1996 PROCEEDINGS OF THE RUSSIAN MINERALOGICAL SOCIETY Pt CXXV, N4

НОВЫЕ МИНЕРАЛЫ

УДК 549.6

© Д. чл. А. П. ХОМЯКОВ,* Г. Н. НЕЧЕЛЮСТОВ,** Р. К. РАСШВЕТАЕВА***

ПЯТЕНКОИТ-(Y) Na₅(Y, Dy, Gd) TiSi₆O₁₆ · 6H₂O новый минерал1

A. P. KHOMYAKOV, G. N. NECHELYUSTOV, R. K. RASTSVETAEVA PYATENKOITE-(Y) Na.(Y. Dy, Gd) TiSi, O., · 6H, O - A NEW MINERAL

The mineral occurs in the hyperagpaitic pegmatites of the Lovozero alkaline massif (Kola peninsula) where it forms well shaped rhombohedral crystals 0.2-0.5 mm in size. They are colourless, transparent or slightly turbid with strong vitreous lustre. All the necessary data on chemical composition, physical properties and optical features of the mineral are presented in the paper. It is isostructural to sazykinaite-(Y) Na₅YZrSi₆O₁₈.6H₂O and represents the Ti-analogue of the latter. More broadly, this new Na, Y-titanosilicate may be considered as an yttrium-titanum member of the hilairite mineralogical family.

При изучении пегматитовых пород горы Аллуайв Ловозерского щелочного массива (Кольский полуостров) А. П. Хомяковым было обращено внимание на присутствие в них необычного минерала, отличавшегося индивидуальными оптическими свойствами и положительной реакцией на элементы группы редких земель. В результате проведенного авторами детального исследования установлено, что он представляет собой ранее неизвестный щелочной титано-ниобосиликат РЗЭ, в составе которых доминирует иттрий. Новый минерал назван пятенкоитом-(Y) - pyatenkoite-(Y)² в честь Ю. А. Пятенко (род. 1928), известного российского ученого, крупного специалиста в области кристаллохимии минералов (см., например, Пятенко, 1972, 1983; Пятенко и др., 1976). Комплексом методов, включая рентгеноструктурный анализ (см. ниже), доказана принадлежность пятенкоита-(Y) к кристаллохимическому семейству илерита (табл. 1) и установлена его изоструктурность сазыкинаиту-(Y) Na₅YZrSi₆O₁₈ · 6H₂O, недавно описанному в Хибинах (Хомяков и др., 1993).

^{*} Институт минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ), 121357, Москва,

ул. Вересаева, 15. ** Всероссийский научно-исследовательский институт минерального сырья (ВИМС), 109017, Москва, Старомонетный пер., 31.

^{**} Институт кристаллографии РАН, Москва.

¹ Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 93-05-8694).

² Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества 18 июля 1995 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 22 декабря 1995 г. В более ранней публикации (Khomyakov, 1995) пятенкоит-(Y) условно обозначен как М67.

Таблица 1

Минерал	Пятен- коит-(Y)	Сазыки- наит-(Y)	Илерит	Кальцио- илерит	Комковит	
Формула	Na ₅ YTiSi ₆ • O ₁₈ • 6H ₂ O	$\begin{array}{c} Na_{5} YZ_{7}Si_{6} \\ O_{18} \cdot 6H_{2}O \end{array}$	Na ₂ ZrSi ₃ O ₉ · 3H ₂ O	CaZrSi ₃ O ₉ • 3H ₂ O	BaZrSi 309. 3H20	
Сингония, пр. группа а, Å с, Å V, Å ³ Z	Тригональ- ная, R32 10.696 15.728 1558 3	Тригональ- ная, R32 10.825 15.809 1604 3	Тригональ- ная, R32 10.556 15.851 1530 6	Тригональ- ная, R32 20.870 16.002 6036 12	Тригональ- ная, РЗ 10.526 15.736 1510 6	
Наиболее интенсивные линии, d(l)	5.99 (60) 3.21 (100) 3.093 (40) 2.990 (85) 2.661 (40) 1.998 (55)	6.03 (32) 5.40 (63) 3.236 (84) 3.127 (88) 3.030 (100) 1.805 (21)	6.00 (60) 5.28 (100) 3.168 (50) 3.046 (40) 2.294 (30) 1.759 (40)	5.23 (100) 3.14 (14) 3.02 (34) 1.817 (31) 1.671 (17) 1.668 (15)	5.23 (10) 3.59 (8) 3.02 (8) 2.96 (9) 2.57 (6) 2.106 (6)	
2V n _e n _o D, г/см ³	0 () 1.607 1.612 2.68	0 () 1.578 1.585 2.67	0 () 1.596 1.609 2.742	0 () 1.619 1.622 2.68	0 () 1.644 1.671 3.31	

Сравнение пятенкоита-(Y) с ближайшими аналогами Comparison of pystenkoite-(Y) with nearest analogues

В районе горы Аллуайв Ловозерского массива широко развиты ультраагпаитовые пегматиты и гидротермалиты - существенно новый тип пегматоидных образований, резко пересыщенных щелочными, летучими и редкими элементами, для которых характерно чрезвычайное разнообразие минеральных видов (Хомяков, 1990; Khomyakov, 1995). Описываемый минерал встречен в кавернозной, гидротермально измененной пегматитовой породе в виде изометричных кристалликов, нарастающих на стенки пустот и трещин в ломоносовите. В ассоциации с ним отмечены также альбит, натролит, тетранатролит, эгирин, нептунит и флюорит.

Кристаллы пятенкоита размерами 0.2–0.5 мм в поперечнике имеют форму ромбоэдров, образованных комплексом граней (0112). Наряду с изолированными индивидами встречены сростки кристаллов размером до 1 мм. Минерал бесцветный, прозрачный или мутноватый из-за наличия газово-жидких включений. Блеск сильный, стеклянный. Спайность несовершенная по (0112). Хрупкий. Излом ступенчатый. Твердость 4–5 по шкале Мооса. Плотность измеренная (погружением в тяжелые жидкости) равна 2.68 (5) г/см³, вычисленная для эмпирической формулы 2.70 г/см³. Оптически одноосный, отрицательный. Показатели преломления определены иммерсионным методом $n_e = 1.607$ (2), $n_o = 1.612$ (2). Минерал инертен в воде, но легко разлагается при комнатной температуре 10 %-ными HCl и HNO₃.

ИК-спектр пятенкоита (рис. 1) содержит следующий набор полос поглощения: 411, 431, 464, 500, 571, 601, 720, 753, 911, 983, 1014, 1032, 1109 и 1159 см⁻¹. По общему характеру он весьма близок к спектрам сазыкинаита, илерита и комковита (Волошин и др., 1990; Хомяков и др., 1993).

Рентгенограмма порошка пятенкоита по общему характеру также близка к рентгенограмме сазыкинаита (табл. 2). Отметим, что при визуальном сопоставлении дебаеграмм, полученных при одинаковых условиях съемки, в глаза бросается прежде всего рентгенографическое сходство пятенкоита и сазыкинаита, тогда

73

как их различия проявлены гораздо менее отчетливо, чем это следует из данных табл. 2, полученных разными методами и на разном излучении.

Химический состав пятенкоита изучен Г. Н. Нечелюстовым на рентгеновском микроанализаторе Superprobe-733. Анализировался состав шести зерен. В связи с нестабильностью минерала под зондом измерение интенсивностей проводилось расфокусированным пучком (~5 мкм) при непрерывном перемещении образца. В качестве стандартов использовались чкаловит (Na, Si), микроклин (K) и искусственные соединения: Y₂SiO₅ (Y), ортофосфаты индивидуальных лантаноидов (La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), ThO₂ (Th), ZrSiO₄ (Zr), TiO₂ (Ti), LiNbO3 (Nb). Приведенный в табл. 3 усредненный состав проанализированных зерен дополнен содержанием воды, вычисленным из структурной формулы минерала (см. ниже). Полученные результаты пересчитываются при О = 18 (в безводной части) на эмпирическую формулу (Na_{4.70}K_{0.03})_{4.73}(Y_{0.50}Dy_{0.11}Gd_{0.08}, прочие_{0.23})_{0.92} ($Ti_{0.86}$ Nb_{0.17}Zr_{0.03})_{1.06} Si_{6.03}O₁₈ · 6H₂O, где прочие – Sm_{0.55}Er_{0.041} · Nd_{0.030}Eu_{0.026} Tb_{0.019} Ce_{0.018} Ho_{0.011} Yb_{0.006}La_{0.005} Tm_{0.005} Th_{0.012}. Общая формула минерала (Na, K)₅(Y, Dy, Gd...)(Ti, Nb, Zr)Si₆O₁₈ · 6H₂O. Идеализированная формула Na₅YTiSi₆O₁₈ · 6H₂O. Последняя может быть выведена (1) из удвоенной формулы илерита Na₄Zr₂Si₆O₁₈ · 6H₂O путем замещения одного атома циркония на иттрий с компенсацией зарядов по схеме Y³⁺ + Na⁺ = Zr⁴⁺ и с параллельным замещением второго атома циркония титаном; другой вид формулы (2) выведен из формулы сазыкинаита Na₅YZrSi₆O₁₈ · 6H₂O путем замещения циркония титаном. Как и в сазыкинаите, в изученном минерале существенная часть иттрия замещена тяжелыми лантаноидами, состав которых характеризуется отчетливо выраженным "центральным" (Dy, Gd)-максимумом.

Рентгеноструктурное исследование пятенкоита выполнено Р. К. Расцветаевой. С помощью монокристального автодифрактометра Энраф-Нониус установлена его принадлежность к тригональной (ромбоэдрической) системе, пространственная группа R32. Параметры элементарной ячейки в гексагональных осях: *a* = 10.696 (5),

74

Таблица 2

Результаты расчета рентгенограммы порошка пятенкоита-(Y) (1) и сазыкинанта-(Y) (2)

X-ray powder diffraction data for pyatenkoite-(Y) (1) and saxykinaite-(Y) (2)

1				2		
Ι	d _{эксп}	d _{выч}	hkl	I	d _{эксп}	hkl
60	5.99	5.995	012	32	6.03	012
30	5.36	5.348	110	63	5.40	110
-	-	-		2	3.776	113
-	-	-	-	4	3.645	104
20	3.43	3.417	211	3	3.453	211
100	3.21	3.198	122	84	3.236	122
40	3.093	3.088	300	88	3.127	300
85	2.990	2.998	024	100	3.030	024
40	2.661	2.674	220	19	2.708	220
		2.660	033			
20	2.608	2.615	214	8	2.641	214
		2.602	205			
-		-	-	3	2.565	131
5	2.439	2.442	312	9	2.472	312
-	- '	-	-	4	2.407	223
22	2.353	2.354	116	5	2.371	116
10	2.210	2.221	042	7	2.248	042
24	2.148	2.151	134	14	2.175	134
-	-	-	_	2	2.134	321
10	2.050	2.052	232	13	2.077	232
-	-	-	-	10	2.046	410
55	1.998	1.998	306	18	2.018	306, 404
	1.881	1.891	217	3	1.909	143
35ш	1	1.886	143	1 10	1 000	200 204
C	1.870	1.872	226	13	1,890	220, 324
	1 000	1.870	324		1 925	200 502
12	1.808	1.810	208	4	1.825	208, 502
24	1.701	1.705	330	- 21	1.005	350
5	1./40	1.740	241		1	
10	1 710	1.740	1291	11	1 730	128 422
10	1./12	1 709	120		1.750	120, 422
26	1 676	1.676	054	12	1.696	054
20	1.678	1 654	511	12	1.050	0.54
5	1.040	1.628	152	4	1.648	152
26	1 598	1.601	416	7	1.618	244
20	1.550	1 600	244			2
C	1.556	1.561	318	2	1,577	318
10,,,,,)	1000	1.544	1.0.10	5	1.564	131, 600
/	1,532	1.532	514	4	1.549	514
_ `		_		5	1.514	342
44111	1,481	1.483	520	13	1.503	520
		1.481	603			
		1.474	336	5	1.491	336
22	1.436	1.443	238	2	1.458	238
(1		11 -		

1			2			
Ι	d _{эксп}	d _{выч}	• hkl	Ι	d _{эксп}	hkl
		1.435	2.1.10	3	1.447	2.1.10, 057
-	_	-	-	2	1.437	434
5	1.389	1.390	612	4	1.407	612
18	1.349	1.348	508	3	1.362	508, 125
		1.341	1.3.10	3	1.354	1.3.10, 440
22	1.331	1.330	606	6	1.346	606, 164
10	1.305	1.305	532	3	1.321	532, 072
		1.301	4.0.10			
15	1.266	1.268	262	4	1.283	262, 158
		1.264	3.2.10		•	1
30	1.254	1.254	704			
		1.254	354			
5	1.221	1.221	624			
10	1.208	1.206	3.0.12			
10	1.193	1.195	173			
		1.191	446			
10	1.169	1.170	2.4.10			
	[1.167	630			
5	1.156	1.157	609			
10	1.142	1.143	5.1.10			
		1.140	357			
30	1.115	1.115	0.1.14			
		1.115	627			
		1.111	716			
		1.111	684			
20	1.098	1.098	538			
	ļ	1.098	078			
25	1.067	1.070	550			
		1.066	636			
10	1.051	1.051	1.6.10			
12	1.030	1.029	1.3.14			
	1	1.029	900	11		
15	1.012	1.013	3.5.10			
	Į	1.011	820			
15	0.995	0.995	2.4.13	1		
		0.995	6.2.10	li I		

Таблица 2 (продолжение)

Примечание. Условия съемки: 1 — камера РКД 57.3 мм, Fe_{K_{α, β}-излучение. Индексы линий прокорректированы по массиву отражений от монокристалла, полученному на автодифрактометре Энраф-Нониус (данные настоящей работы); 2 — дифрактометр, Cu_{K_α}-излучение; ш — широкая линия (Хомяков и др., 1993).}

c = 15.728 (6) Å, V = 1558 (2) Å³, Z = 3. Кристаллическая структура изучена по 329 независимым отражениям до R-фактора 3.7%. Кристаллохимическая формула минерала Na₂(Na_{2.75}K_{0.05})[(Y_{0.5}Dy_{0.3}Gd_{0.2})(Ti_{0.8}Nb_{0.2})(Si₆O₁₈)] · 6H₂O отражает наличие в структуре (рис. 2) двух независимых позиций щелочных катионов и двух разных типов М-октаэдров; квадратными скобками выделен смешанный каркас из винтовых цепочек (Si₃O₉), объединенных вершинами Y- и Ti-октаэдров. Каркас пронизан крупными пустотами и каналами, в которых локализуются щелочные катионы и молекулы воды.

76

=

Компонент	Содержание	O = 18
Na ₂ O	17.25 (16.8-18.0)	4.696
K,Ō	0.14 (0.1-0.3)	0.025
Y20,	6.64 (6.2-8.3)	0.496
La ₂ O ₃	0.10 (0.0-0.2)	0.005
Ce ₂ O ₃	0.34 (0.2-0.5)	0.018
Nd ₂ O ₃	0.60 (0.4-0.8)	0.030
Sm ₂ O ₃	1.14 (0.5–1.9)	0.055
Eu ₂ O ₃	0.54 (0.3-0.9)	0.026
Gd ₂ O ₃	1.78 (1.2-2.5)	0.083
Tb ₂ O ₃	0.40 (0.3-0.5)	0.019
Dy_2O_3	2.39 (2.2-2.6)	0.108
Ho ₂ O ₃	0.24 (0.2-0.3)	0.011
Er ₂ O ₃	0.94 (0.9-1.1)	0.041
Tm ₂ O ₃	0.08 (0.0-0.1)	0.005
Yb ₂ O ₃	0.14 (0.1-0.2)	0.006
ThO ₂	0.36 (0.1-0.8)	0.012
SiO ₂	42.96 (41.9-43.7)	6.032
ZrO ₂	0.38 (0.1-0.7)	0.026
TiO ₂	8.16 (7.7-8.6)	0.861
Nb ₂ O ₅	2.68 (2.3-3.1)	0.170
H₂O	12.82	6.000
Сумма	100.08	

Таблица 3 Химический состав (мас. %) пятенкоита-(Y) Chemical composition (wt. %) of pyatenkoite-(Y)

Примечание. Микрозонд. Аналитик Г. Н. Нечелюстов. В скобках — пределы вариаций по данным анализа шести зерен. Содержание воды рассчитано из структурной формулы.

Сопоставление пятенкоита с сазыкинаитом (Расцветаева, Хомяков, 1992; Хомяков и др., 1993) свидетельствует об их полной изоструктурности. Оба минерала принадлежат структурному семейству илерита (Илюшин и др., 1981), в которое входят также кальциоилерит CaZrSi₃O₉ · 3H₂O (Boggs, Russel, 1988) и комковит BaZrSi₃O₉ · 3H₂O (Волошин и др., 1990; Соколова и др., 1991). От указанных аналогов пятенкоит и сазыкинаит отличаются прежде всего наличием вместо одной циркониевой (Zr-O = 2.00-2.10 Å) двух разнообъемных позиций "цветных" катионов – более крупной иттриевой (Y-O = 2.26 Å) и более компактной титано-циркониевой (Ti-O = 1.95 Å, Zr-O = 2.08 Å). Это определяет заметное увеличение параметра *а* и мольных объемов РЗЭ-представителей (табл. 1). В сравнении с "чисто циркониевыми" аналогами пятенкоит и сазыкинаит характеризуются более высоким содержанием щелочей (Na : M = 2.5 вместо 2), что объясняется практически полной заселенностью в них Na₁- и Na₂-позиций.

Выше уже обращалось внимание на сходство пятенкоита и сазыкинаита в отношении состава РЗЭ – доминирующую роль иттрия и наличие исключительно редко отмечающегося в минералах Dy, Gd-максимума лантаноидов, что резко контрастирует с общей лантано-цериевой специализацией пород и минералов Хибино-Ловозерского комплекса в целом. Необычная близость составов РЗЭ двух минералов из разных массивов коррелирует со стабильной величиной среднего межатомного расстояния (Y, PЗЭ)-О в кристаллических структурах пятенкоита (2.256 Å) и сазыкинаита (2.260 Å) и может служить иллюстрацией важной роли

Рис. 2. Кристаллическая структура пятенкоита-(Y) в проекции на (0001).

Черным выделены (Y, REE)-октаэдры, линейной штриховкой – (Ti, Nb)-октаэдры, гочечной штриховкой – Si-тетраэдры; кружками обозначены позиции Na.

Fig. 2. Crystal structure of pyatenkoite-(Y) projected on (0001).

кристаллохимического фактора в дифференциации редких земель (Хомяков, 1967).

Пятенкоит-(Y) – гидротермальный минерал, образующийся на конечных

стадиях формирования ультраагпаитовых пегматитов и гидротермалитов при кристаллизации остаточных силикатно-солевых жидкостей, аномально обогащенных щелочными, летучими и редкими элементами. Одним из результатов этих процессов является интенсивное фракционирование редких земель с появлением в продуктах конечной кристаллизации не свойственных более высокотемпературным ассоциациям минералов иттрия и тяжелых лантаноидов, в том числе таких как сазыкинаит-(Y), шомиокит-(Y), минеевит-(Y) и ряд других (Хомяков и др., 1992a, б; Khomyakov, 1993; 1995).

Известно (Пятенко и др., 1976; Воронков и др., 1978), что, несмотря на близость ионных радиусов и химических свойств Ті и Zr, кристаллохимическая роль этих ближайших по подгруппе соседей Периодической системы существенно различна. Это проявляется, в частности, в тенденции Тi-октаэдров к взаимной ассоциации и Zr-октаэдров к взаимной изолированности в кристаллических структурах природных и искусственных соединений. Данное обстоятельство существенно ограничивает изоморфную смесимость указанных элементов и объясняет, почему лишь небольшое число циркониевых минералов, например эвдиалит, ловенит, цирсиналит и ловозерит, имеет титановые аналоги. Обнаружение пятенкоита и сазыкинаита увеличивает число примеров изоструктурных Ti- и Zr-силикатов с нежестким каркасом, допускающим сравнительно широкие вариации химического состава, что делает перспективным дальнейшее пополнение семейства илерита новыми, в том числе существенно титановыми, представителями.

Эталонный собразец пятенкоита-(Y) передан в Минералогический музей имени А. Е. Ферсмана, Москва. Регистрационный номер 1602/1.

Авторы выражают благодарность Г.К.Кривоконевой и Н.В.Чуканову за помощь в получении некоторых важных характеристик изученного минерала.

Список литературы

Волошин А. В., Пахомовский Я. А., Меньшиков Ю. П. и др. Комковит — новый водный бариевый цирконосиликат из карбонатитов Вуориярви (Кольский полуостров) // Минер. журн. 1990. Т. 12. № 3. С. 69—73.

Воронков А. А., Шумяцкая Н. Г., Пягенко Ю. А. Кристаллохимия минералов циркония и их искусственных аналогов. М.: Наука, 1978. 182 с.

Илюшин Г. Д., Воронков А. А., Невский Н. Н. и др. Кристаллическая структура илерита Na₂ZrSi₃O₉· 3H₂O // Докл. АН СССР. **1981.** Т. 260. № 5. С. 1118–1120.

Пятенко Ю. А. О едином подходе к анализу локального баланса валентностей в неорганических структурах // Кристаллография. 1972. Т. 17. Вып. 4. С. 773—779.

Пятенко Ю. А. Минералогически вероятные и маловероятные кристаллические структуры // Изв. АН СССР. Сер. геол. 1983. № 8. С. 3—9.

Пятенко Ю. А., Воронков А. А., Пудовкина З.В. Минералогическая кристаллохимия титана. М.: Наука, 1976. 155 с.

Расцветаева Р. К., Хомяков А. П. Кристаллическая структура редкоземельного аналога илерита // Кристаллография. 1992. Т. 37. Вып. 6. С. 1561-1563.

Соколова Е. В., Аракчеева А. В., Волошин А. В. Кристаллическая структура комковита // Докл. CCCP. 1991. T. 320. Nº 6. C. 1384.

Хомяков А. П. О роли химического и кристаллохимического факторов в распределении редких земель // Геохимия. 1967. № 2. С. 197-205.

Хомяков А. П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

Хомяков А. П., Шумяцкая Н. Г., Полежаева Л. И. Шомиокит-(Y) Na₃Y(CO₃)₃·3H₂O - новый минерал // ЗВМО. 1992а. № 6. С. 129-132.

Минерал // ЗБМО. 1992я. № 6. С. 129–132. Хомяков А. П., Полежаева Л. И., Ямнова Н. А., Пущаровский Д. Ю. Минеевит-(Y) Na₂₅Ba(Y, Gd, Dy)₂(CO₃)₁₁(HCO₃)₄(SO₄)₂F₂Cl – новый минерал // ЗВМО. 19926. Вып. 6. С. 138–143. Хомяков А. П., Нечелюстов Г. Н., Расцветаева Р. К. Сазыкинаит-(Y) Na₅YZrSi₆O₁₈. 6H₂O – новый минерал // ЗВМО. 1993. Вып. 5. С. 76–82.

Boggs Russell C. Calciohilairite CaZrSi $_{3}O_{9} \cdot 3H_{2}O_{3}$, the calcium analogue of hilairite from the Golden Horn Batholith, hothern Cascades, Washington // Amer. Miner. 1988. Vol. 73. N 9-10. C. 1191-1194.

Chao G. Y., Watkinson D. H., Chen T. T. Hilairite, Na 22rSi 309 • 3H 20, a new mineral from Mont St. Hilaire, Quebec, Canada // Canad. Miner. 1974. Vol. 12. Part 4. C. 237-240.

Khomyakov A. P. The mineralogy of REE in hyperagpaitic pegmatites // Rare Earth Minerals: Chemistry Origin and Ore Deposits. 1 and 2 April. 1993. Abstracts. The Natural History Museum, London, P. 56.

Khomyakov A. P. Mineralogy of hyperagpaitic alkaline rocks. Oxford: Clarendon Press, 1995. 224 p.

Поступила в редакцию 6 марта 1996 г.

УПК 549.6

3BMO. № 4. 1996 г. Proc. RMS, N 4, 1996

© Д. чл. А. П. ХОМЯКОВ, * А. РОБЕРТС, ** д. чл. Г. Н. НЕЧЕЛЮСТОВ, *** Н. А. ЯМНОВА.**** Л. Ю. ПУШАРОВСКИЙ****

ИНТЕРСИЛИТ Na₆MnTi[Si₁₀O₂₄(OH)](OH)₃·4H₂O ~ новый минерал с новым типом ленточно-слоистого КРЕМНЕКИСЛОРОДНОГО РАДИКАЛА1

A. P. KHOMYAKOV, A. ROBERTS, G. N. NECHELYUSTOV, N. A. YAMNOVA, D. Yu. PUSHCHAROVSKY. INTERSILITE Na 6 MnTi[Si10 024 (OH)](OH) 3.4H2O -THE NEW MINERAL WITH A NEW TYPE OF THE BAND-LAYERED SILICON-OXYGEN RADICAL

The mineral occurs in the hyperagoaitic pegmatites of the Lovozero alkaline massif (Kola peninsula), where it forms irregular grains 1-2 mm in size. Its colour is bright yellow, rarely pinkish-yellow or pink; translucent, transparent in fine fragments; lustre vitrous to greasy. All the necessary data on chemical composition, optic features and physical properties of the mineral are presented in the paper. Its structural formula is (Na, K)Na₅MnTi[Si₁₀O₂₄(OH)](OH)₃·4H₂O. Intersilite is considered as a silicate of the intermediate type: with crystal structure combining features of the layer and band structural arrays.

79

^{*} Институт минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ), 121357, Москва, ул. Вересаева, 15.

^{**} Геологическая служба Канады, Оттава.

^{***} Всероссийский научно-исследовательский институт минерального сырья (ВИМС), 109017, Москва, Старомонетный пер., 31.

^{****} Московский университет, 119899, Москва, Воробьевы горы.

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества 18 июля 1995 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 22 декабря 1995 г. В более ранней публикации (Khomyakov, 1995) интерсилит условно обозначен как М66.