)^{\circ}$	$c = 19.49(1), \beta = 97.02(3)^{\circ}$	<i>b</i> =12.726(6)

Примечание. Для ан. 2 условия съемки: камера диамстром 57.35 мм, Feg-излучение; N. i. --линия не индицируется.

Рис. 5. Частицы Se-содержащего цнигринта из месторождения Высоковольтное, исследованные методом микродифракции электронов. Fig. 5. Particles of the Se-bearing tsnigriite from Vysokovoltnoye deposit studied by electron microdiffraction method.

Увсл. 33 000 (а) и 26 000 (б).

Рис. 6. Картины микродифракции электронов Se-содержащего цнигриита. Fig. 6. Electron microdiffraction patterns of Se-bearing tsnigriite a) plane a^*b^* ; b) a^*c^* . a—илоскость обратной решетки a^*b^* , δ —илоскость обратной решетки a^*c^* .

ячейки $a \approx 8.9$, $b \approx 8.3$, $c \approx 19.5$, $\beta \approx 97^{\circ}$. Уточнение полученных параметров решетки по рентгенограммам (табл. 4) дало значения: a=8.89(1), b=8.292(8), c=19.50(1), $\beta = 97.02(3)^{\circ}$ — для Se-содержащего цнигриита; a=8.900(9), b=8.302(3), c=19.49(1), $\beta = 97.02(3)^{\circ}$ — для Pb-содержащего. В последнем случае $V_0=1429.64(2)$ A³, Z = 4, $\rho_{pest} = 7.38$ г/см³, a:b:c=1.0720:1:2.3476. Все линии порошкограмм (табл. 3) хорошо индицируются с рассчитанными значениями параметров моноклинной ячейки и отвечают пространственной группе P2/m или Pm.

В формуле цнигриита Ag₉SbTe₃(S, Se)₃ теллуру отведена самостоятельная позиция, поскольку во всех исследованных образцах соотношение Te: (S+Se) постоянно.

Образцы цнигриита хранятся в Минералогическом музее РАН им. А. Е. Фер-

Список литературы

Karup-Møller S., Pauly H. Galena and assosiated ore minerals from the cryolite at Ivigtut, South Greenland, Copenhagen. Greenland Geoscience 2, 1979. 26p.

Stanley C. J., Crigle A. J., Chisholm J. E. Benleonardite, a new mineral from the Bambolla mine, Moctesuma, Sonora, Mexico//Miner. Mag. 1986. Vol. 50. Pt 4. N 358. P. 681---686.

Центральный научно-исследовательский геологоразведочный институт цветных и благородных металлов Москва

Поступила в редакцию 5 мая 1992 г.