© В. М. ГЕКИМЯНЦ, * Е. В. СОКОЛОВА, * Э. М. СПИРИДОНОВ, * Дж. ФЕРРАРИС, ** Н. В. ЧУКАНОВ, *** М. ПРЕНЧИПЕ, ** В. Н. АВДОНИН, **** Ю. А. ПОЛЕНОВ****

ГИДРОКСИЛКЛИНОГУМИТ Mg₉(SiO₄)₄(OH,F)₂ — НОВЫЙ МИНЕРАЛ ИЗ ГРУППЫ ГУМИТА¹

V. M. GEKIMYANTS, E. V. SOKOLOVA, E. M. SPIRIDONOV, G. FERRARIS, N. V. CHUKANOV, M. PRENCIPE, V. N. AVDONIN, Yu. A. POLENOV. HYDROXYLCLINOHUMITE Mg9(SiO4)4(OH,F)2 — A NEW MINERAL OF THE HUMITE GROUP

*Московский университет, 119899, Москва, Воробьевы горы **Torino University, 10125, Torino, Italy ***Институт проблем химической физики РАН, 142432, Московская область, Черноголовка ****Уральская государственная горно-геологическая академия, Екатеринбург

При изучении минералогии знаменитых минеральных копей Шишимских, Назямских и Кувашских гор Юго-Западного Урала (Ахматовская, Зеленцовская и др.) в любезно предоставленном В. Н. Авдониным из экспозиции Уральского геологического музея образце «хондродитового» кальцифира из Зеленцовской копи был обнаружен низкофтористый клиногумит с преобладанием ОН-группы в дополнительной анионной позиции. Ранее подобный клиногумит, но с повышенным содержанием титана описан в Зеленцовской копи И. Д. Борнеман-Старынкевич и В. С. Мясниковым (Борнеман-Старынкевич и Мясников, 1950). Название минерала гидроксилклиногумит (hydroxylclinohumite) дано по его химическому составу.

О минералах группы гумита. К группе гумита относятся моноклинные и ромбические ортосиликаты с дополнительной анионной позицией — члены морфотропического ряда с общей формулой $nA_2SiO_4 \cdot A(R)_2$, где A = Mg, Fe^{2+} , Mn^{2+} , Ti^{4+} , R = F, OH, O. По химическому составу в группе выделяются марганцовистые (аллеганит, джерриджибсит, лейкофеницит, мангангумит, риббеит и сонолит) и магнезиальные (гумит, клиногумит, норбергит и хондродит) члены. Структура и химический состав клиногумита и других минералов группы гумита являлись предметом многочисленных исследований разных авторов. У всех этих минеральных видов в дополнительной анионной позиции F преобладает над OH, но пределы изоморфной смесимости между F и OH довольно широки, и часто встречаются разновидности, где OH-группа преобладает над F. Соотношение F : OH у норбергита обычно составляет 3 : 1, у хондродита — 2 : 1, у гумита и клиногумита близко к 1 : 1. В последнем издании словаря минеральных видов М. Флейшера (Mandarino, 1999) для минералов группы гумита приводятся формулы с преобладающим количеством фтора.

Фтор- и гидроксилсодержащие разновидности минералов группы гумита образуются в различных генетических обстановках и могут служить индикаторами условий минералообразования. Фторсодержащие минералы группы гумита типичны для магнезиальных скарнов, связанных с высокофтористыми щелочными и лейкократовыми гранитоидами, а также для различных гидротермалитов и метасоматитов формаций щелочных—ультраосновных магматитов и карбонатитов. Гидроксилсодержащие разновидности — типичные минералы магнезиальных скарнов и других контактово-метасоматических пород, связанных с низкощелочными гранитами, плагиогранитами, габброидами, а также низкощелочных метаморфитов.

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества РАН 27 ноября 1998 г. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 8 февраля 1999 г.

В настоящий момент достоверно известны только многочисленные анализы гидроксилдоминантного клиногумита (Zambonini, 1919; Борнеман-Старынкевич, Мясников, 1950; Mathuswami, 1958; Граменицкий, 1966; Jones e. a., 1969; Fujino, Takeuchi, 1978; Deer e. a., 1982, и др.) и единичные анализы гидроксилдоминантного хондродита (Борнеман-Старынкевич, 1964; Fujino, Takeuchi, 1978), тогда как гидроксилдоминантные гумит и норбергит неизвестны. Синтетические же гидроксилдоминантные аналоги получены для всех магнезиальных минералов группы гумита (Yamamoto, Akimoto, 1977; Deer e. a., 1982; Wunder e. a., 1995).

Условия нахождения гидроксилклиногумита. Зеленцовская копь расположена в пределах Кусинского Fe-Ti месторождения, приуроченного к Кусинскому метаморфизованному габброидному массиву. Кусинский массив является северным окончанием крупного Кусинско-Копанского габброидного плутона (R₁), расположенного на южном склоне Западного Урала в пределах Башкирского антиклинория. Кусинский массив вытянут в субмеридиональном направлении и имеет длину около 15 км при максимальной мощности 500-700 м и минимальной (на юге) до 40 м. Кусинский массив сложен габбро, габбро-норитами, анортозитами и пироксенитами. Среди этих пород залегает несколько пластообразных залежей титаномагнетитовых руд. Тогда как в целом Кусинско-Копанский плутон имеет характер силоподобной залежи, кусинский массив смят в синформу, а слагающие его породы метаморфизованы в условиях фации гранатовых амфиболитов. Габброиды преобразованы в амфиболиты, пироксениты — в горнблендиты, титаномагнетитовые руды — в зернистые ильменито-магнетитовые. Среди габброидов и руд Кусинского массива находятся многочисленные ксенолиты доломитовых мраморов вмещающей Саткинской свиты (R₁). Вдоль контактов этих ксенолитов развиты титаноносные магнезиальные скарны. Гидроксилклиногумит обнаружен в кальцифирах внешней зоны метасоматической колонки магнезиальных скарнов, где он ассоциирует с железистой шпинелью (нередки срастания гидроксилклиногумита со шпинелью). Локализация гидроксилклиногумита в кальцифирах не случайна, поскольку эти породы, по всей видимости, образовались на контакте доломитовых мраморов с низкощелочными габброидами при низкой концентрации фтора во флюидах и при достаточно высоком давлении. В менее глубинных условиях и при повышенных температурах в подобных условиях появляется ассоциация форстерит + брусит или форстерит + периклаз (Yamamoto, Akimoto, 1977; Wunder, 1998).

Морфология и физические свойства. Гидроксилклиногумит образует овальные, вытянутые по [001] зерна от 0.1 до 2—3 мм в диаметре, и их срастания (до 1—2 см), образующие вкрапленность в кальците совместно со шпинелью. Кристаллографические поверхности у гидроксилклиногумита почти полностью отсутствуют. Спорадически у отдельных зерен наблюдаются единичные грани, принадлежность которых к той или иной простой форме установить не удается.

Блеск гидроксилклиногумита стеклянный, иногда матовый. Цвет светло-желтый до оранжево-желтого, иногда встречаются почти бесцветные зерна. Минерал прозрачен или полупрозрачен в крупных зернах. Оптические свойства такие же, как и у клиногумита. Минерал двуосный, оптически положительный. Показатели преломления $n_p = 1.631$, $n_m = 1.641$, $n_s = 1.664$, угол оптических осей $2V = 70^\circ$. Рассчитанное значение угла оптических осей составляет 68°. Дисперсия оптических осей проявлена слабо. Угол погасания $Z \wedge c = 11^\circ$. Схема плеохроизма обратная от желтого по N_p до бесцветного по N_g .

Твердость по шкале Мооса около 6.5, твердость микровдавливания 745 (732—747) кг/мм² при нагрузке 60 г (n = 13). Спайность не наблюдается, излом неровный до раковистого, черта белая. Плотность, измеренная методом уравновешивания зерна минерала в жидкости Клеричи, 3.13 (3.12—3.14) г/см³ (n = 5).

Инфракрасный спектр гидроксилклиногумита типичен для такового минералов группы гумита (табл. 1) и содержит сильные полосы поглощения при 987, 960, 724, 610, 530 см⁻¹. Наиболее существенные отличия ИК-спектра гидроксилклино-гумита от ИК-спектра клиногумита проявляются в области ОН-валентных колеба-

5 Записки ВМО, № 5, 1999 г.

Таблица 1

Характеристические полосы ИК-спектров	магн	знальн	ых
минералов группы гумита			
Characteristic measure to the TR			

Characteristic wavenumbers in the IR spectra of the magnesium humite minerals

Минерал	Полоса поглощения, см ⁻¹
Гидроксилклиногумит	987, 960, 724, 610, 530
Фторклиногумит	998, 962, 743, 610, 533
Гумит	996, 954, 765, 751, 614, 548
Хондродит	997, 780, 739, 615, 541
Норбергит	997, 967, 757, 623, 563, 549

ний. В ИК-спектре клиногумита присутствуют две полосы поглощения, соответствующие валентным колебаниям ОН-групп с одинаковыми интенсивностями: 3550 и 3380 см⁻¹. ИК-спектр гидроксилклиногумита в свою очередь характеризуется тремя полосами поглощения, связанными с валентными колебаниями ОН-групп. Первые две, соответственно 3560 и 3385 см⁻¹, образуются за счет расщепления полосы 3550 см⁻¹ клиногумита, которое может быть связано с появлением в структуре гидроксилклиногумита двух независимых позиций атомов водорода. Полоса поглощения 3580 см⁻¹ в гидроксилклиногумите шире и слабее, чем в клиногумите (3385 см⁻¹). Этот факт может быть вызван тем, что некоторая часть ОН-групп связана слабыми водородными связями с ОН и F.

Химический состав. Количественный химический состав гидроксилклиногумита приведен в табл. 2, где для сравнения помещены анализы других гидроксилдоминантных клиногумитов, в том числе и опубликованные ранее (Борнеман-Старынкевич, Мясников, 1950). Химический состав минерала определен методом «мокрой» химии (ан. 1, табл. 2) и соответствует формуле (Mg_{8.82}Fe₆⁺₆⁺ Мп_{0.01}Ti_{0.05})_{8.94}[Si_{4.00}O_{15.98}](OH_{1.86}F_{0.16})_{2.02}. Содержание H₂O определялось методом Пенфилда, который считается оптимальным для определения воды в минералах группы гумита (Борнеман-Старынкевич, 1964). Кроме того, химический состав минерала изучен на электронном микрозонде Cameca SX-50 (ан. 2, табл. 2).

Фрагмент структуры гидроксилклиногумита: ленты Мg-октаздров, связанные в слой [SiO4]-тетраздрами — в проекции на плоскость (100), x ~ 0. Мg-октаздры и Si-теграздры показаны светло-серым и темно-серым цветами соответственно. Атомы водорода H1 (1) и H2 (2) занимают свои позншии статистически, на 50 %.

The Fragment of the crystal structure of hydroxylclinohumite projected on (100).

Таблица 2

			•			• (/0)		
Компонент	1	2	3	4	5	6	7	8
SiO ₂	38.97	38.7	37.70	37.65	35.65	35.06	35 90	37.18
TiO ₂	0.67	0.63	2.52	5.40	0.03	5.07	5 59	2.92
Al ₂ O ₃	Сл.	Сл.	0.06	- 1	0.66	0.05	-	
Cr ₂ O ₃	- 1	-		- 1	_	0.06	_	_
Fe ₂ O ₃	_	-	_	_	1.11	_	_	0.49
FeO	0.70	0.61	2.51	3.41	0.77	11.56	11.21	2 74
MnO	0.12	0.08	0.03	0.50	0.62	0.24	0.50	0.04
MgO	57.56	57.1	54.10	51.74	57.55	44 35	44 16	55.00
NiO	_	_	_	-	_	0.20	_	55.07
CaO	Сл.	Сл.	0.13	0.10	0.61	0.01	0.01	
Na ₂ O	-	_	-	_	0.15	-		
H ₂ O+	2.72	_	2.56	1.57	2.25	1 48*	2 64*	1 30
H ₂ O ⁻		-	_			_		0.25
F	0.49	0.47	0.08	0.06	1 60	_	0.00	0.25
Cl	- 1	_	0.16	0.20	_	_	0.00	0.95
Сумма	101.23	-	99.85	100.63	101.00	_		100.46
$O = (F, Cl)_2$	-0.23	_	0.07	0.08	0.67	_		0.40
Сумма	101.00	97.6	99.78	100.55	100.33	98.08	98.77	100.06

Химический состав (мас. %) гидроксилклиногумита Chemical composition of hydroxylchinohumite (wt %)

Примечание. Ан.1 — аналитик Ю. В. Долинина (n = 2); ан.2 — электронный микрозонд Сашеса SX-50, аналитик Н. Н. Кононкова n = 5; ан.3, 4 — (Борнеман-Старынкевич, Мясников, 1950); ан.5 — (Граменицкий, 1966); ан.6 — (Гијіпо, Такеисні, 1978); ан.7 — (Jones e.a., 1969); ан.8 — (Mathuswami, 1958). Отмеченные звездочкой (*) содержания H₂O — расчетные.

Эталоны: для Si, Mg и Fe — оливин, Ti и Mn — пирофанит, Al — ортоклаз, Ca — диопсид, F — флюорит. Изученный гидроксилклиногумит характеризуется малыми количествами примесей. Содержание FeO не превышает 0.75, MnO 0.15, TiO₂ 0.70 мас.%. Отметим крайне низкое содержание титана — обычно проявляется тенденция увеличения содержания титана в минералах группы гумита с уменьшением количества F и увеличением ОН или O²⁻ (Борнеман-Старынкевич, Мясников, 1950; Deer e. a., 1982).

Рентгеновские данные. Рентгенограмма минерала близка к таковой для клиногумита (табл. 3). В малоугловой области присутствуют рефлексы 13.45 Å (001) и 6.73 Å (002), которые никогда ранее не отмечались на рентгенограммах клиногумита, поскольку они очень слабые и могли быть не обнаружены.

Кристаллическая структура гидроксилклиногумита Mg₉[SiO₄]₄(OH)₂ определена по монокристальным дифракционным данным (автоматический дифрактометр Siemens P-4, λ MoK α , все расчеты проведены по программе SHELXL-97). Параметры элементарной ячейки: a = 4.7480 (3), b = 10.2730 (7), c = 13.689 (2) Å, $\alpha = 100.721$ (5)°, пр. гр. $P2_1/b$. Экспериментальный массив интенсивностей был получен от кристалла, представляющего собой двойник. В ходе уточнения структуры минерала выявлено двойникование по {010}, установлено соотношение объемов компонент двойника, равное 0.94 : 0.06. Уточнение структуры гидроксилклиногумита в полноматричном анизотропном приближении привело к заключительному R = 0.027как по 4945 рефлексам ($F_0 > 4\sigma F_0$), соответствующим элементарной ячейке двойника ($c_{ns} = 2c$), так и по 1912 независимым неэквивалентным рефлексам ($F_0 > 4\sigma F_0$), соответствующим собственно элементарной ячейке гидроксилклиногумита. В структуре гидроксилклиногумита позиция О9 (x = 0.261, y = 0.048, z = 0.057) заполнена преимущественно гидроксильными группами в отличие от статистического заполнения данной позиции в структуре фторклиногумита атомами

5*

Результаты	і расчета	дифракт	гограмми	ы гидро	ксилклиногуми	та
X-ray	powder di	iffraction	data for	hydrox	ylclinohumite	

		••		•	•		
Ι	d _{эксп}	d _{расч}	hkl	1	d _{эксп}	dpacy	hkl
10	13.9	13.45	001	15	2.311	2.311	210
6	673	6.725	002	8	2.295	2.271	124
70	5.05	5.047	020	100	2.269	2.268	125
		5.044	021				
5	4.49	4,484	003	95	2.259	2.259	141
52	4.46	4.460	021	5	2.224	2.227	044
11	4.29	4.296	110	8	2.215	2.215	212
11	4.18	4.190	111	15	2.200	2.203	115
						2.197	133
31	3.88	3.879	102	12	2.155	2.158	212
8	3.78	3.758	112	9	2.092	2.091	213
					1	2.086	135
95	3.72	3.718	022	9	1.884	1.8846	151
8	3.67	3.712	023	6	1.878	1.8750	152
28	3.50	3.497	112				
33	3.46	3.458	120	10	1.779	1.7803	126
		3.457	121			1.7800	205 -
	-					1.7786	127
64	3.35	3.363	004	79	1.747	1.7486	224
						1.7475	225
						1.7433	241
30	3.23	3.233	113	20	1.687	1.6880	241
						1.6871	243
18	3.03	3.080	023	22	1.632	1.6323	061
		3.075	024			1.6308	064
		2.986	11 <u>3</u>			1	
11	2.922	2.925	123	20	1.620	1.6201	136
91	2.772	2.774	131	8	1.548	1.5470	24 <u>5</u>
60	2.754	2.756	114	16	1.542	1.5418	138
50	2.748	2.745	130	16	1.538	1.5397	046
						1.5373	048
17	2.690	2.690	005	7	1.512	1.5134	312
						1.5130	028
			<i>.</i>			1.5116	029
39	2.612	2.613	131	37	1.495	1.4945	009
80	2.551	2.552	114	51	1.485	1.4867	063
						1.4846	066
93	2.516	2.518	133	20	1.402	1.4016	$ \frac{172}{172}$
38	2.414	2.417	132	12	1.398	1.3967	333
25	2.398	2.401	041	15	1.351	1.3498	324
		2.398	043		1	1.3493	325
50	2.365	2.366	115	18	1.348	1.3474	341
	1					1.3457	318

Примечание. Дифрактометр ДРОН 3.5 М, Со-антикатод.

фтора и гидроксильными группами одновременно. На разностных синтезах электронной плотности найдены две независимые позиции атомов водорода H1 и H2, которые полностью соответствуют теоретически рассчитанным позициям (Abbot e. a., 1989). Обе позиции заняты атомами водорода статистически, на 50 %, что позволяет избежать недопустимо коротких расстояний водород—водород. Установ-

T
a
Z
5
ē
<u></u>

.

Сравнительная характеристика гидроксилклиногумита, клиногумита, гумита, хондродита и норбергита Commarison of data for hydroxylolinohumite cinochumite humite chondrodite and norbeorie

Cor	nparison of data for	hydroxylclinohumite, cli	nohumite, humite, chondrodi	te and norbergite	
Характеристика	Гидроксил- клиногумит	Клиногумит	Гумит	Хондродит	Норбергит
Формула	Mg9[SiO4]4(OH)2	Mg9[SiO4]4(F, OH)2	Mg7[SiO4]3(F, OH)2	Mg5[SiO4]2(F, OH)2	Mg3[SiO4](F, OH)2
Сингония	Моноклинная	Моноклинная	Ромбическая	Моноклинная	Ромбическая
Пр. группа	$P2_{1}/b$	$P2_{1}/b$	Pnma	$P2_{1/a}$	Pnma
a, Å	4.7480(3)	4.74	4.74	10.25	4.71
b, A	10.2730(1)	10.25	10.26	4.73	10.27
с, А	13.6894(2)	13.66	20.85	7.84	8.75
α, град	100.72(1)	100.8		109.1	
V, A ³	656.06	651.9	1014	359.2	423.3
Z	2	2	4	2	4
Наиболее сильные ли ₅	5.05(7)	5.02(7)	3.64(5)	2.767(4)	4.371(3)
нии рентгенограммы $\frac{a}{2}(I)$	3.72(10)	3.70(7)	2.691(5)	2.677(6)	3.058(10)
	2.772(9)	2.76(7)	2.572(4)	2.627(5)	2.639(7)
	2.551(8)	2.54(7)	2.438(7)	2.519(5)	2.408(3)
	2.516(9)	. 2.51(7)	2.256(10)	2.267(9)	2.337(3)
	2.269(10)	2.26(7)	2.107(4)	2.261(10)	2.255(7)
	2.259(9)	1.742(7)	1.739(10)	1.746(10)	2.230(8)
	1.747(8)	1.738(10)	1.487(5)	1.487(5)	1.724(5)
Линии ИКС, см ⁻¹	987, 960, 724, 610, 530	998, 962, 743, 610, 533	996, 954, 765, 751, 614, 548	997, 780, 739, 615, 541	997, 967, 757, 623, 563, 549
Плотность (изм.), г/см ³	3.13	3.15-3.35	3.15-3.32	3.16—3.32	3.13-3.20
Плотность (расч.), г/см ³	3.14	3.161	3.157	3.152	3.14
Оптический знак	(+)	(+)	(+)	(+)	(+)
μ _p	1.631(2)	1.629-1.638	1.607-1.643	1.529-1.615	1.563-1.567
1 ^m	1.641(2)	1.641-1.643	1.619-1.653	1.602-1.627	1.567-1.579
μg	1.664(2)	1.662-1.674	1.639—1.675	1.621-1.646	1.590-1.593
2V	70(5)	73—88	6584	7090	44—50

лено положение водородных связей в структуре исследованного минерала. Структуры клиногумита и гидроксилклиногумита полностью идентичны, за исключением позиций атомов водорода (см. рисунок на с. 66).

Сравнение с другими магнезиальными минералами группы гумита. Визуально минералы группы гумита почти не отличимы друг от друга. В связи с близостью химических составов трудно отличить их лишь по данным химического анализа. По ИК-спектру все магнезиальные члены группы гумита хорошо отличаются друг от друга (за исключением разновидностей, обогащенных Fe). Гидроксилклиногумит легко отличим от норбергита по оптическим свойствам (показатели преломления, угол оптических осей), по химическому составу, по ИК-спектру, обладает другой пространственной группой. От гумита гидроксилклиногумит с уверенностью отличается лишь по ИК-спектру или на основании рентгеновских данных по принадлежности к разным пространственным группам. От хондродита гидроксилклиногумит однозначно отличается по ИК-спектру с привлечением количественного химического анализа и рентгеновских данных (параметры ячейки). От фторклиногумита гидроксилклиногумит почти неотличим. Различить их можно только по химическому составу (содержание воды и фтора) и по ИК-спектру. Сравнительная характеристика гидроксилклиногумита и других магнезиальных минералов группы гумита приведена в табл. 4.

Изученный образец находится в Горном геологическом музее г. Екатеринбурга и в Минералогическом музее Санкт-Петербургского государственного университета.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 98-05-64672) и Соросовской научной образовательной программы в области точнь.х наук (Подпрограмма «Соросовские аспиранты», грант № а98-2285).

Список литературы

Борнеман-Старынкевич И. Д., Мясников В. С. Об изоморфных замещениях в клиногумите # Докл. АН СССР. 1950. Т. 71. № 1. С. 137—141.

Борнеман-Спарынкевич И. Д. Руководство по расчету формул минералов. М.: Наука, 1964. 124 с. Граменицкий Е. Н. Возрастные соотношения магнезиальных и известковых скарнов при совместном

распространении и особенности условий их образования // Вести. МГУ. 1966. № 1. С. 76-85. Abot R. N., Jr., Burnham C. W., Post J. E. Hydrogen in humite-group minerals: Structure-energy calculations // Amer. miner. 1989. Vol. 74. Р. 1300-1306.

Deer W. A., Howie R. A., Zussman J. Rock-Forming Minerals. Vol. 1A. Orthosilicates. Longman, London, 1982.

Mandarino J. A. Glossary of mineral species 1999 // The Mineralogical Record, Tucson, 1999. 225 p.

Fujino K., Takeuchi Y. Crystal chemistry of titanian chondrodite and titanian clinohumite of high-pressure origin # Amer. miner. 1978. Vol. 63. P. 535-543.

Jones N. W., Ribbe P. H., Gibbs G. Crystal chemistry of the humite minerals // Amer. miner. 1969. Vol. 54. P. 391-411.

Mathuswami T. N. Clinohumite, Sausar series, Bhandara District, India // Proc. Indian Acad. Sci. 1958. Vol. 48. P. 9-13.

Wunder B., Medenbach O., Daniels P., Schreyer W. First synthesis of the hydroxyl end-member of humite, Mg₇Si₃O₁₂(OH)₂ # Amer. miner. 1995. Vol. 80. P. 638-640.

Wunder B. Equilibrium experiments in the system MgO-SiO₂-H₂O (MSH). Stability fields of clinohumite-OH [Mg₂Si₄O₁₆(OH₂)], chondrodite-OH [Mg₅Si₂O₈(OH)₂] and phase A [Mg₇Si₂O₈(OH)₆] # Miner. Petrol. 1998. N 2. P. 111-120.

Yamamoto K., Akimoto S. The system MgO-SiO₂-H₂O at high pressures and temperatures: stability field of hydroxyl-chondrodite, hydroxyl-clinohumite and 10 Å-phase # Amer. J. of Science. 1977. Vol. 277. P. 288-312.

Zambonini M. F. Sur la veritable nature du titanoolivine de la vallée d'Ala (Piemont) // Bull. Soc. Fr. Mineralogie. 1919. Vol. 42. P. 250-279.

> Поступила в редакцию 25 апреля 1999 г.