Мейсон Б. Метеориты. М.: Мир, **1965**. 305 с. Фисенко А. В., Игнатенко К. И., Люль А. Ю., Лаврихина А. К. Ассоциация металлических частиц с САІ (кальций-алюминиевыми включениями) в СV хондрите Ефремовка // Метеоритика. 1988. Вып. 47. С. 95-105.

Чухров Ф. В. (гл. ред.) Минералы. Т. 1. М.: Изд. АН СССР, **1960.** 616 с.

Buchwald V. F. Handbook of Iron meteorites // University of California Press, Berkeley, 1975. Vol. 2.

Chao E. C. T., Dwornik E. J., Littler J. New data on the nickel-iron spherules from Southeast Asian tektites and their implications // Geochim. Cosmochim. Acta. 1964. Vol. 28. P. 971-980.

Clarke R. S., Jr., Goldstein J. I. Schreibersite growth and its influence on the metallography of coarsestructured iron meteorites // Smithson. Contrib. Earth Sci. 1978. Vol. 21. P. 1-80.

Dodd R. T. Meteorites. Cambridge University Press, 1981. 383 p.

Goldstein J. I., Ogilvie R. E. Electron microanalysis of Metallic Meteorites, Part. 1: Phosphides and Sulfides // Geochim. Cosmochim. Acta. 1963. Vol. 27. P. 623-637.

Haidinger W. Versammlung, am 16 Juli. Berichte über die Mitteilungen von Freunden der Naturwissenschaften in Wien, 1847. H. 3. S. 69-71.

Haidinger W. Über das Meteoreisen von Braunau // Ann. Physik. 1847. S. 580-582.

Reed S. J. B. Electron probe Microanalysis of Schreibersite and Rhabdite in iron meteorites # Geochim. Cosmochim Acta. 1965. Vol. 29. P. 513-534.

Reed S. J. B. The Oktibbeha County Iron Meteorite // Miner. Mag. 1972. Vol. 38. P. 623-626.

Поступила в редакцию 2 декабря 1998 г.

УДК 549.657(470.21)

ЗВМО, № 3, 1999 г. Proc. RMS, N 3, 1999

© Д. чл. И. В. ПЕКОВ, * Н. В. ЧУКАНОВ, ** д. чл. А. П. ХОМЯКОВ, *** Р. К. РАСИВЕТАЕВА. **** Я. В. КУЧЕРИНЕНКО. * В. В. НЕЛЕЛЬКО**

КОРОБИЦЫНИТ Na_{3-x} (Ti, Nb)₂[Si₄O₁₂](OH, O)₂ · 3—4H₂O — НОВЫИ МИНЕРАЛ ИЗ ЛОВОЗЕРСКОГО МАССИВА, КОЛЬСКИЙ ПОЛУОСТРОВ

I. V. PEKOV, N. V. CHUKANOV, A. P. KHOMYAKOV, R. K. RASTSVETAEVA, Ya. V. KUCHERI-NENKO, V. V. NEDEL'KO. KOROBITSYNITE Na_{3-x}(Ti, Nb)₂[Si₄O₁₂](OH, O)₂·3-4H₂O - A NEW MINERAL FROM LOVOZERO MASSIF, KOLA PENINSULA

* Московский Университет, 119899, Москва, Воробьевы Горы ** Институт проблем химической физики РАН, 142432, Московская обл., п. Черноголовка

*** Институт минералогии, геохимии, кристаллохимии редких элементов (ИМГРЭ) РАН,

121357, Москва, ул. Вересаева, 15

**** Институт кристаллографии РАН, 117333, Москва, Ленинский пр., 59

Korobitsvnite, Na₃-_x(Ti, Nb)₂[Si₄O₁₂](OH, O)₂ · 3-4H₂O, a new mineral, orthorhombic Ti-dominant analogue of nenadkevichite was found at Alluaiv and Karnasurt Mts., Lovozero alkaline massif, Kola peninsula, Russia. It occurs in high-alkaline hydrothermalites as prismatic crystals up to 2 cm, together with aegirine, albite, elpidite, epididymite, lorenzenite, quartz, shortite, sidorenkite, natroxalate, etc. with acgirine, albite, elpidite, epididymite, lorenzenite, quartz, shortite, sidorenkite, natroxalate, etc. (Alluaiv) and grains up to 1 mm with acgirine, K-feldspar, elpidite, labuntsovite, natroxalate, apophyllite, etc. (Karnasurt). Crystal forms: {110}, {001}, {010}, {100}, {021}. Epitaxial growths with elpidite are typical: $a_{el} = c_{kor}$, $b_{el} = b_{cor}$, $c_{el} = a_{cor}$. Colorless, transparent, streakwhite, lustre vitreous, cleavage (100) imperfect. Brittle, Mohs' hardness ~5. $D_{meas} = 2.72$, $D_{calc} = 2.69 \text{ g/cm}^3$. Biaxial, positive, 2V = 30 (1). Refractive indexes change in accordance with composition: $\alpha \ 1.646 - 1.650$, $\beta \ 1.654 - 1.658$, $\gamma \ 1.763 - 1.780$. Optical orientation: $N_p = b$, $N_m = c$, $N_g = a$. Average chemical composition of holotype, wt %: Na₂O 13.87, K₂O 0.03, BaO 0.54, ZrO₂ 0.04, TiO₂ 21.38, SiO₂ 40.91, Nb₂O₅ 10.14, H₂O 12.20, total 99.11. Empirical formula: (Na_{2.62}Ba_{0.02)2.64}(Ti_{1.57}Nb_{0.45)2.02}[Si4O₁₂](OH_{1.13}O_{1.03})_{2.16} · 3.4H₂O; Z = 2. Nenadkevichite—korobitsynite isomorphous series is established. The crystal structure is solved, R = 0.048. Unit cell parameters: a = 7.349 (2), b = 14.164 (2), c = 7.130 (1) A, V = 742.2 (4) A³, space group *Pbam*. IR spectrum is given. The mineral was named after M. F. Korobitsyn (1928-1996), an amateur mineralo-IR spectrum is given. The mineral was named after M. F. Korobitsyn (1928-1996), an amateur mineralogist and collector, who made the significant contribution to the Lovozero massif mineralogy study.

¹ Рассмотрено и рекомендовано к опубликованию Комиссией по новым минералам и названиям минералов Всероссийского минералогического общества РАН. Утверждено Комиссией по новым минералам и названиям минералов Международной минералогической ассоциации 6 июля 1998 г.

При изучении обширной коллекции образцов, диагностированных в полевых условиях как «лабунцовит» и «ненадкевичит», обнаружен новый минерал состава Na_{3-x}(Ti, Nb)₂[Si₄O₁₂](OH, O)₂ · 3—4H₂O (ромбический) — титановый аналог ненадкевичита Na_{3-x}(Ti, Nb)₂[Si₄O₁₂](OH, O)₂ · 3—4H₂O. Он установлен на горах Аллуайв и Карнасурт в Ловозерском щелочном массиве, Кольский п-ов. Новый минерал назван коробицынитом в память о минералоге-любителе и коллекционере Михаиле Федоровиче Коробицыне (1928—1996), внесшем заметный вклад в изучение минералогии Ловозерского массива.

Лабунцовит является моноклинным минералом, в то время как ненадкевичит имеет ромбическую симметрию. Кристаллические структуры этих двух минералов, несмотря на многие общие черты, обладают рядом принципиальных различий, которые однозначно опровергают предположение Е. И. Семенова (1959) о существовании изоморфного ряда лабунцовит—ненадкевичит (Булах, Евдокимов, 1973; Органова и др., 1976, 1981).

Химический состав нового минерала определен электронно-зондовым методом на более чем 50 кристаллах; средние составы для 6 образцов, изученных комплексом методов, приведены в табл. 1. На рис. 1 видно, что Ti/Nb-отношение в минералах ряда ненадкевичит-коробицынит широко варьирует. В отличие от моноклинных членов семейства, где в значительных количествах (целые %) присутствуют К, Ва, а зачастую также Sr, Mg, Mn, Fe, Zn, ромбические минералы, по опубликованным (Perrault e. a., 1973; Karup-Moeller, 1986; Horvath e. a., 1998) и нашим данным, содержат в качестве главных составляющих только Na, Ti, Nb, Si, H₂O. Такая сравнительная «чистота» ромбических минералов относительно моноклинных хорошо объясняется различиями в их кристаллической структуре (см. ниже). Содержание воды в голотипном образце коробицынита, определенное по потере массы при нагревании, составляет 12.20 % (табл. 1, ан. 1). Процесс удаления воды полностью завершился при 360 °C. Формула, рассчитанная для этого образца на [Si₄O₁₂], такова: (Na_{2.62}Ba_{0.02})_{2.64}(Ti_{1.57}Nb_{0.45})_{2.02}[Si₄O₁₂](OH_{1.13}O_{1.03})_{2.16} · 3.4H₂O, Z = 2. Исходя из вариаций значений суммы электронно-зондовых анализов (табл. 1) и из структурных данных, содержание кристаллизационной воды в минерале изменчиво и находится в пределах от 3 до 4 молекул на указанную формулу. Колеблется и содержание натрия обычно в пределах от 2 до 3 ф. е.

Кристаллическая структура и кристаллохимические особенности. Кристаллическая структура корбицынита решена на монокристалле; $R_{анизо} = 0.048$ (Расцветаева и др., 1997). Минерал изоструктурен ненадкевичиту из Сент-Илера (Perrault e. a., 1973). Его пространственная группа *Pbam*. Структура состоит из прямых цепочек вершинносвязанных (Ti, Nb)O-октаэдров, вытянутых вдоль направления *a* и связанных в плоскости *bc* четырехчленными кольцами Si, O-тетраэдров. Мостиковые кислородные вершины в цепочках октаэдров частично замещаются OH-группами, образующими H-связи с атомами кислорода. В каналообразных полостях каркасной постройки располагаются атомы Na и молекулы воды, что сближает коробицынит и ненадкевичит в структурном отношении с цеолитами и объясняет существенные вариации содержаний этих компонентов, делая справедливой запись Na_{3-x}... в формуле. В то же время соотношение Si/(Ti + Nb) (составляющие каркаса) строго выдерживается, лишь незначительно отклоняясь от 2.00.

Ромбические члены семейства — ненадкевичит и коробицынит — существенно отличаются по структуре от моноклинных. Понижение симметрии приводит к удвоению у моноклинных минералов одного из параметров элементарной ячейки. Моноклинные минералы характеризуются значительной деформацией структурного мотива: прямые цепочки (Ti, Nb)-октаэдров становятся гофрированными, вследствие чего единая позиция, занятая в структурах ненадкевичита и коробицынита атомами Na, у моноклинных минералов расщепляется на три независимые позиции, одна из которых преимущественно заселяется атомами Na, а две другие, приобретающие больший объем, — крупными катионами: K, Ba, Sr (Органова и др., 1976; 1981).

Компонент	Анализ							
	1	2	3	• 4	5	6	7	
No-O	12.07	11.02	11 64	14.60	12.10	12 17	11.0	
Na ₂ O K-O	13.67	11.02	0.05	14.00	12.10	15.17	11.0	
K20	0.03	0.04	0.05	0.07	0.05	0.10	0.0	
BaO	0.54	0.31	0.01	0.43	0.00	0.00	0.0	
ZrO_2	0.04	0.09	0.02	0.58	0.15	0.17	0.0	
TiO ₂	21.38	14.97	15.27	18.35	12.74	14.82	19.4	
SiO ₂	40.91	39.28	42.12	39.25	39.40	38.70	41.6	
Nb ₂ O ₅	10.14	19.04	22.16	11.12	· 21.10	16.60	13.8	
H ₂ O	12.20	H. o.	Н. о.	Н. о.	Н. о.	Н. о.	13.4	
Сумма	99.11	84.89*	91.43*	84.46*	85.57*	84.68*	100.0	
Формульные коэффициенты (при Si ₄ Z = 2)								
Na	2.62	2.18	2.14	2.88	2.38	2.63	2.2	
K	0.00	0.00	0.00	0.01	0.00	0.01		
Ba	0.02	0.01	0.00	0.01	0.00	0.00		
Zr	0.00	0.00	0.00	0.03	0.01	0.01		
Ti	1.57	1.15	1.09	1.41	0.97	1.15	1.4	
Nb	0.45	0.87	0.95	0.51	0.965	0.77	0.6	
Si	4.00	4.00	4.00	4.00	4.00	4.00	4.0	

Химический состав коробицынита Chemical composition of korobitsynite

Примечание. Ан. 1—5 — гора Аллуайв; ан. 6 — гора Карнасурт; 7 — расчетные содержания на формулу Na_{2.2}(Ti_{1.4}Nb_{0.6})[Si₄O₁₂](OH_{1.25}O_{0.75}) · 3.7H₂O, полученную по данным расшифровки кристаллической структуры минерала. Н. о. — содержание H₂O не определялось; (*) — в сумму анализа входят также (мас. %): CaO 0.06 (4), 0.68 (6); SrO 0.44 (6); MnO 0.02 (2); ZnO 0.01 (3); Fe₂O₃ 0.02 (2), 0.07 (3), 0.03 (5); Al₂O₃ 0.03 (3); Ta₂O₅ 0.05 (3). Аналитики Н. Н. Кононкова (ан. 1, 2), И. М. Куликова (ан. 3), А. Н. Некрасов (ан. 4), Г. Н. Нечелюстов (ан. 5, 6).

Рис. 1. Соотношение Ті и Nb в минералах изоморфного ряда ненадкевичит—коробицынит (по осям — формульные коэффициенты для Si4).

I — данные настоящей работы, II — ранее опубликованные: 1, 2 — ненадкевичит, гора Карнасурт, Ловозеро (Кузьменко, Казакова, 1955); 3 — ненадкевичит, Сент-Илер, Квебек (Perrault, 1973); 4, 5 — Илимаусак, Ю. Гренландия (4 — Семенов, 1969; 5 — Кагир-Moeller, 1986); 6 — ненадкевичит, Сент-Амабль, Квебек (Horvath e. a., 1998); 7 — коробицынит, гора Карнасурт, Ловозеро; без номеров — коробицынит и ненадкевичит, гора Аллуайв, Ловозеро.

Fig. 1. Ti/Nb formula ratios in nenadkevichite-korobitsynite isomorphous series minerals (formula coefficients on the axes are given for Si₄).

Результаты расчета рентгенограммы и параметры элементарной ячейки коробицынита, г. Аллуайв

Ι	<i>d</i> _{ИЗМ} , Å	<i>d</i> _{выч} , А	hkl	I	<i>d</i> _{ИЗМ} , А	<i>d</i> _{выч} , А	hkl
72	7.09	(7.13	c 001	12	1.665	1.665	431
		7.08	020	4	1.646	1.644	352
85	6.53	6.52	110			(1.592	. 044
34	5.02	5.025	021	32	1.591	1.592	422
4	4.81	4.812	111			1.590	441
16	3.97	3.973	130	8	1.564	1 564	224
3	3.67	3 674	200	4	1 540	(1.541	450
5	3 56	3 565	002		1.0.0	1 539	190
5	0.00	3 557	210	2	1 504	1 504	191
100	3.262	(3.266	(201	14	1 478	1 4779	154
100		3.262	220	45	1.457	1.4560	282
		(3.184	022	2	1.414	(1.4149	(452
52	3,180	-3.183	211	-		1.4129	192
		3.171	041	4	1.346	1.3447	443
14	3.129	3.129	112			(1.3244	283
7	2.964	2.966	221	3	1.324	1 3241	390
6	2.901	2.900	230			1 3236	215
3	2 685	2 686	231	40	1 307	(1:3066	(225
45	2.649	2 643	150		1.507	1 3050	532
56	2.553	(2.559	(202	15	1 298	(1 2996	(2101
20		2 550	240	1./	1.270	1 2957	1 10 2
42	2.512	2 512	042	35	1 271	1 2709	472
2	2.413	2.414	310	8	1 251	1 2488	-1111
		2.253	023	5	1.236	1 2357	293
2	2.252	2.250	232	6	1.219	(1 2206	065
		2.247	160			1.2202	610
6	2.173	2.174	330	25	1.150	(1.1502	(2.11.2
57	2.075	2.074	242			1.1501	1.12.1
2	2.016	2.015	340	4	1.139	(1.1398	(3.11.0
25	1.970	1.962	062			1.1385	136
28	1.836	(1.838	233	30	1.122	1.1218	4.10.0
		1.837	400	7	1.106	1.1047	563
4	1.823	1.821	410	7	1.094	,1.0957	(435
5	1.782	1.782	004			1.0925	365
14	1.768	1.770	080	4	1.082	1.0820	2.11.3
		1.767	153			.1.0722	. 652
50	1.735	1.735	262	18	1.071	1.0718	2.12.2
		1.721	180			1.0701	4.10.2
2	1.720	1.720	271	40	1.060	1.0609	633
	and the second se	1.720	114	4	1.050	1.0505	, 166
		1.718	081			1.0501	256
4	1.675	1.675	063	7	1.045	1.0446	2.13.0
	- And	1.673	181	16	1.034	1.0336	2.13.1

X-ray powder data and unit cell parameteres of korobitsynite from Alluaiv Mt.

Параметры ромбической ячейки

a = 7.349 (2) Åb = 14.164 (2) Åc = 7.130 (1) Å

V = 742.2(4)Å³

Примечание. Условия съемки: дифрактометр ДРОН-3, Си_{Ка}-излучение, Ni-фильтр.

Рис. 2. ИК-спектры коробицынита (1), неналкевичита (2) и лабунцовита (3), см. также табл. 3. Fig. 2. IR spectra of korobitsynite (1), nenadkevichite (2) and labuntsovite (3) — see also Table 3. Рис. 3. Коробицынит.

Таким образом, идеальная формула коробицынита такова: Na₃(Ti, Nb)₂[Si₄O₁₂] OH, O)₂ · 3—4H₂O (Z = 2). С учетом реальных содержаний Na она принимает вид: Na_{3-x}(Ti, Nb)₂[Si₄O₁₂](OH, O)₂ · 3—4H₂O, где x < 1.5.

Порошковая рентгенограмма коробицынита дана в табл. 2. Параметры элементарной ячейки: a = 7.349 (2), b = 14.164 (2), c = 7.130 (1) Å, V = 742.2 (4) Å³.

ИК-спектр коробицынита очень близок к спектру ненадкевичита, но существенно отличается от спектра лабунцовита (рис. 2, табл. 3). Расшепление полосы валентных колебаний Si—O—Si (область 1000—1150 см⁻¹) в спектре лабунцовита в отличие от коробицынита и ненадкевичита, видимо, является следствием упорядоченного распределения внекаркасных катионов в моноклинных минералах. Тот факт, что полоса при 1633 см⁻¹ в спектре коробицынита не расщеплена, говорит об однотипности всех молекул воды по силе водородной связи. Действительно, структурное исследование показывает, что в коробицыните присутствуют только водородные связи H_2O — H_2O , тогда как в лабунцовитах установлены и H-связи типа H_2O —(O, OH). Этим объясняется также отсутствие в ИК-спектрах коробицынита и ненадкевичита полос, соответствующих колебаниям прочносвязанной H_2O в отличие от спектров лабунцовита, где эти полосы интенсивны. Такие различия влияют и на поведение минералов при нагревании: из коробицынита вода удаляется полностью уже при 360 °C, тогда как из лабунцовита — только при 500 °C.

Условия нахождения и морфология. Коробицынит встречен в материале из подземных выработок на горах Аллуайв и Карнасурт в Ловозерском массиве. На горе Аллуайв он найден в гигантском пегматитовом теле, секущем породы дифференцированного комплекса уртитов—фойяитов—луявритов. Краевая зона пегматита состоит из блоков микроклина и гакманита с подчиненными количествами арфведсонита, лоренценита, эгирина и катаплеито-эльпидитовых псевдоморфоз по эвдиа-

Полосы в ИК-спектрах коробицынита (1), ненадкевичита (2) и лабунцовита (3)

1	2	3	Характеристика
		3625	voн (свободные OH ⁻)
3500	3510	3450	VOH (H-связанные ОН- H2O)
3390	3405	3145	
3250	3250		,
1633	1628	1650	бнон (Н2О)
· · ·		1545	
1118	1124	1076	
		1051	VSi-O-Si
		1021	
959	964	945	1101 0
919	917	930	VSI-O
750	750	765	«Кольцевая полоса»
667	668	679	V(Ti, Nb)—O
		571	
454	468	453	δ _{Si-O-Si}
	449		

Bands frequencies (cm^{-1}) in IR spectra of korobitsynite (1), nenadkevichite (2) and labuntsovite (3) — see fig. 2

Примечание. v — полосы, отвечающие валентным колебаниям, δ — деформационным. Частоты (см $^{-1}$) соответствуют рис. 2.

литу, а ядро преимущественно сложено зеленым игольчатым эгирином и альбитом. Пегматит весьма необычен для Ловозера: наряду с минералами ультраагпаитовых парагенезисов он содержит гнезда кварца до 0.5 м. В ядре находится мощная линза содовых минералов, вмещающая скопления шомиокита-(Y).

Коробицынит — гидротермальный минерал, встреченный только в полостях, в составе трех ассоциаций: 1) в небольших линзовидных гнездах у контакта с луявритом, где его спутниками являются альбит, эгирин, шортит, Fe-родохрозит, эпидидимит, лейфит, тайниолит, пирротин, термонатрит, нахпоит и аморфный битум; 2) в кавернах ядра пегматита с альбитом, эгирином, эльпидитом, лоренценитом, сфалеритом, галенитом, шомиокитом-(Y), троной, натроном и натроксалатом; 3) в полостях альбитовых гнезд с эльпидитом, кварцем, эгирином, сидоренкитом, эпидидимитом, сфалеритом, леллингитом, пирротином и беловитом-(Ce). Наряду с коробицынитом в данном пегматите встречается и макроскопически неотличимый от него ненадкевичит (Nb > Ti) — рис. 1. Кристаллы коробицынита призматические до игольчатых, иногда досковидные, нередко расщеплены и собраны в пучки. Крупные (до 2 см в длину) индивиды более грубые, со штриховкой вдоль удлинения, мелкие кристаллы имеют четкую огранку. В двух последних ассоциациях кристаллы коробицынита практически всегда находятся в эпитаксических срастаниях с эльпидитом (рис. 3).

На горе Карнасурт коробицынит найден в гнездах темно-бурого скрытокристаллического NaFe-гидросиликата в полевошпато-эгириновой зоне пегматита вместе с натролитом, апофиллитом, флюоритом, сфалеритом, галенитом и молибденитом. Он образует призматические зерна до 1 мм, тесно срастающиеся с эльпидитом (эпитаксия) и лабунцовитом (незакономерные сростки).

Кристаллы с горы Аллуайв были измерены с помощью двукружного гониометра ГД-1 и вычерчены (рис. 3) в установке b > a > c, принятой при изучении структуры минерала. Наиболее обычны грани форм {110}, {001} и {010}, иногда обнаруживаются также грани {100} и {021} (рис. 3). Сферические координаты граней призм следу-

а-е - кристаллы с горы Аллуайв; г -- оптическая ориентировка; д -- эпитаксическое нарастание на игольчатый кристалл эльпидита (заштрихован).

Fig. 3. Korobitsynite.

a-e - crystal drawings; e - optical orientation; ∂ - epitaxial overgrowth on elpidite needle-shaped crystal (ruled).

ющие (в скобках даны вычисленные значения) — {110}: $\rho = 90^{\circ}$, $\varphi = 62.5^{\circ}$ (62°34'); {021}: $\rho = 46.5^{\circ}$ (45°12'), $\varphi = 0^{\circ}$. Геометрические константы кристаллов коробицынита, вычисленные по результатам гониометрических измерений a:b:c = 0.519:1:0.527, а рассчитанные из рентгеновских данных — 0.5189:1:0.5034.

Физические свойства. Коробицынит бесцветный, прозрачный, с сильным стеклянным блеском и белой чертой, хрупкий. Наблюдается несовершенная спайность по (100), излом неровный. Твердость по Моосу ~5, средняя твердость микровдавливания, измеренная Д. К. Щербачевым, составляет 620 ± 50 кг/мм² при нагрузке 25 г. Плотность, определенная микрообъемометрическим методом, равна 2.72, рентгеновская — 2.69, вычисленная по соотношению Гладстона—Дейла — 2.68 г/см³.

Минерал оптически двуосный, положительный. Оптическая ориентировка: $N_p = b$, $N_m = c$, $N_g = a$ (рис. 3). Показатели преломления и значения угла 2V для образцов с различным составом следующие:

	N_p	N_m	N_g	2 <i>V</i> _{ИЗМ}	$2V_{\rm выч}$
1. Аллуайв, одиночный кристалл	1.646 (2)	1.654 (2)	1.763 (5)	30 (1)°	32°
2. Аллуайв, сросток с эльпидитом	1.650 (2)	1.658 (2)	1.775 (5)	. 30 (1)°	30°
3. Карнасурт	1.648 (2)	1.656 (2)	1.780 (5)	30 (1)°	30°

Срастания с другими минералами. Как на горе Аллуайв, так и на горе Карнасурт найдены ориентированные срастания коробицынита с эльпидитом. Причиной такой устойчивой эпитаксии, вероятно, является очень близкое сходство размеров и конфигурации ромбических ячеек: для эльпидита a = 7.31, b = 14.68, c = 7.13 Å (Сапожников, Кашаев, 1980), для коробицынита a = 7.35, b = 14.16, c = 7.13 Å. Оптическое изучение сростков показало, что индивиды этих минералов ориентированы так: $N_{p \Rightarrow n} = N_{m \text{кор}}, N_{m \Rightarrow n} = N_{p \text{кор}}, N_{g \Rightarrow n} = N_{g \text{кор}}$ (рис. 3), что соответствует следующей ориентировке кристаялов: $a_{3n} = c_{\text{кор}}, b_{3n} = b_{\text{кор}}, c_{3n} = a_{\text{кор}}$. Возможно, свою роль играет и то, что при такой взаимной ориентировке направление цепочек (Ti, Nb)-октаэдров в структуре коробицынита вдоль a совпадает с направлением лент Si, O-тетраэдров в структуре эльпидита, вытянутых вдоль с. Недавно были описаны сходные сростки из пегматитов Нарсарсука, Ю. Гренландия: здесь таблички псевдоромбического (микросдвойникованного моноклинного) «К-доминантного ненадкевичита» (вуориярвита?) эпитаксически нарастают на призмы эльпидита. Авторы данной работы фиксируют два типа ориентировки кристаллов (Petersen e. a., 1996), причем оба отличаются от установленного нами. Если привести установку «К-доминантного ненадкевичита» из Нарсарсука к нашей установке коробицынита, получим для него: 1) $a_{2n} = b_{\text{нен}}, b_{2n} = a_{\text{нен}}, c_{2n} = c_{\text{нен}},$ 2) $a_{3\pi} = a_{\text{нен}}, b_{3\pi} = b_{\text{нен}}, c_{3\pi} = c_{\text{нен}}$. Параллельные сростки лабунцовита (?) с эльпидитом отмечались Е. И. Семеновым (1972) в пегматите горы Куфтньюн, Ловозеро. Таким образом, эльпидит и минералы семейства лабунцовита-ненадкевичита могут образовывать эпитаксические срастания как минимум трех типов. Интересно, что на горе Карнасурт установлены сростки одновременно трех минералов — коробицынита, эльпидита и лабунцовита, и если с эльпидитом коробицынит срастается эпитаксически, то с лабунцовитом оба этих минерала дают незакономерные срастания, что еще раз подчеркивает серьезные структурные различия между ромбическими и моноклинными членами семейства лабунцовита-ненадкевичита.

Эталонные образцы коробицынита переданы в Минералогический музей им. А. Е. Ферсмана РАН в Москве.

Авторы благодарят В. Г. Шлыкова и Д. К. Щербачева за помощь. Работа выполнена при финансовой поддержке РФФИ, проект № 97-05-65127. Проведение микрозондовых исследований на кафедре минералогии МГУ стало возможным благодаря контракту с Министерством природных ресурсов РФ.

Список литературы

Булах А. Г., Евдокимов М. Д. Особенности кристаллохимии лабунцовита и ненадкевичита // Вестн. ЛГУ. 1973. В. 24. С. 15—22.

Кузьменко М. В., Казакова М. Е. Ненадкевичит — новый минерал // Докл. АН СССР. 1955. T. 100. № 6. C. 1159–1160.

Органова Н. И., Архипенко Д. К., Диков Ю. П. и др. Структурные особенности новой калийсодержащей разновидности лабунцовита и ее место в семействе лабунцовит-ненадкевичит // Минер.

журн. 1981. Т. 3. № 2. С. 49—63. Органова Н. И., Шлюкова З. В., Забавникова Н. И. и др. О кристаллохимии лабунцовита и не-

надкевичита // Изв. АН СССР. Сер. геол. 1976. № 2. С. 98-116. Расцветаева Р. К., Чуканов Н. В., Пеков И. В. Кристаллическая структура нового минерала — титанового аналога ромбического ненадкевичита // Докл. РАН. 1997. Т. 357. № 3. С. 364-367.

Сапожников А. Н., Кашаев А. А. Кристаллическая структура прокаленного Са-содержащего эльпидита // Кристаллография. 1980. Т. 25. № 3. С. 620—623.

Семенов Е. И. Изоморфный ряд лабунцовит-ненадкевичит // Тр. ИМГРЭ. 1959. В. 2. C. 102—109.

Семенов Е. И. Минералогия Ловозерского щелочного массива. М., 1972. 305 с.

Семенов Е. И. Минералогия щелочного массива Илимаусак. М., 1969. 165 с.

Horvath L., Pfenniger-Horvath E., Gault R. A., Tarasoff P. Mineralogy of the Saint-Amable Sill, Varennes and Saint-Amable, Quebec // Miner. Record. 1998. Vol. 29. N 2. P. 83–118. Karup-Moeller S. Nenadkevichite from the Ilimaussaq intrusion in South Greenland // N. Jb. Miner.

Mh. 1986. P. 49-58.

Perrault G, Boucher C., Vicat J. e. a. Structure cristalline du Nenadkevichite (Na, K)₂-x(Nb, Ti)(O, OH)(Si₂O₆) · 2H₂O # Acta cryst. **1973**. B. 29. N 7. P. 1432–1438. Petersen O. V., Gault R. A., Leonardsen E. S. A K-dominant nenadkevichite from the Narssarssuk peg-

matite, South Greenland // N. Jb. Miner. Mh. 1996. P. 103-113.

Поступила в редакцию 25 сентября 1998 г.