калийсаданагант — отмечен в амфиболовом миаските близ контакта его с фирситом.

Для миаскитов характерны амфиболы: гастингсит, ферритарамит, калийсаданагант в зоне контакта с фирситом, а также калийферритарамит в жильных телах. Саданагант и ферропаргасит являются породообразующими минералами фирситов. Различие составов амфиболов миаскитов и фирситов может свидетельствовать о различии *P*—*T* условий образования этих пород при формировании миаскитового комплекса, что соответственно определяет фазовые переходы составов амфиболов.

Список литературы

Баженов А. Г., Баженова Л. Ф., Поляков В. О. Саданагант из щелочного комплекса Ильменских гор И ЗВМО. 1988. Вып. 1. С. 74—78.

Баженов А. Г., Баженова Л. Ф., Кринова Т. В., Хворов П. В. Калийферрисаданагант (K,Na)Ca₂(Fe²⁺, Mg)₃(Fe³⁺,Al)₂[Si₅Al₃O₂₂(OH)₂] — новый минеральный вид в группе амфиболов (Ильменские горы, Урал) // ЗВМО. **1999**. № 4. С. 50—55.

Левин В. Я. Щелочная провинция Ильменских—Вишневых гор (формация нефелиновых сиенитов Урала). М.: Наука, **1974**. 223 с.

Лик Б. Е. и др. Номенклатура амфиболов: доклад подкомитета по амфиболам Комиссии по новым минералам и названиям минералов Международной Минералогической Ассоциации (КНМНМ ММА) // ЗВМО. 1997. № 6. С. 82—102.

Никандров С. Н., Вализер П. М., Кобяшев Ю. С. Матричная модель номенклатуры амфиболов // Изв. Челяб. науч. центра. 1999. Вып. 1. С. 40-47.

Саданагаит. Минералы: Справочник. Т. IV, вып. 3. М.: Наука, 1996. С. 351-353.

Поляков В. О., Баженов А. Г. Первая находка магнезиосаданагаита в России // Урал. минер. сб. № 8. Миасс: Имин УрО РАН, 1998. С. 249—251.

Domeneghetti M. C., Oberti R., Ungaretti Ghezzo C., Memmi I., Ricci C. Chemical variations the amphiboles of an equilibrated amphibolite from north-eastern Sardinia (Itali): crystalchemical and petrological implications # «14th Gen. Meet. Int. Miner. Assoc., Stanford, Calif., 13—18 July, **1986**. Abstr. Program.» Washington, D., C., **1986**. P. 92.

Leake B. E. e. a. Nomenclature of amphiboles: report of the Subcommittee on amphiboles of the International Mineralogical Association, Commission on new minerals and mineral names // Canad. Miner. 1997. Vol. 35. N 1. P. 219-246.

Mogessie A., Purtscheller F., Tessardi R. High alumina calcic amphiboles (aluminopargasite-magnesiosadanagaite) from metabasites and metacarbonates of Central Oetztal, Eastern Alps (Northern Tyrol, Austria) // Neues Jahrb. Miner, Abh. 1986. Bd 154. N 1. S. 21-39.

Shimazaki H., Bunno M., Ozawa T. Sadanagaite and magnesio-sadanagaite, new silica-poor members of calcic amphibole from Japan # Amer. Miner. 1984. Vol. 69. N 5-6. P. 465-471.

Поступила в редакцию 14 сентября 1999 г.

УДК 549.754

3BMO, № 1, 2001 г. Proc. RMS, N 1, 2001

© Д. члены В. И. СИЛАЕВ, В. Н. ФИЛИППОВ, М. Ю. СОКЕРИН

ТВЕРДЫЕ РАСТВОРЫ ВУДХАУЗЕИТ—СВАНБЕРГИТ—ФЛОРЕНСИТ ВО ВТОРИЧНЫХ КВАРЦИТАХ

V. I. SILAEV, V. N. FILIPPOV, M. Yu. SOKERIN. SOLID SOLUTIONS OF WOODHOUSEITE—SVANBERGITE—FLORENCITE IN SECONDARY QUARTZITES

Институт геологии Коми НЦ УрО РАН, 167982, Сыктывкар, Первомайская, 54, E-mail: Sokerin@geo.komisc.ru

Aluminium sulphate-phosphates association of variable composition has been found, reflecting a nearly continuous transition from florencites to REE-bearing woodhouseite-svanbergites (harttites) and further to Sr woodhouseite. The studied minerals occur as homogeneous ordered solid solutions, which composition varies depending on heterovalent combinatory isomorphism according to the following scheme: (Ca, Sr, Ba)²⁺[SO4]²⁻ \leftrightarrow REE³⁺[PO4]³⁺.

В настоящее время известно множество природных арсенат-сульфат-фосфатных соединений, общую формулу которых можно представить как RA₃X₂(OH)₆, где R — Ca, Sr, Ba, Pb, Bi, REE, K, Na, NH₄, H₃O; A — Al, Fe³⁺, Fe³⁺, X — комплексные анионы [PO₄]³⁻, [HPO₄]²⁻, [SO₄]²⁻, [SiO₄]⁴⁻, [AsO₄]³⁻. Центральное

место среди упомянутых соединений занимают вудхаузеит — CaAl3[PO4][SO4](OH)6, сванбергит — SrAl3[PO4][SO4](OH)6 и флоренситы — (Ce, La, Nd)Al3[PO4]2(OH)6, выявленные и описанные в самых разных по генезису геологических объектах (Буканов и др., 1973; Булгакова, 1973; Гладковский, Храмцов, 1968; Гладковский и др., 1971; Сомина, Булах, 1966; Казицын, 1965; Кузнецова и др., 1976; Луканина, 1969; Никитина и др., 1963; Гладковский и др., 1971; Швецова и др., 1989; Gomes, 1968; Fijal, Nies, 1977; Ygeberg, 1965; Switzer, 1949).

Алюминиевые сульфат-фосфаты (или APS-минералы, по: Stroffregen, Alpers, 1987) являются строго изоструктурными соединениями, кристаллизующимися в тригональной сингонии, дитригонально-скаленоэдрическом виде симметрии, пр. гр. $R \ \bar{3} \ m$ (Pabst, 1947; Белов, 1967; Kato, 1971; Kato, Miura, 1977). Тем не менее вопреки структурной тождественности эти минералы традиционно относят к разным минеральным группам и даже классам (Lemmon, 1937; Поваренных, 1966; Кашкай, 1969; Wise, 1975; Минералогические таблицы, 1981; Флейшер, 1990) на основании, вероятно, представлений об их химической индивидуальности. Последнее, однако, уже подвергалось серьезному сомнению (Stroffregen, Alpers, 1987), а в настоящее

время может быть решительно оспорено. Проведенные нами исследования Литошкинского¹ проявления вторичных кварцитов на Полярном Урале показали, что вудхаузеит, сванбергит и флоренситы образуют на самом деле единую систему упорядоченных твердых растворов, в которых почти непрерывно и согласованно происходят изоморфные замещения как в катионной (Ca, Sr, REE), так и анионной (P, S) подрешетках.

ГЕОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА МИНЕРАЛОПРОЯВЛЕНИЯ

Исследуемое проявление приурочено к южному крылу Лонготъюганского глубинного разлома и локализуется в подвергнувшихся гранитизации вулканогенноосадочных породах среднего-позднего рифея (рис. 1, А). Здесь откартировано линзовидное тело вторичных, интенсивно минерализованных кварцитов, субсогласно залегающее среди метаандезибазальтов и аповулканогенных сланцев. Общая протяженность линзы достигает 500 м, мощность колеблется от 10 м на участке пережима до 20-25 м в раздувах (рис. 1, б). Кварциты представляют собой массивные, иногда с тенденцией к грубой плитчатости тонко-среднезернистые породы сероватого или серовато-кремового цвета, разбитые штокверком секущих и субсогласных жил и прожилок молочно-белого кварца. Ореол наложенного окварцевания выходит далеко за пределы кварцитов, образуя во вмещающих сланцах самостоятельную систему кварцевых жил. Мощность таких жил достигает 0.5 м.

Рассматриваемая минерализация установлена как в кварцитах, так и в более поздних кварцевых жилах. В обеих ситуациях она определяется вссьма редким и сложным парагенезисом гематита и рутила с железомагнезиальными, редкометалльными и редкоземельными аломосиликатами, алюминиевыми фосфатами и сульфат-фосфатами. Подобные парагенезисы обнару-

Рис. 1. Геологическая позиция (A) и строение Литошкинского проявления (Б) вторичных кварцитов.

 2 — вулканогенная (1) и терригенно-карбонатная (2) свиты среднего-позднего рифея (няровейский комплекс); 3 — гранитные интрузии; 4 — гипербазиты массива Сыумкеу; 5 — вторичные кварциты; 6 — жилы молочно-белого кварца; 7 — приосевая зона пиритизации; 8 — богатая минерализация лазулита; 9 — обогащение крупнопластинчатым гематитом и хлоритовдом; 10 — тектонические нарушения; 11 — местоположение Литошкинского проявления на геологическом плане.

Fig. 1. Geological setting (A) and the structure (B) of Litoshkinskoye occurrence of secondary quartzites.

1 Названо по фамилии первооткрывателя Д. Н. Литошко.

жены к настоящему времени лишь на нескольких объектах в США, Швеции и России (Рипп, Канакин, 1998). В состав исследуемой минеральной ассоциации входят дистен, хлоритоид, Sc-Hf цирконы, апатит, минералы серии лазулит-скорцалит-барбосалит, саркопсид, чилдренит, алюминиевые сульфат-фосфаты, ксенотим, монацит, беловит, стерретит и некоторые другие (Литошко, Буканов, 1989).

Распределение основных из перечисленных минералов в плане и разрезе кварцитовой линзы Литошкинского проявления характеризуется нечетко выраженной зональностью (рис. 1, Б). Лежачий бок линзы несколько обогащен гематитом и хлоритоидом, приосевая часть — лазулитом, висячий бок — дистеном и алюминиевыми сульфат-фосфатами. Кроме того, вдоль осевой линии линзы протягивается маломощная (до 0.5 м) зонка интенсивной пиритизации кварцитов, практически не содержащих фосфатной минерализации. Онтогенетические исследования показали, что отмеченная выше сульфат-фосфатная и алюмосиликатная минерализация является наложенной на кварциты и, вероятно, сопряженной по времени с поздним гнездово-прожилковым окварцеванием.

РАЗМЕР, МОРФОЛОГИЯ, СОСТАВ И ВНУТРЕННЕЕ СТРОЕНИЕ выделений алюминиевых сульфат-фосфатов

Исследуемые минералы представлены редкой вкрапленностью отдельных зерен субмикронно-миллиметровых размеров. Их изучение проводилось ИК спектроскопическим методом и на сканирующем электронном микроскопе JSM-6400, оснашенном энергетическим спектрометром фирмы Link и волновым — Microsрес. В качестве объектов изучения использовались полированные препараты. Измерение концентраций элементов осуществлялось с применением аттестованных стандартов. Формулы минералов рассчитывались на основе атомных количеств P + S = 2, что считается наиболее предпочтительным с кристаллохимической точки зрения (Jambor, 1999). Содержание ОН-групп определялось по балансу зарядов.

Проведенные исследования показали, что все зерна алюминиевых сульфат-фосфатов могут быть подразделены на три типа: гетерофазные, гомофазные неоднородные и гомофазные однородные по составу.

Гетерофазные зерна представляют собой субизометричные, часто псевдокубического габитуса выделения, размер которых варьирует от 15 × 15 до 150 × 150 мкм, составляя в среднем 60 × 60 мкм (рис. 2). По своей морфологии рассматриваемые зерна отвечают «кубооктаэдрическому» типу выделений поздней генерации флоренсита в карбонатитах (Сомина, Булах, 1966). Эмпирические формулы минералов, рассчитанные по данным рентгеноспектрального анализа, в точках, указанных на рис. 2, следующие:

- $1.1 (Ca_{0.19}Sr_{0.02}La_{0.31}Ce_{0.41}Nd_{0.05})_{0.98}Al_{2.89}[(PO_4)_{1.9}(SO_4)_{0.1}](OH)_{5.5}$
- $1.2 (Ca_{0.41}Sr_{0.27}La_{0.04}Ce_{0.11}Nd_{0.05})_{0.88}Al_{2.93}[(PO_4)_{1.33}(SO_4)_{0.67}](OH)_{5.42}$
- $1.3 (Ca_{0.54}Sr_{0.28}Ce_{0.06}Nd_{0.03})_{0.91}Al_{2.97}Al_{2.97}[(PO_4)_{1.22}(SO_4)_{0.78}](OH)_{5.6}$
- $1.4 (Ca_{0.51}Sr_{0.33}Ce_{0.04}Nd_{0.01})_{0.89}Al_{2.97}[(PO_4)_{1.1}(SO_4)_{0.9}](OH)_{5.64}$
- $1.5 (Ca_{0.93}Sr_{0.05})_{0.98}Al_{2.83}[(PO_4)_{1.36}(SO_4)_{0.64}](OH)_{5.09}$
- $2.1 (Ca_{0.2}Sr_{0.13}La_{0.16}Ce_{0.32}Nd_{0.08})_{0.89}(Al_{2.68}Fe_{0.25})_{2.93}[(PO_4)_{1.66}(SO_4)_{0.27}](OH)_{5.61}$
- $2.2 (Ca_{0.33}Sr_{0.48}Ce_{0.04}Nd_{0.03})_{0.88}(Al_{2.94}Fe_{0.02})_{2.96}[(PO_4)_{1.14}(SO_4)_{0.77}(SiO_4)_{0.09}](OH)_{5.75}$
- $2.3 (Ca_{0.5}Sr_{0.46}Ba_{0.03})_{0.99}(Al_{2.93}Fe_{0.05})_{2.98}[(PO_4)_{1.58}(SO_4)_{0.35}(SiO_4)_{0.07}](OH)_{5.2}$
- $3.1 Ca_{0.06}La_{0.23}Ce_{0.46}Pr_{0.05}Nd_{0.15})_{0.95}Al_{2.91}[(PO_4)_{1.92}(SO_4)_{0.08}](OH)_{5.37}$
- $3.2 (Ca_{0.26}Sr_{0.27}La_{0.08}Ce_{0.2}Pr_{0.03}Nd_{0.07})_{0.91}(Al_{2.59}Fe_{0.39})_{2.98}[(PO_4)_{1.44}(SO_4)_{0.56}](OH)_{5.7}$
- $3.3 (Ca_{0.35}Sr_{0.32}La_{0.06}Ce_{0.14}Nd_{0.07})_{0.94}(Al_{2.74}Fe_{0.21})_{2.95}[(PO_4)_{1.4}(SO_4)_{0.6}](OH)_{5.6}$
- $3.4 (Ca_{0.34}Sr_{0.44}Ce_{0.01})Al_{2.78}[(PO_4)_{0.93}(SO_4)_{1.07}](OH)_{5.0}$
- $3.5 (Ca_{0.88}Sr_{0.07})_{0.95}Al_{2.95}[(PO_4)_{1.1}(SO_4)_{0.9}](OH)_{5.65}$
- $4.1 (Ca_{0.07}SO_{0.04}La_{0.12}Ce_{0.48}Nd_{0.16})_{0.87}Al_{2.84}[(PO_4)_{1.92}(SO_4)_{0.08}](OH)_{5.1}$
- $4.2 (Ca_{0.26}Sr_{0.32}La_{0.07}Ce_{0.15}Nd_{0.08})_{0.88}(Al_{2.65}Fe_{0.28})_{2.93}[(PO_4)_{1.44}(SO_4)_{0.56}](OH)_{5.41}$
- $4.3 (Ca_{0.39}Sr_{0.53})_{0.92}Al_{2.99}[(PO_4)_{1,1}(SO_4)_{0.9}](OH)_{5.71}$
- $-(Ca_{0.8}Sr_{0.16})_{0.96}Al_{2.98}[(PO_4)_{1.06}(SO_4)_{0.94}](OH)_{5.8}$ 4.4
- $5.1 (Ca_{0.27}Sr_{0.34}La_{0.07}Ce_{0.15}Nd_{0.04})_{0.87}Al_{2.93}[(PO_4)_{1.4}(SO_4)_{0.6}](OH)_{5.39}$
- $\begin{array}{l} 5.2 & (Ca_{0.3})Sr_{0.3}La_{0.04}Ce_{0.15}Nd_{0.08}).a_{8}Al_{2.9}((PO_4)_{1.38}(SO_4)_{0.62})(OH)_{5.37}\\ 5.3 & (Ca_{0.5}Sr_{0.32}Ce_{0.06}Nd_{0.03})_{0.91}Al_{2.96}((PO_4)_{1.19}(SO_4)_{0.81})(OH)_{5.6} \end{array}$
- $5.4 (Ca_{0.55}Sr_{0.33}Ce_{0.03})_{0.91}(Al_{2.97}Fe_{0.01})_{2.98}[(PO_4)_{1.11}(SO_4)_{0.89}](OH)_{5.68}$
- $5.5 (Ca_{0.53}Sr_{0.36})_{0.89}(Al_{2.96}Fe_{0.02})_{2.98}[(PO_4)_{1.0}(SO_4)_{1.0}](OH)_{5.72}$
- $5.6 (Ca_{0.86}Sr_{0.1})_{0.96}Al_{2.95}[(PO_4)_{1.07}(SO_4)_{0.93}](OH)_{5.7}$
- $\begin{array}{l} 6.1 & (Ca_{0.27}Sr_{0.45}La_{0.05}Co_{0.05}Nd_{0.05})_{0.85}Al_{2.96}[(PO_4)_{1.32}(SO_4)_{0.68}](OH)_{5.39}\\ 6.2 & (Ca_{0.24}Sr_{0.49}Ce_{0.08}Nd_{0.05})_{0.86}Al_{2.97}[(PO_4)_{1.27}(SO_4)_{0.73}](OH)_{5.49} \end{array}$
- $6.3 Ca_{0.31}Sr_{0.53}Ce_{0.03}Nd_{0.03})_{0.9}Al_{2.97}[(PO_4)_{1.19}(SO_4)_{0.81}](OH)_{5.58}$
- 6.4 -- (Ca0.4Sr0.51)0.91Al2.99[(PO4)1.17(SO4)0.83](OH)5.62

В пределах исследуемых гетерофазных зерен всегда имеется ядро величиной от 5 × 8 до 40-60 мкм, отделенное резкой межфазовой границей от окружающей его оболочки. Объемные соотношения ядер с оболочками в изученных нами гетерофазных зернах колебались от 2 до 20 %, лишь изредка достигая 40-45 %. По составу ядра представлены Sr-Ca-содержащими флоренситами и REE-содержащими вудхаузеит-сванбергитами, т. е. харттитами (по: Tavora, 1951). В флоренситах доля REE от суммы октаэдрических катионов в позициях R составляет 80—95, а в REE харттитах — 60—70 %. При этом атомное отношение Sr/Ca в ядрах колеблется от 0.1 до 0.71, достигая в среднем 0.25. Сульфат-фосфатная пропорция (SO4/PO4) здесь изменяется в узких пределах — от 0.04 до 0.16, определяясь в среднем как 0.07.

101

Рис. 2. Морфология и внутреннее строение гетерофазных (1-4) и гомофазных (5, 6) зерен алюминиевых сульфат-фосфатов.

Fig. 2. Morphology and internal structure of heterophase (1-4) and homophase (5, 6) grains of the aluminiferous sulfate-phosphates.

Оболочки в гетерофазных зернах сложены в основном REE-содержащими харттитами и характеризуются мозаичной или ламеллевидной неоднородностью состава. Доля REE от суммы катионов колеблется здесь в пределах 0—40 %, достигая в среднем 18 %. Стронциево-кальциевое отношение определяется интервалом 0.5—1.67 (в среднем — 0.93), а сульфат-фосфатная пропорция варьирует от 0.3 до 1.2, составляя в среднем 0.64.

Следует отметить, что описанная выше зональность гетерофазных зерен алюминиевых сульфат-фосфатов вообще не является единственно возможной. В литературе приведены факты находок подобных зерен и зерен с обратной последовательностью зон, т. е. харттитовыми ядрами и флоренситовыми оболочками (Ширяева и др., 1990).

Гомофазные неоднородные по составу выделения наблюдаются в ассоциации с гетерофазными. Они также представлены отдельными, субизометричными зернами, реже встречаются гломерообразные сростки. В некоторых случаях индивиды имеют, по-видимому, скаленоэдрический габитус (рис. 2). Размер гомофазных зерен изменяется от 15 × 25 до 85 × 90 мкм. В них так же, как и в оболочках гетерофазных зерен, фиксируется мозаичная, ламеллевидная, иногда секториальная неоднородность состава (рис. 2, 5—6). При этом размеры относительно однородных участков колеблются от 1 × 2 до 15 × 55 мкм. По составу гомофазные неоднородные зерна так же, как и оболочки гетерофазных выделений, сложены REE харттитами. В последних доля REE от суммы R-катионов варьирует в интервале 0—30 % (среднее — 14 %), а стронцие-

во-кальциевое отношение изменяется от 0.59 до 2.5, стремясь в среднем к эквиатомному балансу (0.98). Сульфат-фосфатная пропорция колеблется здесь в пределах 0.43—0.1 (среднее — 0.63).

Гомофазные однородные по составу зерна алюминиевых сульфат-фосфатов встречаются либо отдельно, либо в виде каемок нарастания на зерна выше описанных типов. Размер этих образований лежит в тех же пределах, что и размеры зерен вышеописанных типов. По составу гомофазные однородные зерна отвечают харттитам и Sr-содержащему вудхаузеиту. Весьма характерно практически полное отсутствие в них редких земель. Стронциево-кальциевое отношение колеблется от 0.08 до 1.36 (среднее — 0.18), а сульфат-фосфатная пропорция — от 0.82 до 1.15 % (0.91).

Обобщение приведенных выше данных позволяет сделать следующий вывод. В Литошкинском проявлении вторичных кварцитов получил развитие единый ряд минералов переменного состава, отражающий последовательные и закономерные переходы от Sr-Ca-содержащих флоренситов (ядра гетерофазных зерен) к REE харттитам (оболочки гетерофазных зерен и гомофазные неоднородные выделения) и далее к не содержащему REE харттиту и Sr вудхаузеиту. Гомогенность и упорядоченность этих алюмосульфатфосфатов подтверждается результатами ИК спектроскопии. Полученные спектры (Specord M80 и UR-20, область 400---4000 см⁻¹, порошки, 20 С) имеют явно аддитивный характер, органично складываясь из полос ИК поглощения, отвечающих деформационным (v4) и валентным (v3) колебаниям как фосфатных, так и сульфатных радикалов: v4 — 470, 530-540, 605, 620-635, 660; v3 — 1040, 1105-1115, 1215 см⁻¹.

ХИМИЧЕСКИЙ СОСТАВ И КРИСТАЛЛОХИМИЯ АЛЮМИНИЕВЫХ СУЛЬФАТ-ФОСФАТОВ

Химический состав алюминиевых сульфат-фосфатов охарактеризован нами на основании 52 оригинальных микрозондовых анализов и 48 анализов, заимствованных из литературы (Луканина, 1959; Никитина и др., 1963; Gomes, 1968; Гладковский и др., 1971; Булгакова, 1973; Stroffregen, Alpers, 1987; Швецова и др., 1989). Полученные данные позволяют сделать ряд общих выводов.

Исследуемые минералы представляют собой множество промежуточных сульфат-фосфатных соединений Al, Ca, Sr, La, Ce, Nd, в которых в качестве редких примесей выступают изоморфно к стронцию — Ba, к основным лантаноидам — Pr, Th, очень редко Sm, к алюминию — Fe, к фосфору и сере — Si (табл. 1, 2). Корреляционный анализ свидетельствует о сильной конкуренции в составе алюминиевых сульфат-фосфатов двух групп компонентов, имеющих между собой в группах сильные положительные связи: [Ca + Al + S] и [REE + Fe + P]. Кроме того, выявляется резкий антагонизм Sr как по отношению к Ca, так и по отношению к REE. Обращает также на себя внимание значимая отрицательная корреляция между Sr и P (табл. 3).

Охарактеризованная выше система корреляций отражает, очевидно, конкуренцию в составе исследуемых минералов вудхаузеитового, сванбергитового и флоренситового миналов, т. е. указывает на эти минералы как на твердые растворы. При этом лишь 20—25 % изученных составов отвечают бинарным рядам вудхаузеит—сванбергит и вудхаузеит—флоренсит (рис. 3). Фигуративные точки остальных попадают в область трехкомпонентных растворов, образуя два сгущения, меньшее из которых (A) выражает состав Ca-Srсодержащих флоренситов (Б), а большее — состав REE харттитов, харттитов-REE и харттитов без редких земсль.

Наличие промежутка между выделенными полями А и Б относительно гомогенных составов алюминиевых сульфат-фосфатов говорит о существовании разрыва смесимости флоренситов с харттитами. Можно предполагать, что именно этому разрыву отвечает упомянутая выше фазовая граница между флоренситовыми ядрами и харттитовыми оболочками в гетерофазных зернах. В то же время вторая зафиксированная в агрегатах зерен фазовая граница между харттитами и Sr вудхаузеитами, напротив, никак не обнаруживает себя в нарушениях гомогенности бинарного ряда вудхаузеит—сванбергит. Обращает также на себя внимание скачкообразное проявление в вариациях состава REE харттитов тенденции к обогащению редкими землями именно высокостронциевой их разновидности.

Наконец, особое значение имеет вопрос распределения в составе алюминиевых сульфат-фосфатов основных редких земель. Важность этого обстоятельства состоит в том, что в рамках современной минералогической систематики выделяются три самостоятельных вида флоренситов — лантановый, цериевый и неодимовый (Флейшер, 1990). Полученные нами данные показывают, однако, что необходимой для такой номенклатуры флоренситов контрастности разделения в них редких земель не наблюдается. Напротив, изученные нами флоренситы и REE харттиты, характеризующиеся в целом «кларковой» тенденцией распределения редких земель Се > La > Nd > Pr, имеют достаточно смешанный состав REE, разделившись на две группы — Nd-La-Се и Nd-Се минералов (рис. 4).

Закономерный характер химического состава исследуемых минералов подтверждается достаточно строгим трендом их точек в координатах модулей, отражающих важнейшие кристаллохимические пропорции в катионной и анионной подрешетках (рис. 5). Линейный коэффициент корреляции этих модулей достигает 0.85. Непрерывность тренда точек состава алюминиевых сульфат-фосфатов нарушается лишь одним разрывом в области значений 0.8—0.9 анионного и 0.5—0.7 катионного модулей. Кроме того, здесь четко фиксируется предел вхождения серы в состав исследуемых соединений, практически совпадающий с эквиатомным соотношением S и P. Очевидно, что наращивание ряда твердых растворов вудхаузеит—сванбергит—флоренсит в сторону алунита, как это иногда предполагается (Stroffregen, Alpers, 1987; Jambor, 1999), может быть связано лишь с существенным замещением в катионной подрешетке ионов редких и щелочных земель более низкозарядными ионами, например ионами щелочных металлов. Однако в практическом смысле вопрос существования переходных к вудхаузеит-сванбергит-флоренситам разновидностей алунита остается открытым.

Таблица l

Химический	состав (мас. %)	алюминиевых с	ульфат-фосфатов і	из Литошкинского	проявления
Chemical composition ((wt %) of aluminife	rous sulfate-phos	phates from Litoshk	inskoye occurrence	of secondary quartzites

N₂	SiO ₂	TiO ₂	ThO ₂	Al ₂ O ₃	Fe ₂ O ₃	La ₂ O ₃	Ce ₂ O ₃	Pr ₂ O ₃	Nd ₂ O ₃	CaO	SrO	BaO	P ₂ O ₅	SO3	Сумма
1	_	_	_	38 38	_	_			_	13.83		_	21.41	16.88	90.5
· 2		_		35.1	_	_	_	_	_	12.22	_	0.88	19.86	14.3	82.36
2				38.17	_	_	_	_	· _	13 77		-	18 56	17.23	86.26
ر ۸	_	_	_	35.80			_	_		10.81	3 77		18.56	17.23	86.26
4	-		-	24.44	_					10.01	28	_	17.21	17.08	82.23
2	_	_	_	20 10	_	_	_	_	_	12.6	2.0		10.70	18 36	91.01
0	_	_		27.52	-	-	_	_	_	11.04	2.00 A 11		19.77	18.50	89.92
/	-	-	-	37.52	_	_	_		_	12.07	4.11		25 77	13.71	01.02
8	_	-	-	39.51	-	-		_	—	13.07	2 70	_	10.86	10.50	04 41
9	-	_	-	39.47	-		-	-	_	5.22	2.70	_	19.00	19.59	00.1
10	-	0.28	·	33.39	-	—	-	-	_	5.32	10.70	-	19.52	10.04	90.1
11	-	_	-	36.19	-	-	-	-	— .	5.17	13.0	-	18.30	17.14	90.00
12	-	-	—	36.73	· —	-		-	. —	5.4/	12.82	-	20.1	15.9	91.02
13	1.12	-	-	36.46	-	-	_	-		7.62	8.79	-	19.54	16.22	89.75
14	_	-	-	35.56	0.37	-			-	7.02	8.71	-	16.73	18.81	87.2
15	-	-	-	36.56	-	— .	-		-	4.72	14.04	- 1	20.14	16.09	91.55
16	-	-	-	33.93	-	-	-	-	-	6.36	10.1	-	17.12	16.4	83.91
17	_	—		35.17	-	-	-	-		5.07	12.64	-	18.79	15.68	87.35
18	2.56	— '	-	31.27	-	- 1	-	-	-	6.76	7.48	2.85	24.37	4.18	81.83
19	0.94	_	_	34.30	_	-	-	-	-	6.44	10.86	1.12	25.88	6.43	87.02
20	_	_	-	39.09	-	-		_	-	9.43	7.41	-	20.46	18.51	94.9
21	—	_	_	35.55	0.3	-	0.99	-		7.22	7.96	- 1	18.46	16.82	87.3
22	_	_	_	28.37	4.02	2.05	4.99	-	2.63	3.14	6.88	_	20.8	9.61	82.49
23		_	_	27.63	4.66	2.22	4.8	_	2.58	2.99	6.77	-	20.8	9.15	81.6
24	_	_	_	31.98	_	-	2.94		2.93	3.25	10.4	-	19.28	12.29	83.07
25			_	38.74	_	1.94	4.79		3.52	2.5	7.85	-	24.65	13.51	97.5
26	_	_	_	35.91	_	_	0.96	_	1.01	4.15	13.18	_	20.0	15.39	90.6
		5		1	1	1	1	1	1		1			•	•

		1	1	1	i	I	1	1	I	I	ł	I	1	1	ł
27	_	_	_	36.23	_	1.3	4.76	-	2.42	3.64	11.44	_	22.59	13.01	95.39
28	_	_	_	35.8		_	3.28	-	2.08	3.27	11.94		21.25	13.79	91.41
29	_	_	_	36.14	_	2.57	5.89	-	3.04	3.6	8.54	-	24.04	11.54	95.36
30	_ ·	_	-	37.05	_	_	2.37		1.0	6.91	8.18	-	20.74	15.84	92.09
31		_	-	35.41	-	2.64	5.91	—	3.2	4.19	7.65	-	23.43	11.82	94.25
32	-	-	_	37.63	-	2.02	5.09	-	2.46	5.68	6.93	-	23.95	12.45	96.71
33		-	—	36.99	-	-	3.03	—	1.5	6.67	7.71	-	20.81	15.69	92.4
34	_	_	-	36.39	_	—	1.37	-	0.84	7.04	8.2	-	18.92	17.17	89.93
35	—	-	—	39.05	_	_	2.48	_	1.11	7.75	7.59	-	22.39	16.0	96.37
36	_		_	38.36	_	1.58	4.58	-	2.52	5.76	7.26	-	24.22	13.73	98.01
37	_	-	_	37.5	-	_	1.42	-	0.8	7.04	8.38	-	19.29	17.79	90.94
38	1.13	-	_	33.64	-	-	1.61	-	0.87	4.11	11.16	-	18.18	13.86	84.91
39	_	-	<u> </u>	30.41	3.54	2.25	5.22	-	2.4	4.26	7.1	-	21.77	10.4	88.35
40	—	_		41.64	—	-	1.72	-	_	5.4	13.5	-	19.29	15.76	97.31
41	· _	_	0.81	29.08	2.34	6.81	15.36	- 1	4.62	0.97	0.84		28.01	1.68	90.52
42	-	—	0.57	26.2	6.13	2.37	6.42	1.07	2.38	2.93	5.76		20.27	8.92	83.02
43	0.74		0.62	26.5	3.84	4.91	9.89	-	2.75	2.1	2.72	-	22.96	4.24	82.15
44	-	—	-	28.36	4.42	3.01	7.44	-	2.63	2.77	5.49	-	22.89	7.68	84.69
45	-	—	-	29.39	5.03	3.17	6.69	-	3.04	2.96	6.07	-	23.79	8.4	88.54
46	-	-	—	32.08	<u> </u>	7.32	14.23	1.59	5.34	1.11	1.66	-	29.63	1.78	94.74
47		-	—	29.08	1.62	2.15	7.38	-	1.3	3.71	4.56	-	21.54	8.71	80.35
48	—	-	_	31.47		7.93	16.05	1.75	5.35	0.66	-	-	28.79	1.43	93.43
49	-	-		33.13		11.55	15.07	-	1.91	2.33	0.55	-	30.3	1.78	87.18
50	0.55	-		31.98	2.11	5.55	11.4	2.03	4.39	2.31	1.83	-	27.72	3.13	93.0
51	-	—	0.62	28.95	3.07	5.99	14.03	1.79	5.78	1.00	1.22	-	28.04	1.87	92.36
52	-	-	-	30.75	-	8.18	16.5	-	5.99	0.75	0.96		28.92	1.33	93.41

Примечание. № 1—9 — вудхаузеит и Sr вудхаузеит; № 10—20,— харттит; № 21—40 — харттит-REE и REE харттит; № 41—52 — флоренсит.

Таблица 2

Формульные коэффициенты атомов в формулах исследуемых алюминиевых сульфат-фосфатов (рассчитано на основе атомного количества P + S = 2)

(calculated on the base of $P + S = 2$ atomic quantities)															
·····	Минерал														
Атом	Sr вудхаузент			x	арттит		харт	тит-REE		REE харттит			Sr-Ca флоренсит		
	размах	X	ST	размах	X	Sx	размах	Ā	ST	размах	Ī	Sx	размах	Ī	Sx
Ca	0.8-0.97	0.89	0.06	0.34-0.65	0.48	0.1	0.23-0.55	0.37	0.11	0.23-0.32	0.26	0.04	0.060.2	0.11	0.06
Sr	0—0.16	0.07	0.06	0.27-0.55	0.44	0.09	0.26-0.53	0.37	0.08	0.21-0.27	0.25	0.03	0-0.09	0.05	0.03
Ba	0-0.15	0.03	0.03	0-0.08	0.01	0.02	-	-	-	-	-	-	_	_	-
La	-		-	_	_		0-0.07	0.02	0.03	0.07-0.09	0.08	0.01	0.12-0.31	0.2	0.06
Ce	_	—	-	-	— .	_	0/01-0.15	0.08	0.05	0.19-0.22	0.21	0.02	0.33-0.48	0.42	0.05
Pr	_	—	-	-	—	-	0-0.04	0.002	0.01	0-0.03	0.01	0.01	0-0.06	0.03	0.03
Nd	_	—	-	-		<u> </u>	0-0.08	0.04	0.03	0.04-0.08	0.07	0.02	0.05-0.16	0.13	0.04
Th	_	_	_	-	_	_		_		_	-	-	0-0.01	0.003	0.01
Al	2.83-3	2.95	0.05	2.8-3	2.96	0.06	2.65-2.97	2.91	0.1	2.59-2.83	2.68	0.11	2.69-2.92	2.84	0.09
Fe	-			00.14	0.02	0.04	00.28	0.04	0.09	0.09-0.39	0.26	0.12	0-0.19	0.05	0.08
Ti	-	-	-	0-0.02	0.002	0.01	-	-	_	-	_	_	-		-
PO ₄	1.05-1.3	1.13	0.11	0-1.58	1.2	0.19	0.93-1.44	1.26	0.13	1.44—1.54	1.49	0.04	1.82-1.92	1.89	0.03
SO4	0.64—0.95	0.87	0.11	0.24-1	0.77	0.24	0.56-1.07	0.74	0.13	0.46-0.56	0.51	0.06	0.08-0.18	0.11	0.03
SiO ₄	_	_	_	0.19	0.02	0.06	00.09	0.005	0.02		_	-	·		—
ОН	5.09—5.86	5.67	0.24	4.79-5.83	5.54	0.3	0-5.75	5.51	0.16	5.31-5.7	5.44	0.18	5.1-5.53	5.39	0.14
Sr/Ca	0—0.2	0.08	0.07	0.42-1.62	0.99	0.38	0.52-2.04	1.09	0.47	0.65-1.13	0.92	0.24	0-0.7	0.43	0.27
REE/(Ca+Sr+Ba)	-	-	-	_	-	_	0.01-0.85	0.25	0.22	0.62-1.7	0.91	0.45	2.31-14.83	6.83	4.05
Nd/(Ce+La+Pr)	-	-	_	_	_	—	0—1	0.48	0.33	0.14-0.29	0.22	0.06	0.07-0.27	0.2	0.06
SO4/PO4	0.47—0.9	0.78	0.15	0.27-1	0.7	0.23	0.39—1.15	0.61	0.19	0.16—0.39	0.31	0.09	0.04—0.1	0.06	0.02

Coefficients of atoms within formulae of studied aluminiferous sulfate-phosphates

Матрица коэффициентов парной корреляции основных компонентов состава алюминиевых сульфат-фосфатов

	Ca							
Sr	-0.45	Sr						
La	-0.39	-0.48	La	· .				
Ce	-0.44	-0.5	0.96	Ce				
Nd	-0.37	-0.52	0.75	0.84	Nd			
Al	0.5	0	-0.44	-0.47	-0.45	Al		
Р	-0.23	-0.22	0.65	0.67	· 0.54	-0.21	Р	
S	0.65	0	-0.58	-0.58	-0.42	0.68	-0.57	S

Matrix of the pair correlation coefficients between the main components of aluminiferous sulfate-phosphates

Рис. 3. Общие вариации состава твердых растворов алюминиевых сульфат-фосфатов: А — флоренсит, Б — харттиты.

Fig. 3. General variations in composition of exsolutions of the aluminiferous sulfate-phosphates: A — florencite, \mathcal{B} — hartites.

ОСОБЕННОСТИ ИЗОМОРФИЗМА И ПРОБЛЕМА НОМЕНКЛАТУРЫ АЛЮМИНИЕВЫХ СУЛЬФАТ-ФОСФАТОВ

Охарактеризованные выше вариации состава алюминиевых сульфат-фосфатов обусловлены изоморфизмом в их катионной и анионной подрешетках. При этом центральное место занимает комбинационное замещение по схеме (Ca, Sr, Ba)²⁺[SO₄]²⁺ \leftrightarrow REE³⁺[PO₄]³⁻, отражающей самую суть переходов между исследуемыми кальциево-стронциевыми сульфат-фосфатами и фосфатами редких земель. Что же касается «флоренсит—гойяцитовой» схемы гетеровалентного изоморфизма (Сомина, Булах, 1996), то вероятность ее реализации в нашем случае относительно невелика. На это, в частности, указывает отрицательная корреляция между Sr и P, свидетельствующая в пользу вывода о следовании Sr за S, а не за P.

Очевидно, что представленные выше схемы не исчерпывают всех кристаллохимических особенностей рассматриваемых твердых растворов. Как известно, изоморфизм минералов определяется близостью эффек-

Рис. 4. Основная закономерность состава и кристаллохимии твердых растворов алюминиевых сульфат-фосфатов: А — флоренсит, Б — харттиты.

Fig. 4. The main regularity in composition and crystal-chemistry of the exsolutions of aluminiferous sulfate-phosphates: A — florencite, B — hartites.

тивных раднусов и поляризационных свойств (электроотрицательностей) соответствующих ионов при условии сохранения электронейтральности кристаллической решетки. Исходя из этой посылки мы провели расчет кристаллохимических эффектов, отвечающих реализованным в исследуемых минералах дополнительным схемам изоморфизма (табл. 4). Сопоставление расчетных данных с вышеизложенными результатами исследования химического состава минералов приводит нас к следующим выводам.

Наиболее приемлемыми в катионной подрешетке алюминиевых сульфат-фосфатов следует признать взаимные замещения Ca \leftrightarrow Sr и Ca \leftrightarrow REE. На этом фоне изоморфизм редких земель и стронция выглядит менее предпочтительным по причине существенных расхождений в поляризационных свойствах соответст-

вующих ионов. Очевидно, что именно этим обстоятельством и определяется отмеченный выше факт обогащения REE именно высокостронциевых харттитов — результат преимущественного замещения редкими землями ионов кальция. Вероятно, кристаллохимическую природу имеет также и большая частота встречаемости Ва в относительно менее стронциевых минералах (табл. 1, 2), что вытекает из предпочтительности замещения барнем именно стронция, а не кальция.

именно стронция, а не кальция. Вхождение Fe²⁺ в R-позиции катионной подрешетки представляется маловероятным, поскольку это связано с преодолением слишком больших

Рис. 5. Распределение редких земель в составе алюминиевых сульфат-фосфатов.

Fig. 5. Distribution of REE in composition of aluminiferous sulfate-phosphates.

108

Кристаллохимические эффекты основных изоморфных замещений в алюминиевых сульфат-фосфатах

Crystal-chemical	effects by the	main isomor	phic replacement	within
-	aluminiferous	sulfate-phos	phates	

Замещение	∆r, %	∆ 3 0, %	Замещение	Δr, %	∆ ЭО, %
$Ca^{2+} \leftarrow Sr^{2+}$	15	-7	$Sr^{2+} \leftarrow Nd^{3+}$	-18	-20
$Ca^{2+} \leftarrow Ba^{2+}$	33	-15	Al ³⁺ ← Fe ³⁺	18	7
$Sr^{2+} \leftarrow Ba^{2+}$	15	8	P ⁵⁺ ← S ⁶⁺	-14	21
$Ca^{2+} \leftarrow La^{3+}$	-1	-11	P ⁵⁺ ← Si ⁴⁺	11	-21
$Ca^{2+} \leftarrow Ce^{3+}$	-3	-11	P ⁵⁺ ← As ⁵⁺	. 34	-3
$Ca^{2+} \leftarrow Nd^{3+}$	-5	-11	S ⁶⁺ ← Si ⁴⁺	30	-44
$Sr^{2+} \leftarrow La^{3+}$	-14	-20	S ⁶⁺ ← As ⁵⁺	57	-20
$Sr^{2+} \leftarrow Ce^{3+}$	-16	-20			

Примечание. *г* — ионные радиусы по Г. Б. Бокию и Н. В. Белову; ЭО — электроотрицательность ионов (Войткевичи др., 1990).

кристаллохимических диспропорций (табл. 4). В этом смысле гораздо более естественным выглядит замещение Fe³⁺ → Al³⁺, наиболее характерное, как показали исследования, для флоренситов.

Возможности изоморфизма в анионной подрешетке алюминиевых сульфат-фосфатов, судя по кристаллохимическим оценкам, должны быть более ограниченными, чем в катионной. Это вытекает из факта значительных расхождений соответствующих ионов не только по размеру, но и особенно по поляризационным свойствам. Однако на деле оказывается, что сульфат-фосфатная пропорция в рассматриваемых минералах варьирует вплоть до эквиатомных соотношений фосфора и серы, определяясь, в сущности, количеством ионов REE в позиции R. Из этого следует, что состав анионов в алюминиевых сульфат-фосфатах определяется в большей степени не кристаллохимическими свойствами комплексообразующих ионов, а балансом зарядов кристаллической решетки. Об этом же свидетельствует и редкость обнаружения в составе этих минералов Si, ионы которого кристаллохимически не менее близки к ионам фосфора, чем ионы серы, но в отличие от последних вносят в решетку избыточные отрицательные заряды.

В непосредственной связи с проблемой изоморфизма в анионной подрешетке исследуемых минералов находится вопрос вхождения в их состав мышьяка. Известно, что в сульфат-фосфатах мышьяк обнаруживается редко и в низких концентрациях. С другой стороны, содержание фосфора в арсенофлоренсите также достигает лишь первых процентов (Nickel, Temperly, 1987). Сказанное как будто согласуется с наличием значительных кристаллохимических расхождений между ионами As⁵⁺, P⁵⁺ и особенно S⁶⁺ (табл. 4). Однако эти же расхождения не мешают, как известно, существованию в природе бёдантита PbFe3[AsO4][SO4] (OH)₆ — арсенатфосфата с эквиатомным соотношением мышьяка и серы.

Приведенное выше показывает, что особенности кристаллохимии анионной подрешетки сульфат-фосфатов трудно объяснимы с позиций классической теории изоморфизма. Возможно, выход из этого противоречия состоит в отказе от идеи статистического распределения комплексных анионов (Белов, 1967) и переходе к моделям их упорядочения в структурах смешанных соединений.

В заключение необходимо остановиться на значении выявленных регулярных твердых растворов алюминиевых сульфат-фосфатов для систематической минералогии. Представляется очевидным, что отнесение соответствующих минералов к разным группам и даже классам, как это зачастую практикуется в настоящее время, вступает в противоречие с фактами их существования в природе в виде фазовогомогенных смешанных образований. С другой стороны, очевидная необходимость номенклатурного объединения подобных минералов подтверждает правомерность введения в современную минералогическую систематику надгрупповых («супертрупповых»), межклассовых и даже межтиповых таксонов (Булах, 1999; Силаев и др., 1999; Jambor, 1999), отражающих реально существующую в природе кристаллохимическую гибридизацию (Силаев, Филиппов, 1999).

Список литературы

Белов Н. В. XVIII. Очерки по структурной минералогии // Минер. сб. Львов. ун-та. 1967. № 21. Вып. 3. С. 231—245.

Буканов В. В., Буканова В. А., Никитенко И. П. Новые данные о сванбергитизации как о процессе околорудного изменения вмещающих пород // Геология и полезн. ископ. сев.-вост. Европ. части СССР и Урала. Т. 2. Сыктывкар, 1973. С. 514—520.

Булах А. Г. Общая минералогия. СПб., 1999. С. 192-273.

Булгакова А. П. Эпигенетический сванбергит в коре выветривания Лебединского месторождения КМА // ЗВМО. 1973. Вып. 6. С. 702—707. Гладковский А. К., Храмцов В. Н. Разновидности сванбергита из железных руд и бокситов Курской магнитной аномалии // Минералы местор. полезн. ископ. Урала (Минер. сборник, № 8). Свердловск, 1968. С. 110—112.

Гладковский А. К., Храмцов В. Н., Меттих Л. И., Дубровина И. Н. Сванбергит из железных руд и бокситов КМА и Урала // Минер. сб. Львов. ун-та. 1971. № 25. Вып. 3. С. 270—273.

Закономерности строения и химизм кристаллов сванбергита из хрусталеносных жил Приполярного Урала // Л. Л. Ширяева, В. В. Буканов, О. Г. Уманова, Д. А. Варламов // Минералогия месторождений Урала. Тез. докл. регион. совещ., т. 2. Свердловск, 1990. С. 157.

Казицын В. И. Сванбергитизация — новый тип околорудного изменения // Докл. АН СССР. 1965. Т. 161. № 2. С. 440—443.

Кашкай М. А. Группа алунита и его структурных аналогов // ЗВМО. 1969. Вып. 2. С. 150-165.

Кузнецова С. В., Геворкьян С. В., Петрунина А. А. Сванбергит из Новодмитриевского свинцово-цинкового рудопроявления в северо-западном Донбасе // Минералогия осад. образов., вып. 3. Киев: Наукова думка, 1976. С. 46—50.

Литошко Д. Н., Буканов В. В. Лазулит севера Урала // ЗВМО. 1989. Вып. 1. С. 35-41.

Луканина М. И. Сванбергит в бокситах Каменского района на Среднем Урале // ЗВМО. 1959. Вып. 5. С. 586-591.

Минералогические таблицы. Справочник / Е. И. Семенов, О. Е. Юшко-Захарова, И. Е. Максимюк и др. М.: Недра, 1981. 399 с.

Никитина Е. И., Берзина А. П., Кузнецова И. К., Сотников В. И. О сванбергите в Горном Алтае // Докл. АН СССР. 1963. Т. 149. № 4. С. 942—944.

Поваренных А. С. Кристаллохимическая классификация минеральных видов. Киев: Наукова думка, 1966. С. 547.

Рипп Г. С., Канакин С. В. Фосфатные минералы в метаморфизованных высокоглиноземистых породах Ичетуйского проявления (Забайкалье) // Докл. РАН. 1998. Т. 359. № 3. С. 223—225.

Силаев В. И., Филиппов В. Н. Микроминералы и микроминеральные парагенезисы в зонах вторичного гипергенно-инфильтрационного обогащения как новая филогеническая проблема // Микро- и нанодисперсные структуры минерального вещества. Сыктывкар, 1999. С. 82—94.

Силаев В. И., Филиппов В. Н., Сокерин М. Ю. Галогенсульфиды меди в марганцевых палеолатеритах как результат гипергенной перегруппировки вещества // Докл. РАН. 1999. Т. 386. № 6. С. 813—817.

Сомина М. Я., Булах А. Г. Флоренсит из карбонатитов Восточного Саяна и некоторые вопросы химической конституции группы крандаллита // ЗВМО. 1966. Вып. 5. С. 537—550.

Справочник по геохимии / Г. В. Войткевич, А. В. Кокин, А. Е. Мирошников, В. Г. Прохоров. М.: Недра, 1990. 480 с.

Флейшер М. Словарь минеральных видов. М.: Мир, 1990. 206 с.

Швецова И. В., Лихачев В. В., Ширлева Л. Л. Стронциевый алюмофосфат в бокситоносной коре выветривания полевошпатовых метасоматитов на Среднем Тимане. Минералогия Тиманско-Североуральского региона. Сыктывкар, 1989. С. 17—26.

Юдович Я. Э., Швецова И. В., Козырева И. В. Малдинский феномен // Минерал. 1999. № 1. С. 17—20. Figueiredo Comes C. S. On a Sr and Al basic phosphate-sulphate close to svanbergite, occurring in a

Portuguese bauxitic clay // Mem. Noticias Mus. Lab. Mineral. Geol. Univ. Coimbra. 1968. Vol. 66. P. 29-39. Fijal J., Nies M. Svanbergite from the Radjou iron ore deposit (Syria) // Miner. Polonica. 1977. Vol. 8. P. 69-73.

Ygeberg E. R. Swanbergite from Horrsjoberg / Arkiv Kemi. Miner. Geol. 1945. Vol. 20A (4), P. 1-17.

Jambor J. E. Nomenclature of the Alunite Supergroup # Canad. Miner. 1999. Vol. 37. P. 1323-1341.

Kato T. The crystal structures of goyazite and woodhouseite # Neues Jahrb. Miner. Monatsh. 1971. P. 241-247.

Kato T., Miura Y. The cristal structures of jarosite and swanbergite # Miner. J. 1977. Vol. 8. P. 419-430.

Lemmon D. M. Woodhouseite, a new mineral of the beudantite group # Amer. Miner. 1937. Vol. 22. N 9. P. 939-948.

Nickel E. H., Temperly J. E. Arsenoflorencite-(Ce): a new arsenate mineral from Australia # Miner. Mag. 1987. Vol. 51. N 361-362. P. 605-609.

Pabst A. Some computations on svanbergite, woodhouseite and alunite # Amer. Miner. 1947. Vol. 32. N 1, 2. P. 16-30.

Stroffregen R. E., Alpers C. N. Woodhouseite and swanbergite in hydrothermal ore deposits: products of apatite destruction during advanced argilic alteration # Canad. Miner. 1987. Vol. 25. N 2. P. 201-211.

Switzer G. Swanbergite from Nevada // Amer. Miner. 1949. Vol. 34. P. 104-106.

Tavora E. Constautes Reticulares da Harttita. Anasis da Acad. Brasil. de Cienc. 1951. Vol. 23. N 1.

Wise W. S. Solid solution between the alunite, woodhouseite, and crandallite mineral series // Neues Jahrb. Miner. Monatsh. 1975. P. 540-545.

Поступила в редакцию 11 февраля 2000 г.