Список литературы

Дусматов В. Д. К минералогии одного из массивов щелочных пород // Щелочные породы Киргизии и Казахстана. Фрунзе, **1968.** С. 134—135.

Паутов Л. А., Агаханов А. А., Соколова Е. В., Игнатенко К. И. Дусматовит — новый минерал группы миларита // Вестн. МГУ. Сер. 4. Геология. **1996.** № 2. С. 54—60.

Семенов Е. И., Дусматов В. Д., Хомяков А. П., Воронков А. А., Казакова М. Е. Дарапиозит — новый мннерал группы миларита // ЗВМО. 1975. Вып. 5. С. 583—585.

Семенов Е. И., Дусматов В. Д. К минералогии шелочного массива Дара-и-Пиоз (Центральный Таджикистан) // Докл. АН ТаджССР. 1975. Т. 18. № 11. С. 39—41.

Belakovskiy D. I. Die seltenen Mineralien von Dara-i-Pioz im Hochgebirge Tadshikistans // Lapis. 1991. Bd 16(12). S. 42-48.

Grew E. S., Belakovskiy D. I., Fleet M. E., Yates M. G., McGee J. J., Marquez N. Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan // Eur. J. Miner. 1993. Vol. 5. P. 971-984.

Поступила в редакцию 22 декабря 1997 г.

УДК 549.6

3BMO, № 4, 1998 г. Proc. RMS, N 4, 1998

© Д. чл. А. П. ХОМЯКОВ,* Дж. ФЕРРАРИС,** Е. БЕЛЛУЗО,** С. Н. БРИТВИН,*** д. чл. Г. Н. НЕЧЕЛЮСТОВ,**** д. чл. С. В. СОБОЛЕВА*****

СЕЙДИТ-(Се) Na₄SrCeTiSi₈O₂₂F · 5H₂O — НОВЫЙ МИНЕРАЛ С ЦЕОЛИТНЫМИ СВОЙСТВАМИ¹

A. P. KHOMYAKOV, G. FERRARIS, E. BELLUSO, S. N. BRITVIN, G. N. NECHELYUSTOV, S. V. SOBOLEVA. SEIDITE-(Ce), Na4SrCeTiSi8O22F 5H2O, A NEW MINERAL WITH ZEOLITIC PROPERTIES

* Институт минералогии, геохимии и кристаллохимии редких элементов, 121357, Москва, ул. Вересаева, 15 ** Туринский университет, 1-10125, Турин *** Минералы Лапландии ЛТД, 184200, Апатиты, ул. Ферсмана, 14 **** Всероссийский институт минерального сырья, 109017, Москва, Старомонетный пер., 31 ***** Институт геологии рудных месторождений, петрографии, минералогии и геохимии,

109017, Москва, Старомонетный пер., 35

The mineral has been found in ultraagpaitic pegmatites of Lovozersky alkaline massif (Kola peninsula). It forms radially fibrous aggregates up to 0.5—1.0 cm in diameter. Hardness 3—4; density 2.76 g/cm³. Optically biaxial negative, $n_p = 1.542$, $n_m = 1.569$, $n_e = 1.571$, $2V = 28^{\circ}$. Monoclinic, C2/c. Unite cell parameters: a = 24.74(1), b = 7.186(3), c = 14.47(2)A, $\beta = 95.25(10)^{\circ}$, Z = 4. The composition (by microprobe analysis) closely corresponds to the idealized formula: Na₄SrCeTiSi₈O₂₂F · 5H₂O. The mineral readily exchanges cations with solutions of various salts. The strongest lines on the X-ray powder diffraction pattern: 12.32(100), 3.220(8), 3.104(24), 3.081(16), 3.058(12), 2.705(10). A structural model explaining the zeolitic and other properties of the mineral is presented in the paper also.

Описываемый ниже натрий-стронций-редкоземельный титаносиликат обнаружен А. П. Хомяковым и С. Н. Бритвиным в пегматитовой жиле Юбилейной на горе Карнасурт Ловозерского щелочного массива (Кольский полуостров, Россия) и назван сейдитом-(Се) (seidite-Ce) по расположенному в центре массива Сейдозеру. В более ранних публикациях (Хомяков, 1990; Khomyakov, 1995) этот минерал условно обозначен как M31. В первой из цитируемых работ на основании результатов мокрого химического анализа минералу была приписана формула Na₃CeTiSi₆O₁₇ · 5H₂O. В результате всесторонних исследований авторами установлена способность сейдита легко обмениваться

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества 13 мая 1993 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 5 ноября 1997 г.

Fig. 1. Thermal patterns of seidite-(Ce). Weighed portion 161 mg.

катионами с растворами различных солей, сближающая данный минерал с типичными цеолитами, и построена структурная модель, объясняющая его уникальные свойства.

Жила Юбилейная — одно из крупнейших пегматитовых тел ультраагпаитового типа (Хомяков, 1990; Khomyakov, 1995), в котором разными исследователями установлено в общей сложности около 50 минералов, большей частью весьма редких или представляющих собой совершенно новые виды, такие как борнеманит, витусит, зорит, ильмайокит, лапландит, ловдарит, пенквилксит и сажинит. Почти все эти минералы концентрируются в центральной зоне тела, сложенной кавернозным натролитом, катаклазированным микроклином, магнезиоарфведсонитом, а также серандитом, манганнептунитом, стенструпином, беловитом, лейкосфенитом, сфалеритом и др.

Сейдит-(Се) образует сферолиты диаметром от первых мм до 0.5-1 см, спорадически рассеянные в массе кавернозного натролита. Наряду с одиночными сферолитами отмечаются агрегаты плотно сросшихся сферолитов и тесные срастания сейдита с другими редкоземельными минералами — беловитом, витуситом, сажинитом и стенструпином, а также с манганнептунитом, серандитом, лейкосфенитом, безжелезистым светло-желтым сфалеритом. Сферолиты сейдита имеют радиально-лучистое строение и состоят из отдельных игл или волокон толщиной порядка 0.01-0.05 мм, удлиненных вдоль оси *b* и уплощенных по (100).

Минерал светло-желтый, розовато-желтый или кремовый. Просвечивает, под микроскопом прозрачный. Блеск стеклянный, шелковистый, у отдельных разновидностей восковой или землистый. Излом волокнистый или занозистый. Спайность совершенная по {100}, менее совершенная по {001}. Твердость 3—4 по шкале Мооса. Плотность, определенная объемометрическим методом (в этиловом спирте), равна 2.76 г/см³, вычисленная для эмпирической формулы — 2.75 г/см³. Оптически двуосный, отрицательный. Показатели преломления определеный на федоровском столике, 28(1)°, значение, вычисленное по показателям преломления, составляет 31°. Удлинение волокон положительное. Ориентировка оптической индикатрисы: $a \approx N_p$, $b = N_g$, $c \approx N_m$. В ультрафиолетовых лучах не люминесцирует.

Согласно результатам термического анализа (рис. 1), потеря массы минерала, прокаленного до 1000 °C, составляет 11.1 %, что близко соответствует содержанию в нем воды, по данным химического анализа (10.8 %). Кривая ДТА фиксирует на-

Рис. 2. ИК-спектр поглощения сейдита-(Се). Fig. 2. IR absorption spectrum of seidite-(Се).

личие одного сильного (180 °C) и нескольких слабых (650, 740 и 840 °C) эндотермических эффектов. Сильный эндоэффект сопряжен с минимумом на кривой ДТГ и обусловлен дегидратацией минерала, а слабые, очевидно, связаны с его инконгруентным плавлением. Основная часть потери массы (8.2 %) приходится на интервал 20—200 °C, что указывает на преимущественно молекулярную форму воды и ее относительно слабую связь с кристаллической структурой. Дополнительно по кривым ТГ установлено, что минерал, прогретый до 300 °C, практически полностью регидратируется менее чем за сутки в атмосфере сухого комнатного воздуха. При прогревании образцов до 500 °C их способность к регидратации существенно ослабляется.

ИК-спектр сейдита индивидуален и характеризуется следующим набором частот поглощения (рис. 2): 3525—3430, 3280пл, 1637, 1115, 1020пл, 991, 916, 712, 692, 640, 620пл, 522, 500, 485пл, 430пл и 416 см⁻¹. Спектр образца, предварительно обезвоженного при 300 °С, идентичен приведенному на рис. 2, в том числе и в отношении пиков 3525—3430, 3280пл и 1637 см⁻¹, в основном связанных с присутствием в структуре минерала молекулярной воды. Это в сочетании с приведенными выше данными дифференциально-термического анализа однозначно доказывает, что изученный минерал обладает обратимой гидратацией, свойственной типичным цеолитам.

При комнатной температуре минерал легко разлагается 10%-ными HCl и HNO₃, а также активно взаимодействует с водой. Водная вытяжка дает ультращелочную реакцию с фенолфталеином, а у обработанного водой минерала заметно снижаются показатели преломления. Еще более резкое снижение показателей преломления отмечается при обработке минерала водными растворами лимонной кислоты. Судя по контрольным ИК-спектрам, кристаллическая структура минерала при этом в основном сохраняется, но наблюдается существенное смещение большинства полос поглощения в высокочастотную область. Это может указывать на повышение степени полимеризации кремнекислородного радикала в результате удаления из каркаса структуры сеток Ti-октаэдров (см. ниже).

Химический состав минерала исследован Г. Н. Нечелюстовым на рентгеновском микроанализаторе Superprobe-733 в автоматическом режиме по программе FZAFO. Режим зонда: 20 кВ, 15 нА, продолжительность счета 20 с. В связи с нестабильностью минерала под зондом съемка производилась широким пучком (10—15 мкм) при непрерывном перемещении препарата. Анализировался состав пяти зерен с использованием следующих стандартов: чкаловит (Na, Si), микроклин (K), диопсид (Ca), Sr-апатит (Sr), барит (Ba), родохрозит (Mn), альмандин (Fe), анатаз (Ti), искусственные соединения LaPO₄ (La), CePO₄ (Ce), PrPO₄ (Pr), NdPO₄ (Nd), SmPO₄

(Sm), ThO₂ (Th) и LiNbO₃ (Nb). Содержания воды и фтора определены методами «мокрой» химии. Закисная форма железа принята условно. При выводе формулы минерала из полученных результатов принята во внимание его принадлежность к цепочечно-трубчатым пироксеноидам типа мизерита (см. ниже), а также использованы данные о химическом составе нескольких попутно проанализированных разновидностей сейдита. Так, сравнение изученного образца с существенно гидратированных разновидностью ($H_2O = 13.8$, $Na_2O = 5.7$ мас. %) показывает, что каждый удаляемый при гидратации атом Na компенсируется вхождением в структуру минерала примерно утроенного числа протонов, что говорит о вероятном участии в данном замещении ионов оксония, обменивающихся на натрий по схеме Na⁺ = H_3O^+ . С учетом этих и некоторых других данных результаты анализа сейдита (табл. 1) пересчитываются при Si = 8 на эмпирическую формулу (Na_{3.19}Ca_{0.19}(H₃O)_{0.62})_{2.4.00} · (Sr_{0.53}K_{0.27}Ba_{0.11}(H₃O)_{0.09})_{2.1.00}(Ce_{0.42}La_{0.30}Nd_{0.10}Pr_{0.04}Sm_{0.02}Th_{0.12})_{2.0.99}(Ti_{0.86}Nb_{0.06}Mn_{0.05} · Fe_{0.02})_{2.0.99}Si₈O_{21.90}(F_{0.84}OH_{0.16}) · 5.26H₂O \approx Na₄(Sr,K,Ca,Ba) (Ce,La,Th) (Ti,Nb)Si₈O₂₂ · (F, OH) · 5H₂O. Идеализированная формула Na₄SrCeTiSi₈O₂₂F · 5H₂O.

Рентгенограмма порошка минерала индивидуальна (табл. 2).

Микроскопические размеры индивидов, слагающих сферолиты сейдита, исключали применимость к его изучению методов монокристального рентгеноструктурного анализа. Этот пробел удалось, однако, в значительной мере восполнить результатами электронно-микроскопического исследования минерала, полученными в Туринском университете под руководством проф. Дж. Феррариса. Сопоставление геометрии электронных микродифракций от ориентированных частиц минерала с данными порошковой рентгенодифрактометрии дало возможность определить основные характеристики элементарной ячейки сейдита, а также выявить его кристаллохимическую близость к цепочечно-трубчатым пироксеноидам с волластонитовым периодом *b* 7.2 Å и мизеритовым соотношением Si : O = 8 : 22. Установлена принадлежность сейдита к моноклинной системе, пространственная группа C2/c. Параметры элементарной ячейки, уточненные по рентгенограмме порошка, имеют следующие значения: a = 24.74(1), b = 7.186(3), c = 14.47(2) Å, $\beta = 95.25(10)^\circ$.

В итоге комплексного исследования авторами построена структурная модель сейдита, детальное обсуждение которой будет дано в отдельном сообщении. Согласно полученным данным, основу структуры сейдита составляют вытянутые вдоль [010] трубчатые цепочки из восьмичленных кремнекислородных колец, аналогич-

Таблица 1

Компонент	Содержание в пяти зернах		C:0	Varmarian	Содержание в пяти зернах		c:_0
	пределы вариаций	среднее	31-8	KOMIIOHEHT	пределы вариаций	среднее	
Na ₂ O	7.2-11.8	9.38	3.19	Nd ₂ O ₃	1.4-1.8	1.60	0.10
K ₂ O	1.0-1.4	1.20	0.27	Sm ₂ O ₃	0.1-0.3	0.16	0.01
CaO	0.9-1.2	1.04	0.19	ThO ₂	2.3-3.5	2.96	0.12
SrO	4.9-5.5	5.20	0.53	SiO ₂	45.2-46.1	45.62	8.00
BaO	1.0-2.0	1.56	0.11	TiO ₂	6.2-7.1	6.54	0.86
MnO	0.3-0.4	0.34	0.05	Nb ₂ O ₅	0.6-1.0	0.78	0.06
FeO	0.1-0.1	0.10	0.02	F*		1.52	0.84
La_2O_3	3.9-5.0	4.62	0.30	H ₂ O*		10.80	12.63
Ce ₂ O ₃	5.9-6.8	6.52	0.42	$-O=F_2$		0.64	
Pr ₂ O ₃	0.4—0.6	0.54	0.04	Сумма		99.84	

Химический состав сейдита-(Ce) (мас. %) Chemical composition of seidite-(Ce) (wt. %)

Примечание. Микрозонд. Аналитик Г. Н. Нечелюстов. Звездочкой (*) отмечены компоненты, определенные методами «мокрой» химии (аналитик А. В. Мартынова).

7 Записки ВМО, № 4, 1998 г.

Таблица 2

A ay power unraction data for Science-(CC)									
Ι	d _{эксп}	d _{выч}	hki	Ι	d _{эксп}	d _{выч}	hkl		
100	12.32	12.32	200	3ш	2.67	2.684	115		
4	7.20	7.20	002			2.663	423		
3	6.91	6.90	110	3ш	2.534	2.544	024		
3	6.17	6.16	111			2.524	224		
		6.16	400	1	2.489	2.483	622		
3	5.408	5.408	310			2.482	622		
2ш	5.048	5.048	112	Т		2.482	315		
2ш	4.457	4.459	312	2	2.465	2.464	10.0.0		
4	4.108	4.106	600	3	2.384	2.384	1 30		
2ш	3.80	3.836	511	4	2.337	2.338	820		
5ш	3.57	3.593	020			2.334	821		
		3.546	204	1	2.299	2.300	330		
5	3.448	3.449	220			2.299	424		
8ш	3.220	3.225	513			2.298	623		
	1	3.215	022	4ш	2.242	2.246	316		
24)	3.104	3.104	420			2.242	804		
16 }	3.081	3.080	800			2.240	225		
12ш	3.058	3.063	42 <u>1</u>	1ш	2.110	2.118	531		
4ш 🥤	2.903	2.899	422			2.103	624		
2	2.813	2.811	712	2	2.053	2.054	333		
10	2.705	2.704	620]	2.053	12.0.0		

Результаты расчета рентгенограммы порошка сейдита-(Се) X-ray powder diffraction data for seidite-(Се)

Примечание. Условия съемки: дифрактометр ДРОН-3.0, Си $_{K_{\alpha}}$ -излучение, графитовый монохроматор, скорость записи 1°/мин, ш — широкая линия.

Рис. 3. Модель титаносиликатного остова кристаллической структуры сейдита-(Ce). Fig. 3. Model of the titanium-silicate framework of the seidite-(Ce) structure. ных кольцам в структуре мизерита (рис. 3). С помощью дополнительных Si-тетраэдров цепочки объединены в непрерывные Si-слои, параллельные (100), а последние в свою очередь связаны между собой сетками из одиночных Ti-октаэдров. В результате конденсации Si-тетраэдров и Ti-октаэдров формируется ажурный трубчатый каркас состава [TiSi₈O₂₂]⁸⁻, в котором слои из трубок чисто силикатного состава чередуются вдоль [100] со слоями из восьмичленных трубок титаносиликатного (6Si + 2Ti) состава. Полости трубок обоих типов представляют собой сквозные объемные каналы сечением от 4.5 до 7 Å, в которых локализуются крупные катионы (Na,Sr,REE), внерадикальные анионы (F,OH) и молекулы воды. Эта модель удовлетворительно согласуется со всем комплексом данных о составе и свойствах минерала. Она хорошо объясняет, в частности, наличие у сейдита совершенной спайности по (100) и удлинение его волокон и спайных выколков вдоль оси *b*. По своей топологии структурный мотив сейдита во многом аналогичен мотивам широкопористых алюмосиликатных цеолитов, что коррелирует с ярко выраженными цеолитными свойствами изученного минерала.

Сигналом для выявления у минерала таких свойств первоначально явилась сильно завышенная плотность сейдита ($D_{3\kappa cn.} = 3.21$ против $D_{выч.} = 2.75$ г/см³), определенная путем погружения его зерен в жидкость Клеричи — водный раствор таллиевой соли CH₂(COO)₂Tl₂ · HCOOTI. С целью более объективной оценки цеолитных свойств сейдита первым автором была поставлена серия опытов по обработке минерала (фракция 0.1—0.25 мм) водными растворами солей Tl, K, Rb, Cs и Ba. Опыты проводились при комнатной температуре и продолжались от полутора до двух месяцев. Затем зерна испытуемых минералов промывались спиртом, просушивались и после изготовления полированного препарата анализировались на микрозонде при тех же условиях, что и исходный сейдит. Как следует из полученных результатов (табл. 3), большая часть содержащихся в сейдите атомов Na и, вероятно, К способна легко обмениваться с солевым раствором на каждый из перечисленных выше катионов.

Структурный, а не какой-либо иной характер вхождения обменных катионов доказывается, в частности, закономерным изменением оптических свойств и параметров элементарной ячейки замещенных форм сейдита. Так, Tl-замещенная форма отличается от исходной резко повышенными показателями преломления, а из параметров ячейки Tl-сейдита, вычисленных по рентгенограмме порошка (*a* = 25.61,

Таблица 3

	Сейдит	ТІ-сейдит	К-сейдит		Rb-	Cs-	Ba-
Компонент	исходный	(жидкость Клеричи)	(KNO ₃)	(KCI)	(RbCl)	сеидит (CsCl)	сеидит (BaCl ₂)
 Na-O	9.4	12	17	21	16	31	0.7
K ₂ O	1.2	0.0	7.7	7.8	0.1	0.1	-
Tl ₂ O	-	48.7	-	_	-	-	- 1
Rb ₂ O	-	-	—	_	16.3		
Cs ₂ O	-	_	—	-	0.1	23.0	0.4
BaO	1.6	0.9	1.4	1.6	1.4	1.2	21.0
SrO	5.2	2.6	4.8	5.0	4.7	4.2	4.4
CaO	1.0	0.6	1.0	0.9	0.9	0.9	1.0
MnO + FeO	0.4	0.3	0.5	0.4	0.4	0.4	0.4
$REE_2O_3 + ThO_2$	19.9	9.9	15.5	15.9	14.8	14.3	12.9
SiO ₂	45.6	28.7	44.9	42.6	41.9	39.8	40.6
$TiO_2 + Nb_2O_5$	7.3	4.7	6.6	7.0	6.3	6.2	6.3

Химический состав катионзамещеных форм сейдита-(Ce) (мас. %) Chemical composition of the cation-substituted forms of seidite-(Ce) (wt. %)

Примсчание. Микрозонд. Аналитик Г. Н. Нечелюстов. В скобках указан тип соли, использованной при катионном обмене с сейдитом.

b = 7.186, c = 14.40 Å, $\beta = 92.50^{\circ}$), первый существенно выше, а третий несколько ниже, чем у исходного минерала (соответственно 24.74 и 14.47 Å), тогда как параметр b (направление наиболее прочных связей вдоль кремнекислородных цепейтрубок) сохраняется неизменным. Несмотря на то что выполненные эксперименты носят, скорее, качественный, чем количественный характер, они вполне определенно доказывают принадлежность сейдита к высокоемким сорбентам-ионообменникам и позволяют рекомендовать этот минерал для использования в качестве возможного прототипа при создании новых материалов с уникальными свойствами.

По составу и свойствам изученный минерал полностью индивидуален и не имеет аналогов среди известных природных и искусственных соединений.

Сейдит-(Се) — гидротермальный минерал, образующийся на конечных стадиях формирования ультраагпаитовых пегматитов при кристаллизации пересыщенных щелочными, летучими и редкими элементами силикатно-солевых жидкостей. Не исключено, что к реликтам подобных жидкостей относятся весьма своеобразные редкоземельно-ториевые стекла состава (Na,Ce,Th,Ti,Si,C)_xO_y · nH₂O (Хомяков, 1990), встречающиеся в тесной ассоциации с изученным титаносиликатом.

Эталонный образец сейдита-(Се) передан на хранение в музей Санкт-Петербургского горного института, г. Санкт-Петербург, регистрационный номер 2901/2.

В заключение авторы выражают благодарность Г. К. Кривоконевой, А. В. Мартыновой, В. Ф. Недобой и Н. В. Чуканову за помощь в получении некоторых важных характеристик изученного минерала.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 96-05-64344).

Список литературы

Хомяков А. П. Минералогия ультраагпантовых шелочных пород. М.: Наука, **1990.** 200 с. Khomyakov A. P. Mineralogy of hyperagpaitic alkaline rocks. Clarendon Press. Oxford, **1995.** 224 р.

Поступила в редакцию 20 марта 1998 г.